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Determination of Natural Frequency of Anisotropic Plates 
Using D' Alembert Principle 
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Abstract: A dynamic Analysis of thin rectangular plates made of anisotropic materials is 
treated. The analysis is based on the assumptions of classical plate theory in which the 
anisotropic characteristics of the plate material are introduced. The static lateral load on the 
plate is replaced by D' Alembert inertia load. The free vibration of simply supported 
rectangular orthotropic plates is treated as numerical examples, the obtained results are 
compared with the three dimensional elasticity solution. To verify the theoretical analysis, an 
experimental study is done using 8 layers woven cross play fiber glass/epoxy rectangular 
plates. 
 
Keywords: Natural Frequency, D' Alembert Principle, Anisotropic Materials, Plate theory, 
Tensorial Formulation.  
 
 

a, b, h                  Plate length, width, and thickness. 
𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖                     Generalized elastic moduli. 
𝐷𝐷𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼                   Flexural rigidities. 
 i,j,k,l                   Three dimensional tensorial indices. 
𝑀𝑀𝛼𝛼𝛼𝛼                      Bending moments. 
 q                         Statical lateral  load.        
t                           Time variable. 
𝑢𝑢𝛼𝛼                         In-plane displacements. 
w                          Plate deflection. 
𝑥𝑥𝑖𝑖                           Cartesian coordinates. 
𝛼𝛼,𝛽𝛽, 𝛾𝛾, 𝛿𝛿 = 1,2     Two dimensional tensorial indices. 
(  ),𝛼𝛼   =   (   ),𝛼𝛼      Derivative with respect to 𝑥𝑥𝛼𝛼 . 
𝜀𝜀𝑖𝑖𝑖𝑖                          Strain tensor. 
λ                           Eigen value. 
𝜌𝜌                           Mass of unit area. 
𝜎𝜎𝑖𝑖𝑖𝑖                          Stress tensor.  
𝜓𝜓𝛼𝛼                          Inclination angles. 
𝜔𝜔                           Angular frequency. 
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1. Introduction 
In the last decades, classical plate theory has been improved by introducing transverse shear 
deformations and rotary inertia. In the classical plate theory, longitudinal stresses are assumed 
to vary linearly across the plate thickness, Zak et al. [1] studied numerical and experimental 
investigation of free vibration of multilayer delaminated composite beams and plates. Cook 
[2] presented a finite element analysis based on Reissner's variational principle to calculate 
vibration and buckling Eigen value of isotropic rectangular plates. Khedeir and Reddy [3] 
obtained a complete set of linear equations of the second order theory to analyze the free 
vibration behavior of cross-ply and antisymmetric angle-ply laminated plates. Civalek [4] 
developed a numerical method for the free vibration analysis of symmetrically laminated 
composite plates. The procedure is based on the application of the discrete singular 
convolution (DSC) method in conjunction with the first-order shear deformation theory 
(FSDT). Thai and Kim [5] presented free vibration of laminated composite plates using two 
variable refined plate theory. The theory accounts for parabolic distribution of the transverse 
shear strains through the plate thickness, and satisfies the zero traction boundary conditions 
on the surfaces of the plate without using shear correction factors. Morozov and Lopatin [6] 
proposed an analytical closed-form solution providing the value of fundamental frequency of 
the composite sandwich plate. The variational equations of motion are derived using 
Hamilton's principle in conjunction with the first-order shear deformation theory.  Most of 
innovative materials has some kind of anisotropy, monoclinic orthotropic or, transverse 
isotropic. Static and dynamic analysis of rectangular plates made if anisotropic materials have 
been treated by many authors, their analysis variational analysis or finite element approach. In 
the present analysis a dynamic analysis of anisotropic plates based on assumptions of classical 
plate theory is given. Highly anisotropic material, such as monoclinic one in which the 
material has only one plane of symmetry can be treated, the governing equation are presented 
in a compact for using tensor notations. The obtained statical equation of equilibrium is used 
to develop the Eigen values of free vibration of anisotropic plates. The lateral load q in statical 
analysis may be replaced by D 'Alembert load (-𝜌𝜌 𝜕𝜕𝑤𝑤
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𝜕𝜕𝑡𝑡2  ) where  ρ is the mass per unit area. 
Applications to orthotropic rectangular plates are given. The obtained results are compared 
with exact elasticity solution, given by Srinivas and Rao [7] and the classical plate theory. 
Instead of using the simplified classical assumptions, the results of present analysis are more 
accurate than those of the classical plate theory. 
 
