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Abstract: The high fidelity numerical simulation codes used in aerodynamic design and 
optimization applications show a number of drawbacks. Of these, the high computational 
cost, memory and time demands associated with complicated designs. Metamodels or 
surrogates provide a much cheaper alternative for these codes. The use of spikes in the design 
of hypersonic vehicles yields a considerable reduction in drag and aerodynamic heating 
effects. In this work, surrogates are used in the context of design optimization of a spiked 
blunt body in hypersonic flow conditions.  Four different surrogate models including 
quadratic response surface and kriging were constructed based on the values of drag and 
heating responses. The evolutionary genetic algorithm is applied to find the optimum design 
based on each of the surrogates. The structure of the various models was investigated and the 
main differences were addressed. For the cases investigated in this work, kriging surrogate 
based on exponential correlation produced a relatively better prediction of new points in the 
design space and, consequently, better optimized design. 
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Nomenclature 
A   matrix of training points values T temperature, [ K ] 

DC   drag coefficient x  design parameter 
D   body diameter, [ m ] x , x vector of design parameters 
d   weighted Euclidian distance  y exact response  
k   number of design parameters ŷ  surrogate response  
L   length, [ m ] y vector of exact responses 
m   number of polynomial coefficients ( )xz  Gaussian stochastic function 
n   number of design points α  vector of surrogate parameters 
p   exponent of correlation function β   RSM polynomial coefficient 
q   number of untried points β  vector of polynomial coefficients

mean of random field R   correlation matrix 
r   correlation vector ε  error 
R   main body radius, [ m ] θ  correlation weights  

2R   error estimate 2σ  error variance 
( )scf   spatial correlation function Ω  design space 

 
Subscripts 
i , j   a point in the design space 
l   a design parameter 
    
Abbreviations     
ADO  aerodynamic design optimization LHS  Latin hypercube sampling 
CFD  computational fluid dynamics MAE  maximum absolute error 
EKG  general-exponential kriging QRS  quadratic response surface 
e1ft, e1rt, e2ft, e2rt  experiments' notation, Table 2    
GA  genetic algorithm RMS  root mean square error 
GKG  Gaussian kriging XKG  exponential kriging 
KG  kriging    

 
 
I. Introduction 
In aerodynamic design and optimization (ADO) problems, a design's performance is estimated 
using numerical models based on computational fluid dynamics (CFD) techniques. These 
high-fidelity models proved to be a reliable, efficient, flexible, and relatively cheap means of 
analysis and design especially compared with experimental methods. The main drawback of 
using numerical analysis codes is that they are computationally expensive, highly memory 
demanding, and time consuming. Despite the fact that these models use simplified equations, 
the continuously improving computers, and the implementation of parallel computing made 
the numerical analysis more manageable; the demand for more accurate calculations and the 
search for more complicated designs arise as well. Another drawback of high fidelity models 
is the occurrence of numerical noise. Typical sources of numerical noise include the 
incomplete numerical convergence, numerical round-off, and discretization errors. 
 
These drawbacks become more severe in the context of optimization since it involves more 
computations. The conventional gradient-based search techniques require hundreds or 
thousands of CFD calls. Consequently, the optimization cost of complex designs becomes 
rather expensive. In addition, since gradient-based search techniques deal with one design at a 
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time, parallel computation that minimizes the cost can not be used. The numerical errors may 
lead the search algorithm to false optima. Another feature related to these codes is that a 
majority of them are originally designed as stand-alone modules and complications arise 
when trying to interfere their performance, sometimes the source codes are not accessible at 
all. Consequently, an increasing effort has been devoted to search for cheap alternatives of the 
high fidelity analysis codes in analysis, design, and optimization. One of these alternatives is 
the use of approximation models, metamodels, or surrogates.  
 
