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INTRODUCTION  

 

 

Nonlinear partial differential equations (NLPDEs) arise in number of scientific models to study 

many phenomena in physics and other fields. The salient feature of nonlinear evolution equations 

(NLEEs) appearing in mathematical physics is the study of traveling wave solution, solitary wave 

solution, periodic wave and kink-antikink wave solutions. The investigation of these solutions 

helps one to well understand the nonlinear physical phenomena. Over the last year, many methods 

have developed for finding exact solutions to NLEEs such as, the tanh-function method and its 

various extension [1]-[3], the homogeneous balance method [4, 5], the Jacobi elliptic function 

method [6]-[8], the F-expansion method and its extension [9]-[12], the sub-ODE method [13, 14] 

and other methods [15]-[17]. The Kudryashov method was presented by Kudryashov [18]-[20] 
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In this paper, we apply the extended Kudryashov method to 

construct some new exact solitary wave solutions of three important physical 

models, Schamel-nonlinear Schrödinger (S-NLS) equation, Schamel 

Korteweg-de Vries (S-KdV) equation, Schamel Korteweg-de Vries Burgers 

(S-KdVB) equation. In addition, this method is applied to seek solutions of 

Schamel equation modeling ion-acoustic waves in plasma and dust plasma. 

With the aid of symbolic computation, explicit exact solutions of these 

equations are expressed in terms of the hyperbolic functions, the 

trigonometric functions, and the exponential function. The stability of some 

exact solutions is computationally studied. 
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and it has been  applied by many authors [21]-[23]. The extended Kudryashov method [24, 25] is 

direct effective and provides more new exact solutions by taking the combination of all solutions 

of the Bernoulli and Riccati equations.  

    In this paper, we apply the extended Kudryashov method to construct some new explicit exact 

solutions of S-NLS equation, S-KdV equation, S-KdVB equation and Schamel equation. The 

physical signification of exact solutions of these equations are that they describe various natural 

phenomena such as solitons, solitary wave and kink wave solutions.  

   The rest of this work is organized as follows: In section 2, we give simple descriptions of the 

extended Kudryashov method. In section 3, we use this method to obtain the abundant exact 

solutions of the S-NLS equation, S-KdV equation, S-KdVB equation and Schamel equation. 

Finally, conclusion of the paper is given in the last section. 

SUMMARY OF THE EXTENDED KUDRYASHOV METHOD  

 

In this section, we summarize the essential steps of the extended Kudryashov method [24, 25] in 

the following steps: 

 

Consider a NLPDE with the independent variables   and     

 

                            (2.1) 

 

where the left hand side of Eq. (2.1) is a polynomial in        and its various partial derivatives 

and the subscripts are used for partial derivatives. 

 

Step 1: Assume that the transformation                          where   is the speed of 

traveling wave and   is the wave number to be determined later. Consequently, the NLPD Eq. 

(2.1) is transformed into an ordinary differential equation (ODE)  

 

                    (2.2) 

 

where    
  

  
 and   is a polynomial of   and its various derivatives.  

Step 2: We propose the solutions of Eq. (2.2) to be a polynomial in the form  

 

                     

                                   ∑   
    ∑            

           ∑   
    ∑            

              (2.3) 

 

where                                are constants to be determined such that      and   

is a positive integer that can be determined by balancing the nonlinear term (s) with the highest 

derivative term appearing in Eq. (2.2). The functions      and      satisfy the following 

Bernoulli and Riccati equations, respectively:  
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                        (2.4) 

  

         
  

  
     

                           (2.5) 

  

where             and    are constants. The solutions of the Bernoulli equation are denoted by 

 

   ,

  

                 
         

  

       
         

 (2.6) 

  

It is known that the Riccati equation (2.5) admits the following solutions: 
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 (2.7) 

 

where     
          and    is an arbitrary real constant. 

Step 3: Substituting Eq. (2.3) with Eq. (2.4) and Eq. (2.5) into the ODE Eq. (2.2) and equating each 

coefficients of             where                 to zero yields a system of algebraic 

equations for                                 . 

Step 4: Using the Maple or Mathematica to solve the system for                              

and  . Substituting the solutions for coefficients into Eq. (2.3), then concentration formulas of 

traveling wave solutions of Eq. (2.1) can be obtained.   

APPLICATIONS OF THE EXTENDED KUDRYASHOV METHOD  

 

 Through this section, we use the extended Kudryashov method to find exact solutions of S-NLS 

equation, S-KdV equation, S-KdVB equation and Schamel equation.  