The accuracy tends to be better as the plate tends to be thicker. To verify the obtained 
theoretical analysis, an experimental work is done using 8-layers of fiber glass/epoxy woven 
cross-play laminates. Two sets of rectangular plates are used in experimental work, four edges 
simply supports boundary conditions are used. The material properties are determined using 
3 mm electrical strain gages. The experimentally obtained Eigen values of free vibration of 
used plates are compared with that of the present theoretical analysis and exact solution.  
 
 
2. Governing Equations 
Generalization of Hooke's Law can be expressed in the form 
 
𝜎𝜎𝑖𝑖𝑖𝑖 = � 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  �𝜀𝜀𝑘𝑘𝑘𝑘                                                                                                                         (1) 
 
For a material having one plane of symmetry (monoclinic). 
 
𝜎𝜎𝛼𝛼𝛼𝛼 = 𝐶𝐶𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼  𝜀𝜀𝛾𝛾𝛾𝛾 +  𝐶𝐶𝛼𝛼𝛼𝛼33𝜀𝜀33                                                                                                   (2) 
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𝑀𝑀𝛼𝛼𝛼𝛼 = ∫ 𝜎𝜎𝛼𝛼𝛼𝛼 . 𝑧𝑧 𝑑𝑑𝑑𝑑ℎ/2
−ℎ/2                                                                                                               (3) 

 
Substitution of equation (2) into (3) and for homogeneous monoclinic plate under lateral load 
q (𝑥𝑥1, 𝑥𝑥2)  Figure 1, the generalization of classical plate theory analysis leads to the following 
expression for bending moments 𝑀𝑀∝𝛽𝛽  by: 
 
𝑀𝑀∝𝛽𝛽 = 𝐷𝐷∝𝛽𝛽𝛽𝛽𝛽𝛽  𝜓𝜓𝛾𝛾 ,𝛿𝛿                                                                                                   (4) 
 

where:  
𝐷𝐷𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 =  ℎ

3

12
 � 𝐶𝐶𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼 −  𝐶𝐶𝛼𝛼𝛼𝛼 33𝐶𝐶𝛾𝛾𝛾𝛾 33

𝐶𝐶3333 )
 �              Flexural Rigidities. 

 

 
Fig. 1   Plate notation. 

 
The inclination angles 𝜓𝜓𝛼𝛼  and the deflection w are functions of the in-plane variables 𝑥𝑥1, 𝑥𝑥2. 
The quantities 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  are the three dimensional elastic moduli defined by the generalized 
Hooke's Low in equation (1). 
 
Introducing the expression of the stress resultants 𝑀𝑀𝛼𝛼𝛼𝛼  and 𝑄𝑄𝛼𝛼 into the known equilibrium 
equations: 
 
𝑀𝑀𝛼𝛼𝛼𝛼 ,𝛽𝛽 −  𝑄𝑄𝛼𝛼 = 0                            
                                                                                                                                                  (5) 
𝑄𝑄𝛼𝛼 ,𝛼𝛼   +   𝑞𝑞 =  0                             
 
A set of equilibrium equations in terms of 𝜓𝜓𝛼𝛼   and w is obtained in the following form: 
 
𝐷𝐷𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼  𝜓𝜓𝛼𝛼 ,𝛽𝛽𝛽𝛽𝛽𝛽 + 𝑞𝑞 =   0                                                                                                           (6) 
 
If the lateral load q is replaced by the D' Alembert inertia load (-𝜌𝜌 𝑤𝑤,𝑡𝑡𝑡𝑡 ) where 𝜌𝜌 is the mass 
per unit area of the plate and t is the time variable, then the equilibrium equation (6) is 
transformed to the following equation of motion for a homogeneous monoclinic plates: 
 
𝐷𝐷𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼  𝜓𝜓𝛼𝛼 ,𝛽𝛽𝛽𝛽𝛽𝛽  −   𝜌𝜌𝑤𝑤 ,𝑡𝑡𝑡𝑡 =   0                                                                                                   (7) 
 
The substitution of the relation  𝜓𝜓𝛼𝛼 =  𝑤𝑤 ,𝛼𝛼  , into equation (7) leads to the following equation: 
 
𝐷𝐷𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼  𝑤𝑤 ,𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼  −   𝜌𝜌𝑤𝑤 ,𝑡𝑡𝑡𝑡 =   0                                                                                                  (8) 
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Application to rectangular thick orthotropic plates 
Let us consider the free vibration of a rectangular orthotropic plate is simply supported at its 
four edges, Fig 2. 
 