The basic idea of the using the surrogates (approximation models) is to replace the high 
fidelity, expensive analysis code with a less expensive approximate model. Instead of dealing 
with one design at a time, a population of n  designs (the training points) is simulated in the 
same time (possibly making use of parallel computation) using the high fidelity model. Based 
on the estimated responses, a low fidelity surrogate is constructed. The one-shot calculations 
associated with surrogate construction are relatively cheaper than gradient evaluations 
involved in CFD-based optimization. Once the surrogate is constructed, the high fidelity 
model is overlooked and the subsequent search is made directly on the surrogate model. An 
additional step is required in surrogate-based optimization; the optimum design attained by 
the search technique must be validated using the high fidelity model. In some cases, the 
surrogate model accuracy is improved by augmenting the training set with the optimum; this 
can be repeated until no further improvement is achieved. The role of surrogates in 
aerodynamic design optimization can be visualized in Fig. 1. 
 

 
 

Fig. 1 Basic Elements of (a) CFD-based and (b) CFD-surrogate-based Optimization 
 
 
In addition to lower computation cost, smoothing out the error noise arising from numerical 
simulation, and no needed modification to the analysis code, surrogate models give better 
"feeling" of the inputs-outputs functional relations. When used in optimization, surrogates 
give additional benefits such as smoothing out the noise arising from evaluating the objective 
and constraint functions, easy adaptation to parallel computations, separating the analysis 
code from the optimization algorithms, and easy integration of various codes used in 
multidisciplinary optimization. The high-fidelity model is commonly represented by the 
functional relation 
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( )xfy =              (1) 
 
where k

pxxx R∈= },....,{ 21x  is the vector of k  design inputs (parameters) and y  is the 
scalar output (also called the response, dependent variable). On the other hand, a surrogate 
model is expressed as 
 

( ) ( )xαx ffy ≈= ,ˆˆ             (2) 
 
where α  is a vector of undetermined parameters that must be evaluated prior to applying the 
surrogate. There is a variety of surrogate models; among them response surface and kriging 
models are mature enough and are widely used in many applications. In this work, these two 
models are used in the context of design optimization of spiked blunt body in hypersonic 
flow.  
 
The remainder of this paper is organized as follows: The structure of the used surrogates is 
presented in the next section. Then, we illustrate the design problem in concern, namely, the 
spiked hypersonic vehicle. The main results are discussed near the end of the paper which 
finalizes with the main conclusions.  
 
 
II. Surrogates' Structure 
 

II.1. Response Surface Model (RSM)  
The response surface model, also termed polynomial regression, is a parametric regression 
model. Parametric means that the model uses the training points' responses to estimate the 
unknown parameters α ; once they are known, the training set is no longer used and only the 
parameters decide the response at new points. Regression means that the training set 
responses are fit by the model.  RSM was originally tailored for physical experiments [1] 
where the output is characterized by random errors however, it is commonly used in 
deterministic numerical experiments to account for random numerical errors. In this model, 
the training points' responses are fit by a polynomial plus an error.  
 

ε+= yŷ              (3) 
 
where ε  represents the random error which is assumed to be normally distributed with zero 
mean and variance 2σ . The approximation polynomial can have any order; however, it is 
typically of the first order or second order. In this work, a quadratic (second order) 
polynomial is used. The model is expressed as 
 

∑∑∑
= ≥=

++=
k

i

k

ij
jiij

k

i
iio xxxŷ

11
βββ           (4) 

 
respectively, where oβ  is called the intercept, ji,ij ≠β  are the interaction coefficients, ix  
refers to one of the k  design parameters. The polynomial coefficients s'β (also known as the 
regression parameters) represent the undetermined parameters vectorα . The values of s'β  
reflect the importance (dominance) of the respective design parameter. They are estimated via 
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minimizing the sum of squares of deviations of predicted values, ( )xŷ , from the actual high-
fidelity values, ( )xy , using the equation: 
 

[ ] yAAAβ
1 TT −

=             (5) 
 
where y is a column vector that contains the exact values of the response at all training points 
and TA  is the transpose of matrix A expressed as:  
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where ( )( ) 221 ++= kkm . The response at a new point x , ( )xŷ , is directly evaluated by 
substituting for x  in the polynomial equation.   
 
