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Abstract: The purpose of the work described in this paper is to provide an intrusion detection 
system (IDS), by applying genetic algorithm (GA) to network intrusion detection system. 
Parameters and evolution process for GA are discussed in detail and implemented. This 
approach uses information theory to filter the traffic data and thus reduce the complexity. We 
use a linear structure rule to classify the network behaviors into normal and abnormal 
behaviors. This approach applied to the KDD99 benchmark dataset and obtained high 
detection rate up to 99.87% as well as low false positive rate 0.003%. Finally the results of 
this approach compared with available machine learning techniques.   
 
Keywords: Intrusion Detection System, Genetic Algorithm, Open Source Weka software.   
 
 
1. Introduction 
Internet and local area networks are expanding at an amazing rate in recent years, not just in 
the terms of size, but also in the terms of changing the services offered and the mobility of 
users that make them more vulnerable to various kinds of complex attacks. While we are 
benefiting from the convenience that new technology has brought us, computer systems are 
exposed to increasing number and complexity of security threats.  
 
Of particular importance, thus, is the ability of applying rapidly new network security policies 
in order to detect and react as quickly as possible to the occurring attacks.  
Different techniques have been developed and deployed to protect computer systems against 
network attacks (anti-virus software, firewall, message encryption, secured network protocols, 
password protection). Despite all the efforts, it is impossible to have a completely secured 
system. Therefore, intrusion detection is becoming an increasingly important technique that 
monitors network traffic and identifies network intrusions such as anomalous network 
behaviors, unauthorized network access, or malicious attacks to computer systems.  
 
Intrusion detection systems are typically classified with respect to placement as: host based or 
network based [1]. A host based IDS will monitor resources such as system logs, file systems 
and disk resources; whereas a network based intrusion detection system monitors the data 
passing through the network. 
 
There are two general categories of intrusion detection systems (IDSs) [2] as: misuse 
detection and anomaly based. Misuse detection systems are most widely used and they detect 

                                                 
* Yemeni Armed Forces , belalarh@gmail.com  
** Egyptian Armed Forces 



Paper: ASAT-13-CE-14
 
 

2/17 

intruders with known patterns as: network packet, like source address, destination address, 
source and destination ports or even some key words of the payload of a packet. These 
systems exhibit a drawback in the sense that only the attacks that already exist in the attack 
database can be detected, so this model needs continuous updating, but they have a virtue of 
having very low false positive rate. Anomaly detection systems identify deviations from 
normal behavior and alert to potential unknown or novel attacks without having any prior 
knowledge of them. They exhibit higher rate of false alarms, but they have the ability of 
detecting unknown attacks and perform their task of looking for deviations much faster.  
 
Genetic algorithm (GA) field is one of the up-coming fields in computer security, especially 
in intrusion detection systems (IDS) [3, 4, 5]. GA operates on a population of potential 
solutions applying the principle of survival of the fittest to produce better and better 
approximations to the solution of the problem that GA is trying to solve. At each generation, a 
new set of approximations is created by the process of selecting individuals according to their 
level of fitness value in the problem domain and breeding them together using the operators 
borrowed from the genetic process performed in nature, i.e. crossover and mutation. This 
process leads to the evolution of populations of individuals that are better adapted to their 
environment than the individuals that they were created from, just as it happens in natural 
adaptation. 
 
Anup Goyal and Chetan Kumar [18], generate a rule using the principles of evolution in a GA 
to classify all types of smurf attack labels in the training data set. With false positive rate is 
also quite low at 0.2% and accuracy rate is as high as 100%. 
 
The early effort of using GAs for intrusion detection can be dated back to 1995, when M. 
Crosbie and E. Spafford, [19] applied the multiple agent technology and GP to detect network 
anomalies. Each agent monitors one parameter of the network audit data and GP is used to 
find the set of agents that collectively determine anomalous network behaviors. This method 
has the advantage of using many small autonomous agents, but the communication among 
them is still a problem. Also the training process can be time-consuming if the agents are not 
appropriately initialized. 
 
Li [20] propose a GA-based method to detect anomalous network behaviors. Both 
quantitative and categorical features of network data are included when deriving classification 
rules using GA. The inclusion of quantitative features may lead to increased detection rates. 
However, no experimental results are available yet. 
 