In this case the boundary condition may be expressed in the form 
 
 at     𝑥𝑥1 = 0 , 𝑥𝑥1 = 𝑎𝑎 ;  𝑀𝑀11 = 𝑤𝑤 =  𝜓𝜓2  = 0, 
 at      𝑥𝑥2 = 0 , 𝑥𝑥2 = 𝑏𝑏  ;  𝑀𝑀22 = 𝑤𝑤 =  𝜓𝜓1 = 0. 
 
This set of edge conditions are identically satisfied by choosing  𝑤𝑤 in the form 
 
𝑤𝑤 =  𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼 ∑ ∑ 𝑤𝑤𝑚𝑚𝑚𝑚∞

𝑛𝑛=1 sin𝑀𝑀𝑥𝑥1  sin𝑁𝑁𝑥𝑥2  ∞
𝑚𝑚=1                                                    (9) 

 
where 𝜔𝜔 is the angular frequency of free vibration, 𝑤𝑤𝑚𝑚𝑚𝑚  are undetermined coefficients, 
 
𝑀𝑀 =  𝑚𝑚𝑚𝑚

𝑎𝑎
,     𝑁𝑁 =  𝑛𝑛𝑛𝑛

𝑏𝑏
,    𝐼𝐼 = √−1 . 

 
Fig. 2   Simply supported rectangular orthotropic plate. 

 
For simple harmonic, the substitution of the expressions (9) into equation (7) yields for each 
combination of m and n, the following equation for angular frequency 𝜔𝜔: 
 
𝑀𝑀4𝐷𝐷1111 +  2𝑀𝑀2𝑁𝑁2𝐷𝐷1122 +  4 𝑀𝑀2𝑁𝑁2 𝐷𝐷1212 +  𝑁𝑁4 𝐷𝐷2222 −  𝜌𝜌 𝜔𝜔2  = 0                               (10) 
 
The Eigen value of free vibration (𝜆𝜆) can be expressed in term of angular frequency  𝜔𝜔 as: 
 
𝜆𝜆2 =  𝜔𝜔2 𝜌𝜌 ℎ/𝐶𝐶1111                                                                                                                 (11) 
 
If the engineering elastic moduli of an orthotropic plate (𝐸𝐸11,𝐸𝐸22,𝐺𝐺12, 𝜈𝜈12) are known, the 
nonzero elements of the flexural rigidities 𝐷𝐷𝛼𝛼𝛼𝛼𝛼𝛼𝛼𝛼  can be expressed as 
 

𝐷𝐷1111 =  
ℎ3 𝐸𝐸11

12(1 − 𝜈𝜈12𝜈𝜈21 )
     ,            𝐷𝐷1122 =  

ℎ3𝜈𝜈12  𝐸𝐸22

12(1 − 𝜈𝜈12𝜈𝜈21)
   , 

                                                                                                                                                (12) 

𝐷𝐷2222 =  
ℎ3 𝐸𝐸22

12(1 − 𝜈𝜈12𝜈𝜈21 )
   ,                  𝐷𝐷1212 =  

ℎ3

12
(𝐺𝐺12)  .              

 
The engineering constants are usually obtained from experimental test data or using fiber and 
mixture properties in micromechanical analysis and lamination theories. 
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3. Numerical Results and Discussion 
As a numerical example, the free vibration of a homogeneous orthotropic, simply supported 
rectangular plate is analyzed. 
 
Consider the material properties given in Table 1, which simulate aragonite crystals [7]. 
 

Table 1    Orthotropic properties of aragonite crystals. 
 