 

II.2. Kriging Model (KG) 
Kriging, also knows as design and analysis of computer experiments DACE, is a 
nonparametric interpolation model. Nonparametric means that the training points are involved 
in estimating the unknown parameters α  and predicting the new points' responses as well. 
Interpolation means that the model exactly interpolates the responses at all training points. In 
contrast to RSM, kriging was originally tailored for computer experiments characterized by 
deterministic errors. Kriging imposes a global model that interpolates all design points plus 
"localized" functions representing the deviations (departure) from the global model at all 
points. The response is expressed as 
 
( ) ( ) ( )xxx zfŷ +=             (7) 

 
where ( )xf  is a low-order polynomial that interpolates the design points. Typically, a 
constant value was found sufficient for modelling complex input-output relations [2]. Hence, 
the output can be viewed as a random field with mean β , 
 
( ) ( )xβx zy +=ˆ             (8) 

 
( )xz  is a Gaussian stochastic function that represents the realization of random process with 

zero mean, variance 2σ , and covariance given by 
 

( ) ),( jiZCov xxR2σ=            (9) 
 

where ),( ji xxR  is the correlation matrix which is an nn×  symmetric matrix with ones in the 
diagonal. Other terms in the matrix are given by the spatial correlation function 
 



Paper: ASAT-13-AE-15
 
 

 6/17 

[ ]),(exp),( jiji dR xxxx −=          (10) 

where  

 

( ) ∑
=

⎟⎟
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⎞
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⎝
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ji xxd
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xx θ,          (11) 

 

i  and j  denote two training points, l  refers to a design parameter, θ  is a positive weight 
factor related to each design parameter, and k  is the number of design parameters. The value 
of θ  reflects the degree of nonlinearity of temperature response with respect to the 
corresponding design parameter [2]. The spatial correlation function can be viewed as 
functions of the "weighted" distance between samples.  
 
Three different correlation functions are used in this work: exponential ( 1=p ), Gaussian 
( 2=p ), and general exponential ( 20 << p ); a value of p  closer to 2  indicates that the 
response function is highly differentiable with respect to the design parameters [2]. The mean 
parameter, β , is evaluated by minimizing the sum of squares of error using the equation 
 

[ ] yRAARAβ 111 −−−= TT          (12) 
 
where A  is an mn×  matrix of training set points depending on the choice of the 
function ( )xf ; in the constant case, A  is a 1×n  vector of all ones. The parameters θ  and p  
that ensure the "best fit" of the model to the training data are evaluated by maximizing the 
likelihood estimation MLE expressed as: 
 

( ) ( )⎥
⎦

⎤
⎢
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−−+++− − AβyRAβy

2
1R2

2
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2
2 Tnn
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σπ lnln)ln(     (13) 

 
where the maximum likelihood estimation of 2σ  is expressed as 
 

( ) ( )AβyRAβy1 12 −−= −T
n

σ         (14) 

 
The response at a new point x , ( )xŷ , is directly evaluated by applying the equation  
 
( ) ( )AβyRxrβx 1 −+= −)(ˆ Ty          (15) 

 
where )( xr  is the correlation vector between x  and all training points. The main pros and 
cons and ranges of application of RSM and kriging surrogates were discussed in the 
literatures, for example, [2, 3, 4]. They can be summarized in Table 1. 
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Table 1 Basic Differences between RSM and KG 
 

            Advantages Disadvantages 

RMS 

- Well-established, easy to implement. 
- Better performance is expected for low 

order non-linear response functions. 
Best suited for small scale applications 
( 10<k ). 

- For optimization purposes, it requires 
relatively fewer calls of the analysis 
code. Convergence is achieved 
relatively faster.  

Less efficiency is expected when applied 
to problems with highly non-linear and 
irregular performance. Higher order 
polynomials can be adopted. In this 
case, a large number of training points is 
needed to accurately capture the 
function behavior and estimate a large 
number of parameters. In addition, 
instabilities and false optima may appear 

KG 

- Well suited for numerical experiments 
with deterministic errors. 

- Extremely flexible by virtue of a wide 
range of correlation functions. 

- Even when a constant term is used for 
the global part of the model, the 
performance is comparable to second-
order polynomial regression model. 

- KG can be sufficiently applied to 
problems with up to 50 parameters. 

- KG tends to yield more accurate 
approximations over a wide range of 
samples size and design 

- Model construction can be time 
consuming for large problems. A 
number of complicated calculations 
are involved including matrices 
operations and optimization. Such 
costs may overweight the 
approximation benefits. 

- If the training points are relatively 
"close" to each other, the correlation 
matrix can become singular. 