 

3.1  The S-NLS equation 

  

In this section, we apply the extended Kudryashov method to construct exact traveling wave 
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solutions of the S-NLS equation [26] which is given by  

 

             
 

       (3.1) 

 

where the real part of   denotes the electrostatic potential. In order to derive these solutions, we 

look for the solution of this equation in the form  

 

                                                     (3.2) 

  

where         and    are real constants to be determined and      is a real function of  . 

Setting Eq. (3.2) into Eq. (3.1) and separating the imaginary and the real parts of the resulting 

complex ODE, we have  

                (3.3) 

  

           
        

 

     (3.4) 

  

From Eq. (3.3) we obtain    
 

 
 and it is convenient to use the transformation           . 

Thus, Eq. (3.4) has the form 

  

                      
      

        (3.5) 

 

Balancing    with       in Eq. (3.5), we have    . Thus, the extended Kudryashov method 

gives the solution in the form 

 

                                
          

                   

 

  
   

    
 

   

    
 

   

     
 

   

     
 

   

         
                          (3.6)     

 

where                                        and     are constants. Setting Eq. (3.6) into 

Eq. (3.5) and using Eq. (2.4) and Eq. (2.5), thus Eq. (3.5) becomes a polynomial in          . 

Putting each coefficients of             to zero, yields a system of algebraic equations for 

                              ,                                   and  . Solving this 

system of algebraic equations, we get the following results: 

 

Case 1:  

                               
            

    
             

                                                                     

                                                                                                 (3.7) 
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Substituting Eq. (3.7) into Eq. (3.6) with the transformation            and using Eq. (3.2), 

we get the soliton solution of Eq. (3.1) as the following: 

 

        * 
         

                

                       
 +

 

        (3.8)      

 

where                            with     and    are given in Eq. (3.7),    and    

are arbitrary constants. 

 

Case 2:  

                                                 
            

                                                                         

                   (  
        )    

                                         (3.9) 

 

From Eq. (3.9), Eq. (3.6) and using            with Eq. (3.2), we obtain the hyperbolic type 

solutions of Eq. (3.1) as  

        [
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     (3.11) 

 

 and the trigonometric type solutions  
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     (3.12) 

 

 

        [
     

                    
√ (  

    )

   
       

  
√ (  

    )

   
        

√ (  
    )

   
            

]

 

     (3.13) 

  

Case 3:  
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                                       (3.14) 

 

Substituting Eq. (3.14) into Eq. (3.6) with            and using Eq. (3.2), we get the exact 

solutions of Eq. (3.1) as follow:  

         
   (  

    )
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    (3.15) 

  

         
   (  

    )
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    (3.16) 

  

Case 4:  

                                                
               

                                            (  
        )    

            

                                                (3.17) 

 

Setting these values into Eq. (3.6) with            and Eq. (3.2), we obtain the solitary wave 

solutions of Eq. (3.1) in the form  

         
  (  
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    (3.20) 
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    (3.21) 

 

 and the intensity of solution (3.18) is given by 

 

            
  (  

    )

 
            

√  
    

   
       

 

 Equation (3.4) can be written in the form of an energy-like equation  
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    It is clear that        and 
  

  
   at    . So, there exist a point    (the amplitude of 

solitary wave) such that        . The existence condition for solitary wave solution (3.18) is 

   

           , which implies that   
      . 

   We draw plots the intensity of solution (3.18) and its position at     in Fig.(1.a) and 

Fig.(1.b) with the choice of parameters as                          and       

 

  
 

Figure  1:  Fig.(1.a) The intensity of solution (3.18) with the parameters                      

    and     .  Fig.(1.b) Its position with the same parameters.       

   

3.2  The S-KdV equation 

 

We consider the S-KdV [27] which is established in plasma physics in the study of ion       

acoustic solitons that reads  

       
 

                      (3.22) 

 

where     and   are constants. This equation becomes the KdV equation (when    ) and the 

Schamel equation (when    ). Due to various applications of Schamel equation and S-KdV 

equation, exact traveling wave solutions of these equations have given in [28, 29]. To derive some 

exact solutions of S-KdV equation, we use the transformation  

 

                                               (3.23) 

  

Then Eq. (3.22) becomes  

 

                                                  (3.24) 
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Integrating Eq. (3.24) and setting the constant of integration equal to zero, we have  

 

                                               (3.25) 

 

Balancing procedure gives    . Therefore, we may choose the ansatz  

 

                         
   

    
 

   

    
  (3.26) 

 

where                    are constants. The left hand side of Eq. (3.25) becomes a polynomial 

in           after substituting Eq. (3.26) into Eq. (3.25) and using Eq. (2.4) and Eq. (2.5). 