𝐶𝐶∗2222    =   0.543103 𝐶𝐶∗3333  =   0.530172 

𝐶𝐶∗1122     =   0.233190 𝐶𝐶∗1133  =   0.010776 

𝐶𝐶∗2233    =   0.089276 𝐶𝐶∗1212  =   0.262931 

𝐶𝐶∗1313  =   0.0159914 𝐶𝐶∗2323  =   0.266810 
                   𝐶𝐶∗𝑖𝑖ℎ𝑗𝑗𝑗𝑗 =  𝐶𝐶𝑖𝑖ℎ𝑗𝑗𝑗𝑗 /𝐶𝐶1111  
 

Table 2   Eigen value (𝝀𝝀) for free vibration of simply supported 
rectangular orthotropic plates. 

 

Case 
𝑚𝑚ℎ
𝑎𝑎

 
𝑛𝑛ℎ
𝑏𝑏

 
Exact 

value [6] 
Present analysis Thin plate theory 
Value % error Value % error 

 
 
1 
 
 
 
 
2 
 
 
 
 
3 
 
 
 
 
4 
 
 

0.5 
0.5 
0.5 
0.5 

 
0.1 
0.2 
0.3 
0.4 

 
0.3 
0.3 
0.3 
0.3 

 
0.1 
0.2 
0.3 
0.4 
0.5 

0.1 
0.2 
0.3 
0.4 

 
0.5 
0.5 
0.5 
0.5 

 
0.1 
0.2 
0.4 
0.5 

 
0.1 
0.2 
0.3 
0.4 
0.5 

0.45265 
0.48680 
0.54160 
0.61465 

 
0.42124 
0.46428 
0.52956 
0.61092 

 
0.21804 
0.26240 
0.42242 
0.52956 

 
0.04742 
0.16942 
0.33200 
0.51342 
0.70338 

0.72567 
0.77007 
0.84895 
0.96707 

 
0.53533 
0.59897 
0.71518 
0.89067 

 
0.27061 
0.31815 
0.53827 
0.71518 

 
0.04511 
0.18047 
0.40606 
0.72188 
1.12795 

60 
58.2 
56.7 
57.3 

 
27 
29 
35 

45.7 
 

24.1 
21.4 
27.4 
35 
 

4.8 
6.5 
22.3 
40.6 
60.3 

0.73374 
0.79809 
0.90459 
1.05260 

 
0.54574 
.63418 
0.78011 
0.98269 

 
0.27789 
0.34176 
0.59313 
0.78011 

 
0.04967 
0.19866 
0.44699 
0.79466 
1.24160 

62.10 
63.95 
67.02 
71.25 

 
29.56 
36.59 
47.31 
60.85 

 
27.45 
30.22 
40.41 
47.31 

 
4.74 
17.26 
34.64 
54.78 
76.52 

 
In Table 2 the results for Eigen value are compared with the exact value [7] and thin plate 
theory. Plates with different aspect ratios are considered. Figure 3 presents   a schematic 
diagram of percentage error in our analysis for different plate aspect ratios. It may be 
observed that the error in the present analysis decreases as the plate becomes thicker and 
narrower and maximum error for square plate. This error may be reduced by including the 
transverse shear stress. 
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Fig. 3   Percentage errors in the present analysis 

for different plate aspect ratios. 
 
 
4. Experimental Work 
A sensitivity experimental analysis is carried out to study the natural frequency of a 
composite plate with deferent specimen dimensions and compared with the present method. 
 

4.1 Materials 
The following constituent materials were used for fabricating the composite plates: Glass 
woven fiber as reinforcement, Epoxy as resin. 
 

4.2 Equipment and Test Procedure 
The composite plate specimens used in this research were made from 0/90 woven glass fiber 
with epoxy matrix. Specimens were fabricated by hand lay-up technique and cured under 
room temperature. 
 