- Additional points are needed to assess 
the model which imposes additional 
computational cost. 

 
Surrogate models are involved in a variety of aerodynamic design optimization applications. 
On the one hand, quadratic RSM was implemented in optimization of transonic airfoil [5], 
transonic rotor blades [6], subsonic flying wing [7], rocket engine injectors [8], high speed 
civil transport HSCT [9], unmanned aerial vehicles UAV [10], and high speed stand-off 
missiles HSSM [11]. On the second hand, Kriging models were involved in the optimization 
of transonic airfoils [12, 13], three-element airfoil [14, 15], three element wing [16], subsonic 
engine nacelle [17], small jet aircraft [18], and hypersonic vehicle with air-breathing engine 
[19]. On the other hand, a number of researchers utilized both models in their work and 
addressed the differences. For example, the design of a high speed civil transport (HSCT) [20] 
and rocket engine nozzle [21]. It is noted that all these literatures adopted the Gaussian form 
of correlation function; other correlation functions such as exponential or general exponential 
were not used in any work.  
 
 

II.3. Models Assessment 
The fitness of the surrogate is assessed using a variety of techniques. For example, regression 
error is used with RMS [1], sample sensitivity and cross validation are used with Kriging [2]. 
However, when two different surrogates are compared, the fitness is generally assessed using 
new points other than the training ones. The surrogate performance in predicting these untried 
points is evaluated using the root mean square error [19], maximum absolute error [19], and 

2R  error estimate [2, 19]: 
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( )∑ −=
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where y  is the mean of the exact response at the q  untried points iy  and iŷ  is the 
corresponding surrogate response value. Smaller values of RMS and MSE and a higher value 
of 2R  indicate better surrogate accuracy.  
 
 
III. Case Study 
Hypersonic vehicles experience high levels of drag and aerodynamic heating during flight. 
Many efforts are devoted to minimizing these effects for longer ranges, lower fuel 
consumption, and safer flights. One approach is to use aerospikes. An aerospike is a needle-
like body mounted at the nose tip of the main body. In many cases, a larger disk, called the 
aerodisk, is fitted at the tip of the spike for better performance. It is believed that the 
efficiency of the spike in reducing drag and aerodynamic heating effects largely depends on 
the spike geometry. For some spike designs, undesirable flow oscillations are invoked causing 
a number of structure and communication problems. Hence, a proper selection of the optimum 
spike design would yield optimum aerodynamic performance.  
 
In this work, we aim to find the optimum design of a hypersonic spiked body at hypersonic 
flight velocity (Mach 6 freestream) and zero incidence. The main body is assumed to be a 
hemisphere of a fixed diameter, D , the spike is a thin circular cylinder of a fixed radius, 

D050.=δ and a variable length, and the aerodisk is a hemispherical disk of a variable radius, 
Fig. 2.a. Hence, the design parameters are the spike length, L  , and the aerodisk radius, r . 
Their scaled counterparts are termed 1x  and 2x , respectively, Fig. 2.b. 
 

 
 
 
 
 
 

(a) 
 
 
 
 
 
 
 

(b) 
Fig. 2  Geometry of a generic spiked hypersonic blunt vehicle 

 

Main body 

Spike  

Aerodisk  

1
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Two numerical experiments are conducted in this work. The first experiment uses 40 design 
points in the training set and 20 other points for assessment purposes. The other experiment 
uses 100 training points and 60 other points for assessment purposes. All points are selected 
using the standard Latin hypercube sampling (LHS) technique. Fig. 3 illustrates the design 
space and the location of training and test points for the two experiments. 
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Fig. 3 Latin Hypercube Sampling for (a) Experiment 1 and (b) Experiment 2 
 
Each point in the design space represents a unique design. All designs are evaluated using a 
high fidelity flow solver. In this work, we use FLUENT [22] which solves the Reynolds-
averaged Navier-Stokes equations using the cell-centred finite volume approach. Prior to 
being used in this optimization work, the flow solver is validated by comparing its results 
with a number of previous experimental works and the resolution of the computational 
domain associated with the numerical solution is examined as well. Two aerodynamic 
performance criteria are of a special concern namely, the total drag coefficient DC  and the 
maximum adiabatic wall temperature on the main body, T . These two values for each design 
are scaled with respect to a reference value. In this work, we use the respective values of 
unspiked hemispherical body as the reference values. The reference values of total drag 
coefficient (freestream conditions and hemisphere base area) and adiabatic stagnation 
temperature are 0.888 and 3243.3 K, respectively.  
 