Xiao et al. [21] present an approach that uses information theory and GA to detect abnormal 
network behaviors. Based on the mutual information between network features and the types 
of network intrusions, a small number of network features are closely identified with network 
attacks. Then a linear structure rule is derived using the selected features and a GA. The use 
of mutual information reduces the complexity of GA, and the single resulting linear rule 
makes intrusion detection efficient in real-time environment. However, the approach 
considers only discrete features. 
 
Rest of the work is organized as follows. Section 2 gives the overview of the genetic 
algorithm. In section 3  genetic algorithm based IDS (GAIDS) employed. In section 4 the 
preprocessing and features extraction phase employed. In section 5 training and testing phase 
using GA is employed. Experimental setup is given in Section 6. Discussion and experimental 
results is written in Section 7. Conclusions are written in Section 8. 
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2. Genetic Algorithm Overview 
Genetic algorithms (GA) are search algorithms based on the principles of natural selection 
and genetics. The bases of genetic algorithm approach are given by Holland [8] and it has 
been deployed to solve wide range of problems. 
 
GA evolves a population of initial individuals to a population of high quality individuals, 
where each individual represents a solution of the problem to be solved. Each individual is 
called chromosome, and is composed of a predetermined number of genes [9]. The quality of 
each rule is measured by a fitness function as the quantitative representation of each rule’s 
adaptation to a certain environment. The procedure starts from an initial population of 
randomly generated individuals. Then the population is evolved for a number of generations 
while gradually improving the qualities of the individuals in the sense of increasing the fitness 
value as the measure of quality. During each generation, three basic genetic operators are 
sequentially applied to each individual with certain probabilities, i.e. selection, crossover and 
mutation. The algorithm flow is presented in Fig. 1. 
 

 
Fig.1. Genetic algorithm flow [2]. 

 
A genetic algorithm is quite straightforward in general, but it could be complex in most cases. 
For example, during the crossover operation, there could be one-point crossover or even 
multiple point crossovers. There are also parallel implementations of genetic algorithms. 
Sometimes series of parameters (for example, mutation rate, crossover rate, population size, 
chromosome size, number of evolutions or generations, and how the selection is done) needs 
to be considered with specific selection process that the Selection[11,12,13,15] is the stage of 
a genetic algorithm in which individual genomes are chosen from a population for later 
breeding (recombination or crossover). There are several generic selection algorithms, such as 
tournament selection, fitness proportionate selection (also known as roulette-wheel selection), 
linear Ranking Selection and exponential Ranking Selection. The final goal is to search the 
solution space in a relatively short period of time [10]. 
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3. Genetic Algorithm based IDS (GAIDS) 
The proposed Genetic Algorithm Intrusion Detection System (GAIDS) is depicted in fig.2 
which consists of the following two phases: 

 Pre-processing and Features Extraction Phase: randomly select two separated 
training and testing data sets from the full DARPA data set, convert the symbolic 
features into numerical ones, normalize the data set, and select most suitable features. 

 Training and Testing Phase: Initialize population, evaluate this population, create 
new generation, evaluate new generation, and apply genetic operators on the new 
generation until the most suitable individual is reached, and we use the most suitable 
individual for training and testing phase as following:  

                    Training Phase: In this phase GAIDS is trained using the training data set. 
                    Testing Phase: Measures the performance of the system to the testing data set. 
 

 

Fig.2.The simple structure of the proposed model 
 
 
4. The Features Extraction and preprocessing phase 
Figure.3 shows a detailed block diagram of the GAIDS preprocessing phase. 

 Data Sets Extraction: Two subsets of the full data set were randomly selected and 
used as training and testing data sets. 

 Symbolic to Numerical Conversion:  Some features have symbolic form (e.g. 
protocol type). These features were converted into numerical ones by assigning a 
unique number for each feature. The resulting map is used to do the same for the 
testing data set. 

 Normalization: It is often useful to scale the inputs to fall within a specific range, in 
the proposed system Equation 1 was used to normalize the training and testing data 
sets, [17].  