Setting each coefficients of             to zero, we obtain the algebraic equations for 

                                    and  . Solving these equations, we get the following 

results: 

 

Case 1:  
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                                            (3.27) 

 

 In this case, we obtain the solutions of Eq. (3.22) as follow:  
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           Case 2:    
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                                        (3.30) 

  

Using Eq. (3.30) and Eq. (3.26) with Eq. (3.23), we construct the solutions of Eq. (3.22) as  
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   (3.31) 
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  √      
     

     

    
          

   (3.32) 

  

The solutions (3.31) represent kink-type solitary wave and antikink-type solitary wave solutions 

(depending upon the choice of sign). Moreover, the solutions (3.32) are singular traveling wave 

solutions. In figure 2 we plot the solution (3.31) in Fig.(2.a) and its position with different values 

of   in Fig.(2.b), Fig.(2.c) and Fig.(2.d). The evolution graphs indicate that the solutions (3.31) 

can propagate stable with the parameters                    . 

 

  

           
 

Figure  2:  Fig.(2.a) The solution (3.31) with the parameters                     when 

(+) sign is taken. Fig.(2.b), Fig.(2.c) and Fig.(2.d) The solution (3.31) with these parameters and with 

         and     , respectively. 

   

Case 3:  
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                                            (3.33) 

  

  In this case we get the solutions (3.31) and (3.32). 
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Case 4:  
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From Eq. (3.34) and Eq. (3.26) with Eq. (3.23), we construct the new traveling wave solutions of    

Eq. (3.22)  
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           Case 5:  
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Substituting Eq. (3.37) into Eq. (3.26) with Eq. (3.23), we have the soliton -like solutions of Eq. 

(3.22)  
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Case 6: 
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Using Eq. (3.39) and Eq. (3.26) with Eq. (3.23), we obtain the following traveling wave solutions 

of Eq. (3.22):  

                        

[
 
 
 
 
 

 
          

 (    √
  

   
     

(

  (  
    √

  
   

          

    
 )

)

 

 

        ,

]
 
 
 
 
 
 

   (3.40) 

 where    is an arbitrary constant. 

 

Case 7:  
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                                   (3.41) 

  

Using Eq. (3.41) into Eq. (3.26) with Eq. (3.23), we get new soliton solutions of Eq. (3.22) as,  

 

         [ 
      √       ( 

       √          √   

    √    
 *

     (       √          √      (  
       √          √   

    √    
 *+ 

 ]

 

   (3.42) 

where    is an arbitrary constant. 

 

3.3  The S-KdVB equation 

 

The S-KdVB equation is given as  

 

       
 

                          (3.43) 

  

where     and   are constants. The S-KdVB equation containing a square root nonlinearity 

describes the nonlinear propagation of ion-acoustic shocks in a dusty plasma with dust charge 

fluctuations and small deviation from isothermally of electrons [30]. Using the transformation 

(3.23) into S-KdVB equation, we get  

 

                                                                  (3.44) 

 

Integrating this equation with respect to   and setting the integration constant equal to zero, we 

have  

                                                         (3.45) 
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Balancing    and       in Eq. (3.45), we obtain    . Thus, we get the general formal solution 

as in Eq. (3.26). Substituting Eq. (3.26) into Eq. (3.45) with Eq. (2.4) and Eq. (2.5), the left hand 

side of Eq. (3.45) becomes a polynomial in          . Equating the coefficients of             

to zero, yields a system of algebraic equations for                                     and   

that can be solved to get the following results: 

 

Case 1:  

  
       √                                      

        √            
         √                      

 

    
√                  

     √    
    

       √           √                               

            √            
  

 

                                 (3.46) 

 

Substituting Eq. (3.46) into Eq. (3.26) with Eq. (3.23), we get the exact solutions of Eq. (3.43) as, 
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   (3.48) 

 where  

                   
        √         √                      

     √             
  (3.49) 

 

We plot the position of the solution (3.47) with the parameters                      

        and different values of   in figure 3. We show that this solution can propagate stable. 

 

 

     
  

Figure  3:  The solution (3.47) studied when (+) sign is taken with the parameters               
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               and with         and      , respectively. 