Our preliminary investigation of the aerodynamic performance of these designs reveals that, 
for designs having 01./ <DL , flow instabilities arise along with deterioration in spike 
efficiency. Hence, the two experiments are repeated focussing only on the refined design 
space with coordinates: 0116250 1 .. << x  and 10 2 << x . Four surrogate models are 
examined namely, quadratic RSM (QRS), exponential Kriging (XKG), Gaussian Kriging 
(GKG), and General exponential Kriging (EKG). A total of eight distinct experiments are 
performed. For easier referencing, they are given a special notation, Table 2.  
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Table 2. Notation of the Experiments 
 

Experiment Notation 
experiment 1 experiment 2 

Temperature response, full design space e1tf e2tf 
Temperature response, refined design space e1tr e2tr 
Drag response, full design space e1df e2df 
Drag response, refined design space e1dr e2dr 

 
The optimization technique used in this work is the genetic algorithm (GA). This population-
based evolutionary algorithm has a number of appealing advantages over the conventional 
gradient-based techniques. Only the objective function value is used and its gradients are not 
needed and they are likely to find the global optimum even with highly nonlinear and 
multimodal phenomena. In our case, 200 individuals are evolving through infinite number of 
generations. Fitness of individuals is estimated based on the constructed surrogates. The best 
20 individuals in each generation pass directly to the next one whereas the remaining 
individuals are generated via Gaussian mutation (with probability of 0.8 to enhance diversity 
of the search) and scattered crossover. Evolution process continues until convergence; a 
fitness tolerance of 1e-6 is taken as the convergence criteria. In this work, design objectives 
are treated separately. The genetic algorithm toolbox available in MATLAB [23] is used in 
this work.  
 
 
IV. Results and Discussions 
 

IV.1. Structure of the Surrogate Models 
The three kriging surrogates used in the experiments have the same underlying spatial 
correlation function of the form: 
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On the other hand, the polynomials used in these experiments have the following form: 
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x xxxxxxxxxy o
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ij
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where i  and j  refer to any training point, x .  The superscripts 1 and 2 refer to spike length 
and aerodisk radius with the corresponding weight parameters, 1θ  and 2θ , respectively. p  is 
an undetermined power parameter, and s'β  are the unknown polynomial coefficients. 
 

Temperature response 
The values of the undetermined parameters for temperature experiments are listed in Tables 3 
and 4; values of 1θ , 2θ , and p  are in bold, underlined, and italic numbers, respectively. The 
values in shaded cells refer to those of the refined space experiments. 
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Table 3 Values of Quadratic Polynomial Coefficients 
in Temperature Experiments 

 

 1β  2β  3β  4β  5β  

e1ft -.5008 .1394 -.0636 .395 -.0756 
e1rt -.046 .0335 .0136 .0167 -.0268 
e2ft -.7419 .2322 -.141 .6187 -.1203 
e2rt -.0468 .0251 .0086 .0213 -.0171 

 
 

Table 4 Values of Kriging Parameters in Temperature Experiments 
 

 e1ft e2ft 
e1rt e2rt 

GKG 20 18.34 2 13.4543 20 2 
2.8284 0.8409 2 4 2.8284 2 

XKG 4 0.3536 1 1 9.76e-4 1 
0.1768 0.0743 1 0.1768 0.0743 1 

EKG 1.3899 0.2455 0.5548 2.1435 0.134 0.7579 
0.125 0.2874 1.7411 0.6598 0.483 1.8661 

 
The values 1β  and 2β  are larger than those of 4β  and 5β , respectively. This indicates that 
the spike length has a dominant rule in temperature response compared to the aerodisk radius. 
Adding more training points emphasizes the spike length dominance whereas refining the 
space reduces it. We may infer that the predicted temperature response becomes less sensitive 
to spike length by excluding the undesirable designs that yield very high temperatures. In 
addition, 1β  and 4β  are larger than those of 2β  and 5β , respectively. This reflects that 
temperature response tends to be linear with respect to design parameters. Adding more 
training points emphasizes this trend. However, refining the space adds a degree of 
nonlinearity to temperature response especially with respect to spike length. The signs of 1β  
and 2β indicate that temperature tends to decrease with increasing spike length and decreasing 
aerodisk radius. These trends can be viewed in the graphical representation of QRS, Fig. 5; the 
green square and red triangular dots refer to training and test points, respectively. 
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(a)       (b) 