 
                    Xn= 2 * (X - Xmin) / (Xmax - Xmin) -1                                               (1) 
 
where:  Xmin, Xmax: are the Minimum and maximum value of the original inputs, respectively. 
              Xn: is the normalized output. 
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Fig 3. GAIDS preprocessing phase Major components 
 
The resulting output will fall in the range [-1, +1]. The training data set will have M features, 
N1 intrusion type, and Q1 records. The testing data set will have M features, N2 intrusion type, 
and Q2 records. 
 
 

Features Selection 
The all 41 features in the KDD cup data set are listed with its descriptions and its numbers in 
the appendix A.   
 
This experiment reduces the dimension of the 41 features of the data set size that can be used 
in classifications by select two types of features: 
 
First type, 18 features are selected over 41 features based on the target operating system i.e. 
(features that used in windows operating system) that showing below: 
 
(duration, protocol_type {tcp,udp,icmp}, service {red_i,netbios_ns,urh_i,netbios_dgm,etc.), 
flag, src_bytes, dst_bytes, land, wrong_fragment, urgent, count, srv_count, serror_rate, 
srv_serror_rate, rerror_rate, srv_rerror_rate, same_srv_rate, diff_srv_rate, srv_diff_host_rate).  
Second type 31 features are selected over 41 features based on the information gain that 
explained below. 
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    -Information Gain    Let S be a set of training set samples with their corresponding labels. 
Suppose there are m classes and the training set contains si samples of class I and s is the total 
number of samples in the training set. Expected information needed to classify a- given 
sample is calculated as [1]: 
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Information gain for F can be calculated as [1]: 

 (4)                                                                              E(F) -  )S.,,I(S  Gain(F) m1   

In [1], information gain is calculated for class labels by employing a binary discrimination for 
each class. That is, for each class, a dataset instance is considered in-class, if it has the same 
label; out-class, if it has a different label. Consequently, as opposed to calculating one 
information gain as a general measure on the relevance of the feature for all classes, we 
calculate an information gain for each class. Thus, this signifies how well the feature can 
discriminate the given class (i.e. normal or an attack type) from other classes. Figure.4 in the 
appendix B shows the maximum information gain for each feature.  
 
In addition, Table.1 details the most discriminative class label for each feature. For majority 
of the features (31 over 41), normal, smurf and Neptune are the most discriminative classes. 
That is to say, there are many features that can discriminate these classes accurately. There are 
9 features with very small maximum information gain (e.g. smaller than 0.001), which 
contribute very little to intrusion detection. Moreover features 20 and 21 (outbound command 
count for FTP sessions and hot login, respectively) do not show any variations in the training 
set therefore they have no relevance to intrusion detection. 
 

Table 1. List of features for which the class is selected most relevant[1] 
 

Class Label 
 

Relevant Features 

normal              
smurf                
Neptune  
back                    
Land                  
Teardrop 
ftp_write              
guess_pwd          
buffer_overflow    
warezclient 

  1, 6, 12, 15, 16, 17, 18, 19, 31, 32, 37 
  4, 25, 26, 29, 30, 33, 34, 35, 38, 39 
  2, 3, 5, 23, 24, 27, 28, 36, 40, 41 
  10, 13 
   7 
   8 
   9 
  11 
  14 
  22 
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5. Training and Testing Phase using GA 
The proposed GA-based intrusion detection approach contains two modules where each work 
in a different stage. In the training stage, a set of classification rules are generated from 
network audit data using the GA in an offline environment. In the intrusion detection stage, 
the generated rules are used to classify incoming network connections in the real time 
environment. Once the rules are generated, the intrusion detection is simple and efficient. In 
the following sections, we focus our discussions on deriving the set of rules using GA. To 
determine a fitness value of each rule, the following fitness function is deployed [16]: 

(5)                                                            
BA

fitness




 
Where α is the number of correctly detected attacks, A is the total number of attacks in the 
training dataset,   is the number of normal connections incorrectly characterized as attacks, 
i.e. false-positives, and B is the total number of normal connections in the training dataset. 
Scale of fitness values is [-1, 1], where -1 is the lowest and 1 the highest value. High detection 
rate and low rate of false-positives result in a high fitness value. On the other side, low 
detection rate and high rate of false-positives result in a low fitness value. 
 