The percentage of fiber and matrix is 50% in weight. The plates were left for a minimum of 
48 hours before being transported and then cut to exact shape for testing of three rectangular 
plates and three square plates of dimensions (200X140X3, 140X140X3) mm, are prepared. 
The material constants (𝐸𝐸11,𝐸𝐸22,𝐺𝐺12, 𝜈𝜈12) of woven fiber Glass/Epoxy composite plate were 
determined experimentally by performing unidirectional tensile tests on specimens cut in 
longitudinal and transverse directions, and at 45° to the longitudinal direction using material 
test system machine as relevant to ASTM Standard Fig.4. The shear modulus (𝐺𝐺12) was 
determined using the formula from Jones [8]. Then natural frequencies were determined for 
all specimens with boundary condition (simply supported).The excitation was provided by 
impact hammer and the response was picked up by accelerometer fixed above the plate. The 
natural frequencies are obtained from the Dual Channel Dynamic signal analyzer. 
 

 
Fig. 4   Tensile test specimen dimensions 
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Fig. 5   Stress strain curve (load in fiber direction 1) 

 
 
 
 

 
Fig. 6   Transverse strain versus linear strain  

 
 
 
 

 
Fig. 7   Stress strain curve (load in fiber direction 2) 
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Fig. 8   Stress strain curve (load at 𝟒𝟒𝟒𝟒° to fiber direction 1, 2) 

 
Model 1 
A square plate of dimension (140x140 mm) length and of (3 mm) thickness made of woven 
fiber glass/epoxy. 
 
Properties obtained from previous experimental tests: 
 
𝐸𝐸11 = 9 𝐺𝐺𝐺𝐺𝐺𝐺   ,𝐸𝐸22 = 9 𝐺𝐺𝐺𝐺𝐺𝐺 ,  𝜈𝜈12 = 0.245, 𝜈𝜈21 = 0.266 
 
𝐺𝐺12 = 2 𝐺𝐺𝐺𝐺𝐺𝐺 , 𝜌𝜌 = 4.11 𝑘𝑘𝑘𝑘/𝑚𝑚2 
 
Table 3 presents the Experimental Natural frequencies (Hz) of woven fiber glass/epoxy 
square plate with a side length of 140 mm and a total thickness of 3 mm. 
 

Table 3   Natural frequencies of square plate specimen 
 

Specimen Natural Frequency (Hz) 
1 309 
2 302 
3 314.26 

Avg 308.4 
 
Model 2 
A rectangular plate of dimension (200 mm, 140 mm) and (3 mm) thickness made of woven 
fiber glass/epoxy. 
 
Properties obtained from previous experimental tests: 
 
𝐸𝐸11 = 9 𝐺𝐺𝐺𝐺𝐺𝐺   ,𝐸𝐸22 = 9 𝐺𝐺𝐺𝐺𝐺𝐺 ,  𝜈𝜈12 = 0.245, 𝜈𝜈21 = 0.266 
 
𝐺𝐺12 = 2 𝐺𝐺𝐺𝐺𝐺𝐺 , 𝜌𝜌 = 4.11 𝑘𝑘𝑘𝑘/𝑚𝑚2 
 
Table 4 represents the experimental natural frequencies (Hz) of woven fiber glass/epoxy 
rectangular plate with a side length of 200 mm width 140 mm and a total thickness of 3 mm. 
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Table 4   Natural frequencies of rectangular plate specimen 

 

Specimen Natural Frequency (Hz) 
1 238.9 
2 234.37 
3 233 

Avg 235.4 
 
Comparison between experimental and theoretical natural frequencies showed good 
agreement as could be drawn from Table 5. 
 
 

Table 5   Frequency comparison between experimental and theoretical analysis. 
 

Model Present analysis 
(Hz) 

Experimental analysis 
 (Hz) Error % 

Square plate 335.26 308.42 8.7 
Rectangular plate 252.68 235.4 7.34 

 
 
5. Conclusion 
In this paper a dynamic analysis of anisotropic plates based on assumptions of classical plate 
theory is given. Highly anisotropic material, such as monoclinic one in which the material has 
only one plane of symmetry can be treated. Numerical results of the Eigen value for laminates 
with simply supported boundary conditions are computed and compared with the published 
works, exact elasticity solution and the classical plate theory. The results of present analysis 
are more accurate than those of the classical plate theory. An experimental work is done using 
8-layers of fiber glass/epoxy woven cross-play laminates. The material properties are obtained 
using the tensile test. The experimentally obtained natural frequencies of free vibration of 
used plates are compared with that of the present theoretical analysis and the results are in a 
good agreement.  
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