Fig. 5 Graphical Representation of QRS for Experiments (a) e2ft and (b) e2rt 
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These nonlinear trends in temperature response can be confirmed from the values of θ  in all 
Kriging surrogates. GKG yields the highest values for θ  in all experiments which indicate 
high nonlinearity; this may be explained by the fact that GKG actually imposes a nonlinear 
behavior. However, this nonlinearity diminishes by adding more points and refining the 
design space, Fig. 6. 
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(a)        (b) 

Fig. 6 Graphical Representation of GKG for Experiment (a) e2ft and (b) e2rt 
 
By refining the space, the value of p  for EKG approaches 2 . This may indicate that the 
temperature response becomes more differentiable by excluding the designs with undesirable 
output. Finally, comparing Figures 5 and 6, we can infer the different natures of RSM and 
KG. While the RSM surrogate fits into responses of training points (green dots), KG surrogate 
exactly interpolates them. 
 
 

Drag response 
Similarly, the values of the RSM and KG surrogates' undetermined parameters in drag 
experiments are listed in Table 5 and 6, respectively.  

 
Table 5  Values of quadratic polynomial coefficients 

 in drag experiments 
 

 1β  2β  3β  4β  5β  

e1fd -1.516 -.1966 -.3231 1.2603 .4461 
e1rd -.3617 -.0508 .0903 .2041 .0556 
e2fd -1.4895 -.0551 -.0603 1.1348 .1432 
e2rd -.3439 -.0996 .0806 .1978 .1006 
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Table 6  Values of kriging surrogates parameters 
 in drag experiments 

 
 e1fd e2fd 

e1rd e2rd 

GKG 1 2 2 8 2 2 
1.8616 0.2726 2 4 2.8284 2 

XKG 0.25 0.0078 1 0.25 0.0156 1 
0.2292 0.0625 1 0.2293 0.0653 1 

EKG 0.8409 0.483 1.8661 1.6818 0.483 1.8661 
0.5946 0.483 1.8661 0.732 0.483 1.8661 

 
The dominating role of spike length is clear in drag response in both linear and nonlinear 
parts. This dominance seems to increase with more training points and diminish with refining 
the design space. Drag response is more nonlinear with respect to spike length. Increasing the 
number of training points emphasizes this trend whereas refining the design space reduces the 
degree of nonlinearity. XKG and EKG show very comparable values by refining the space or 
adding more training points; this may address their relative robustness in incorporating drag 
response. 
 
 

IV.2. Assessment of Surrogate Models 
The values of temperature and drag responses at the test points are predicted by the 
surrogates. These values are then compared with the corresponding values estimated by the 
high fidelity CFD code. The values of MSE, MAE, and 2R  are shown in Table 7 and 8 for 
temperature and drag responses in bold, underlined, and italic numbers, respectively, for all 
surrogates. The shaded cells refer to the refined space values.  
 

Table 7 Temperature experiments' MSE , MAE, and 2R  
 

 e1ft e2ft 
e1rt e2rt 

QRS .0504 .1877 .5301 .0555 .1753 .3955 
.0022 .0072 .8968 .0018 .0066 .9376 

GKG .0714 .2769 .0576 .0513 .2096 .4832 
.0018 .0048 .9305 .0013 .0052 .9689 

XKG .0365 .1496 .7541 .0445 .2195 .601 
.0014 .0044 .9569 7.89e-4 .0022 .9883 

EKG .0384 .1611 .7274 .0271 .094 .8552 
.0012 .0012 .9681 4.97e-4 .0014 .9954 
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Table 8 Drag experiments' MSE and MAE, and 2R  
 