 

5.1. Detection Algorithm Overview 
List 1 shows the major steps of the employed detection algorithm as well as the training 
process. It first generates the initial population, sets the defaults parameters, and loads the 
network audit data. Then the initial population is evolved for a number of generations. In each 
generation, the qualities of the rules are firstly calculated, then a number of best-fit rules are 
selected, and finally the GA operators are applied to the selected rules. The training process 
starts by randomly generating an initial population of rules (line 1). The weights and fitness 
threshold values are initialized in line 2. Line 3 calculates the total number of records in the 
audit data. Lines 4-19 calculate the fitness of each rule and select the best-fit rules into new 
population. Lines 20-23 apply the crossover and mutation operators to each rule in the new 
population. Finally, line 24 checks and decides whether to terminate the training process or to 
enter the next generation to continue the evolution process. 
 
 
6. Experimental Setup 
 

 6.1. Objective      
KDDCUP 99[6] data set used to train and test the system classifier. The dataset has been 
provided by MIT Lincoln Labs [6]. It contains a wide variety of intrusions simulated in a 
military network environment set up to acquire nine weeks of raw TCP/IP dump data for a 
local-area network (LAN) simulating a typical U.S. Air Force LAN. The LAN was operated 
as if it were a true Air Force environment, peppered with multiple attacks. Hence, this is a 
high confidence and high quality data set. They set up an environment to collect TCP/IP 
dump rows from a host located on a simulated military network. Each TCP/IP connection is 
described by 41 discrete and continuous features (e.g. duration, protocol type, flag, etc.) that 
listed in appendix A, and labeled as either normal, or as an attack, with exactly one specific 
attack type (e.g. Smurf, Perl, etc.). These 22 attacks and normal labels concluded in the 
available 10% of the DARPA data set are listed with number of samples for each class 
(attack, normal) and category for each class in Table.2.  Attacks fall into four main categories: 
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List 1. Major steps of the detection algorithm. 

 

 
Algorithm: Rule set generation using genetic algorithm. 
Input: Network audit data, number of generations, and population size. 
Output: A set of classification rules. 
 
1.    Initialize the population 
2.    W1 = 0.2, W2 = 0.8, T = 0.5 
3     N = total number of records in the training set 
4.    For each chromosome in the population 
5.         A = 0, AB = 0 
6.       For each record in the training set 
7.           If the record matches the chromosome 
8.                  AB = AB + 1 
9.           End if 
10.        If the record matches only the “condition” part 
11.               A = A + 1 
12.         End if 
13.      End for 
14.     Fitness = W1 * AB / N + W2 * AB / A 
15.      If Fitness > T 
16            Apply the 4 different selection algorithms 
17.              Select the chromosome into new population 
18.      End if 
19.    End for 
20.   For each chromosome in the new population 
21.       Apply crossover operator to the chromosome 
22.       Apply mutation operator to the chromosome 
23.    End for 
24.  If number of generations is not reached, go to line 4 
 

 
(i)   Denial of Service Attacks (DOS) in which an attacker overwhelms the victim host 

with a huge number of requests. 
(ii) User to Root Attacks (U2R) in which an attacker or a hacker tries to get the access 

rights from a normal host in order, for instance, to gain the root access to the 
system.  

(iii)    Remote to Local Attacks (R2L) in which the intruder tries to exploit the system 
vulnerabilities in order to control the remote machine through the network as a 
local user.  

(iv)     Probing in which an attacker attempts to gather useful information about machines 
and services available on the network in order to look for exploits. 

 
The scope of these experiments was focused to generate classifiers or rules for different attack 
types and one normal type belonging to different classes. The training data set contains 42674 
connection records of the available 10% of the training set containing as published by Lincoln 
Labs which contains 494,021 connections for training of the attacks and normal type and the 
testing data set contains 31016 connection records of the attacks and normal type, as shown in 
Table 3. Hence, we wanted to create a rule that can classify all of these connections with a 
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minimal false positive rate. Although we would have apply our implementation to the attacks 
and normal types and connection features, the enormous training time complexity of the 
algorithm, very large data sets and lack of time restricted us. The training and testing 
connection records are classified in our experiments with the two types of the selected 
features that showed in section (7). From the Table 2, clearly that the attacks in the denial of 
service(DOS) category and normal category represent 98.93% of the available 10% KDD data 
set, i.e.  attacks in the denial of service(DOS) category and normal category contains 488735 
connection records from the 10% KDD data set that contains 494020 connection records, so 
in our experiments we focused the our classification on the two category (Normal & DOS). 
 