   

 

Case 2:  

   
       √                    

    
          √              

    √         

      
  

 

                                                 (3.50) 

 

 From Eq. (3.50) and Eq. (3.26) with Eq. (3.23), we get the solutions of Eq. (3.43) as,  

 

        
  

    
    √                        

(  √            ) 

     
             (3.51) 

  

        
  

    
    √                        

(  √            ) 

     
             (3.52) 

 

These solutions are kink-type solitary wave solutions and singular traveling wave solutions, 

respectively. It is obvious that these types of solutions arise due to the combined effect of the 

nonlinear term containing   and the dissipative term containing  . In figure 4, we plot the 

position of the solution (3.51) with the parameters                     with 

different values of  . We show that the solitary wave solution (3.51) propagates stable. 

 

 

    
  

Figure  4:  The position of the solution (3.51) when (+) sign is taken with the parameters     

                with           and       , respectively.  

 

 

Case 3:  

   
       √                                     

        √            
               √            

 



128                                           M. M. Hassan et al.  

    
       √            √                               

            √            
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                          (3.53) 

  

By setting these values in Eq. (3.26) with Eq. (3.23), we obtain the kink-type solutions and 

singular solutions of Eq. (3.43)  
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 where   given by Eq. (3.49). 

 

 Case 4:  
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 From Eq. (3.56) and Eq. (3.26) with Eq. (3.23) the solutions of Eq. (3.43) become, 
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where    is an arbitrary constant. This family of solutions describes a new exact solutions. 

 

Case 5:  
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 From Eq. (3.58) and Eq. (3.26) with Eq. (3.23), we obtain the traveling wave solutions of Eq. 

(3.43) as 
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 Case 6:  
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                         (3.60) 

 

 In this case, we get the soliton-like solutions of Eq. (3.43) as  
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               √                   
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  (3.64) 

 

 

3.4  The Schamel equation 

 

Let us consider the Schamel equation [31] modeling dust ion-acoustic waves in plasmas  

     
 

               (3.65) 

  

where   is a constant. Schamel [31] derived this equation and a simple solitary wave solution of 

having         profile has obtained. We use the transformation (3.23) to derive some exact 

solutions of Schamel equation. Thus, Eq. (3.65) reduces to  

 

                                        (3.66) 

 Integrating Eq. (3.66) with respect to   and putting the integration constant equal to zero, we get  

 

                                     (3.67) 
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We note that this equation is similar to Eq. (3.5). Similarly, using the extended Kudryashov 

method we can get many types of solutions for the Schamel equation.  

   The solitary wave solution of Schamel equation is obtained by introducing the conditions 

   ,      and       as      . Therefore, we can obtain from Eq. (3.67) the following 

ODE:  

 
 

 
             

    

       
 

         
 

   

 

This equation is an energy equation of classical particle which is known as Sagdeev potential 

equation. The solitary wave solution of the energy equation reads  

 

                          

where the width of the wave 
 

 
 and the amplitude    are   √

 

 
 and 

      

  
, respectively. It is seen 

that as the speed   increase, the amplitude increase while the width decrease. This solution 

derives the shape of a compressive nature and observations made in space [32]. 
  

Remark 1: The solution (3.18) coincides with the solution given in [26]. Note that the solution 

(3.31) is exactly the same solutions obtained by Khater and Hassan [28] and Hassan [33], [34]. The 

solutions (3.40) have similar structures to the solutions given in [35]. Also, we note that the 

solutions (3.31), (3.38) and (3.40) are coincide with the solutions given in [34], [35] and other 

obtained solutions of S-KdV equation are new. In [36],  nonplanar Schamel Burgers equation is 

derived. 
 

Remark 2: The solutions (3.51) are the same as the results obtained in [30], [33] and other 

traveling wave solutions of the S-KdVB equation, to the best of our knowledge, are new. If the 

value of   in (3.50) is very small, the solutions (3.51) will be close to exact solutions defined by 

(3.31). Solutions obtained in this paper have checked by Maple software. 

CONCLUSION  

 

   In this paper, the extended Kudryashov method is used to investigate exact solutions of S-NLS 

equation, S-KdV equation, S-KdVB equation and the Schamel equation. The exact solutions in 

solitary wave, soliton and soliton-like are obtained for these equations, which have several 

applications in plasma physics and may be useful for studying the physical interpolation of each 

equation. Moreover, we compared our results with some of existing results in the literature. 

Although, some of exact solutions of S-NLS equation, S-KdV equation and S-KdVB equation 

reported in literature, we observe that some of our results are newly constructed.  

   Our new solutions insure that the extended Kudryashov method can be used to construct many 

new exact solutions of NLEEs. Also, we note that some solutions may be develop singularity at a 

finite point. Often bell shaped sech solution and kink shaped tanh solution model wave phenomena 

in plasma. The results show that the exact solutions (3.31), (3.47) and (3.51) in terms of tanh 

function can propagate stable. 
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