 e1fd e2fd 
e1rd e2rd 

QRS .0848 .2892 .6773 .0674 .2637 .8249 
.0212 .08 .8087 .0148 .078 .8796 

GKG .0653 .2366 .8086 .0183 .0753 .9871 
.0116 .0431 .9426 .0118 .0702 .9233 

XKG .0326 .1044 .9523 .0147 .0779 .9917 
.0167 .0661 .8814 7.89e-4 .0388 .9883 

EKG .0765 .2946 .7374 .0085 .0276 .9972 
.0124 .0493 .9349 .0052 .034 .9854 

 
Adding more training points in constructing the surrogate generally reduces the prediction 
error at untried points. However, a more significant improvement is attained by refining the 
design space especially in temperature response. The XKG and EKG surrogates yield 
relatively better prediction accuracy. Figures 7 and 8 illustrate graphical representation of 
these two surrogates in temperature and drag experiments, respectively.  
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Fig. 7 Graphical Representation of e2rt Experiment for (a) XKG and (b) GKG 
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Fig. 8 Graphical Representation of e2rd Experiment for (a) XKG and (b) GKG 

 
 

IV.3. Optimization Results  
The optimization algorithm (here, the genetic algorithm) is applied to each of the resulting 
surrogates to find the predicted optimum design. As illustrated in Fig. 1, these candidate 
designs must be evaluated using the CFD solver to address their exact level of optimality. 
Table 9 illustrates the optimization results of the four surrogates studied here. The %error 
refers to the difference between the predicted and exact response; the plus and minus signs 
indicate that the surrogate over-estimated and under-estimated the response, respectively. On 
the other hand, the %improvement indicates the superiority of the exact response of the 
optimized design compared with the best design in the training set of each experiment; a 
minus sign indicates that the response of the surrogate-predicted design is worse than the best 
training design. The bold numbers refer to exp.1 and the italic numbers refer to exp.2, exp.3, 
and exp.4. The shaded cells contain the values corresponding to the refined design space. 
 

Table 9. Optimization Results 
 

 Temperature Response Drag Response 
% error % improvement % error % improvement 

QRS -4.8403 -5.058 -1.542 0.4397 -74.614 -48.18 -22.76 -13.866 
-2.6596 -0.211 -1.69 0.2195 -18.779 1.0808 -3.711 -3.357 

GKG -8.6097 -26.888 -3.45 -15.169 -35.482 -8.647 -22.1 -1.48 
-0.004 -0.0155 -0.137 0.0548 -2.451 -2.219 -0.4346 -1.19 

XKG -0.1036 -0.1457 -0.3754 -0.1328 -10.027 -3.996 -7.5796 0.06 
-0.2102 0.0225 -0.1512 0.0986 0.0369 -0.159 0.0368 -0.706 

EKG -4.8919 -0.0006 -4.037 -0.04 -8.6589 -3.282 -1.3756 -0.96 
-0.0843 0.0299 0.0959 0.1015 -2.0567 -0.2078 -0.6116 -0.295 

 
Generally, adding more training points and refining the design space enhance the accuracy of 
surrogates. For the case in concern, QRS yields undesirable performance especially in drag 
response considering both error and improvement estimates. On the other hand, XKG and 
EKG produce better results which indicate that they incorporate the physical phenomena and 
the associated design-response functional relations. The minor improvements achieved by the 
optimized designs may be justified by the existence of near-optimum designs within the 
randomly-selected training set. 
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V. Conclusions 
Surrogate models represent a cheap and reliable alternative for expensive high fidelity 
computational models. In addition to this remarkable advantage, surrogates provide a clear 
understanding of the design-response functional relations. Many information about the 
importance of the design parameters and the nature of response can be deduced by 
investigating the surrogate structure. Consequently, parameters of minor effect can be 
overlooked for more economic and realistic design and optimization work. Surrogate 
performance can be improved by incorporating more training points. In addition, refining the 
design space by eliminating the designs that yield undesirable output enhances the surrogate 
performance. Thus, a good understanding of the phenomena in concern is recommended to 
construct a better surrogate. For the case studied here, kriging surrogates based on exponential 
correlation function give relatively better prediction at the untried points. When these 
surrogates are coupled with the appropriate search technique, better optimum designs are 
attained. 
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