 

6.2. Tools 
For our implementation, we have used the GALIB java library [23] especially suited to 
develop Gas and java runtime environment jre1.5. Owing to the large hypothesis search space 
and high time complexity, we wanted to use a tool or library that is high on performance and 
computing speed. After a comprehensive survey of many tools, we decided to use GALIB 
since it is a java library, has been widely used by other researchers and well documented. We 
used a windows operating system with a Pentium 4 processor, 160GB of hard disk space and 
1 GB of RAM to execute the computer program. 
 

Table 2. Class labels that appears in 10% KDD” dataset work [1]. 
 

.Attack 
 

#Sample      Category.        

Smurf.    
Neptuno 

Back. 
Teardrop. 

Pod. 
Land. 

Normal. 
Satan. 

Ipsweep. 
Portsweep. 

Nmap. 
Warezclient. 

Guess_passwd.              
Warezmaster.               

Imap.                      
ftp_write.                  
multihop.                  

phf.                       
spy.                       

buffer_overflow             
rootkit                     

loadmodule.                
perl.                       

 

280790 
107201 
2203 
979  
264  
21 

97277   
1589   
 1247   
1040  
 231  
1020   
53 
20 
12     
  8      
  7 
4    
2       

30  
 10 
9 
3     

  DoS 
  DoS 
  DoS 
  DoS 
  DoS 
  DoS 

normal 
probe 
probe 
probe 
probe 

r2l 
r2l 
r2l 
r2l 
r2l 
r2l 
r2l 
r2l 
u2r 
u2r 
u2r 
u2r 
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Table 3. Class distribution for training and test data for the our dataset 

 
                           Normal               Intrusions (DOS)                   Total      
Train                 32957                      9717                                    42674 
Test                  26782                      4234                                    31016 

 
The University of Waikato in New Zealand [14], implements all the machine learning algorithms in 
the open source weka software called Weka. Weka is a collection of machine learning algorithms 
for data mining tasks. The algorithms can either be applied directly to a dataset or called from 
your own Java code. Weka contains tools for data pre-processing, classification, regression, 
clustering, association rules, and visualization. It is also well-suited for developing new 
machine learning schemes. 
 
 

6.3. Performance measures 
To evaluate our system, besides the classical accuracy measure, the two standard metrics of 
detection rate and false positive rate developed for network intrusions, have been used. 
Table 4 shows these standard metrics [22]. Detection rate (DR) is computed as the ratio 
between the number of correctly detected intrusions and the total number of intrusions, that is  
 

veTruePositi#iveFalseNegat#

veTruePositi#


DR                                                                                 (6). 

 
False positive(FP) (also said false alarm) rate is computed as the ratio between the numbers of 
normal connections that are incorrectly classifies as intrusions and the total number of normal 

connections, that is   
iveFalsePosit#veTrueNegati#

iveFalsePosit#
FP


                                                  (7). 

 
Table 4. Standard metrics to evaluate intrusions [22]. 

 
 Predicted label 

 
Normal 

 
Intrusions 

(DOS) 
Samples Rates% Samples Rates% 

Actual class Normal True Negative 
 

False Positive 
 

Intrusions 
(DOS) 

False Negative 
 

True Positive 
 

 
 
7. Discussion and Experimental Results  
This section report two different experiments to show the performance of the GA compared 
with the available machine learning algorithms in open source weka software. The first 
experiment used 18 out of 41 features and the second experiment used 31 out of 41 features. 
 
 

7.1. Experiment 1  
For the first experiment that used 18 out of 41 features that explained in section 4. In GAIDS 
we were able to create a rule that could successfully classify data with 99.9695% training 
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accuracy, and with 99.971% testing accuracy, that shown in Table 13. And with the false 
positive rate is 0.003% and the detection rate of intrusions is 99.87%, that shown in Table 5: 
 
In the open source weka software, we use three algorithms of the available algorithm in this 
software, and these algorithms that we used: decision tree (j48 algorithm), Bayes Network 
algorithm (BayesNet), and Support vector machine (SMO (Sequential Minimal 
Optimization)). And after we applied the same training and testing data that used in our work 
(GAIDS) to these algorithms, we obtain the following: In the j48 algorithm we obtained 
classification with 99.98% training accuracy, and with 99.958% testing accuracy, that shown 
in Table 13. And the false positive rate is 0.006% and the detection rate of intrusions is 
99.98%, that shown in Table 6. 
 

Table 5. Evaluate intrusions using GA in GAIDS exp 1. 
 

 Predicted label 
 

Normal 
 

Intrusions (DOS) 
 

Samples Rates% Samples Rates% 
Actual class Normal 32956 99.99 1 0.003 

Intrusions (DOS) 
 

12 0.12 9705 99.87 

 
 

Table 6. Evaluate intrusions using j48 in weka for exp 1. 
 

 Predicted label 
 

Normal 
 

Intrusions 
(DOS) 

Samples Rates% Samples Rates% 
Actual class Normal 32955 99.993 2 0.006 

Intrusions 
(DOS) 

2 0.02 9715 99.98 

 
 
In the BayesNet algorithm we obtained classification with 99.97% training accuracy, and with 
99.983% testing accuracy, that shown in Table 13. And the false positive rate is 0.021% and 
the detection rate of intrusions is 99.98%, that shown in Table 7: 
 

Table 7. Evaluate intrusions using BayesNet in weka for exp 1. 
 

 Predicted label 
 

Normal 
 

Intrusions 
(DOS) 

Samples Rates% Samples Rates% 

Actual class Normal 32950 99.97 7 0.021 

Intrusions 
(DOS) 

2 0.02 9715 99.98 

 
In the SMO algorithm we obtained classification with 100% training accuracy, and with 
99.994% testing accuracy, that shown in Table 13. And the false positive rate is 0% and the 
detection rate of intrusions is 100%, that shown in Table 8: 
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Table 8. Evaluate intrusions using SMO in weka for exp 1. 

 
 Predicted label 

Normal 
 

Intrusions 
(DOS) 

Samples Rates% Samples Rates% 
Actual class Normal 32957 100 0 0 

Intrusions 
(DOS) 

0 0 9717 100 

 
 

7.2. Experiment 2  
For the second experiment that used 31 out of 41 features that explained in section 4. In 
GAIDS we were able to create a rule that could successfully classify data with 99.582% 
training accuracy, and with 99.67% testing accuracy, that shown in Table 13. And with the 
false positive rate is 0.5% and the detection rate of intrusions is 99.82%, that shown in 
Table 9: 

Table 9. Evaluate intrusions using GA in GAIDS exp 2. 
 

 Predicted label 
 

Normal 
 

Intrusions 
(DOS) 

Samples Rates% Samples Rates% 
Actual class Normal 31208 99.5 158 0.5 

Intrusions 
(DOS) 

20 0.177 11287 99.82 

 
After we applied the same training and testing data that used in our work (GAIDS) to the 
algorithms in weka software, we obtain the following:. In the j48 algorithm we obtained 
classification with 99.997% training accuracy, and with 99.987% testing accuracy, that shown 
in Table 13. And the false positive rate is 0% and the detection rate of intrusions is 99.991%, 
that shown in Table 10: 
 

Table 10. Evaluate intrusions using j48 in weka for exp 2. 
 

 Predicted label 
 

Normal 
 

Intrusions 
(DOS) 

Samples Rates% Samples Rates% 
Actual class Normal 31366 100 0 0 

Intrusions 
(DOS) 

  1 0.0088 11306 99.991 

  
In the BayesNet algorithm we obtained classification with 99.75% training accuracy, and with 
99.67% testing accuracy, that shown in Table 13. And the false positive rate is 0.293% and 
the detection rate of intrusions is 99.90%, that shown in Table 11: 
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Table 11. Evaluate intrusions using BayesNet in weka for exp 2. 
 

 Predicted label 
 

Normal 
 

Intrusions 
(DOS) 

Samples Rates% Samples Rates% 
Actual class Normal 31274 99.7 92 0.293 

Intrusions 
(DOS) 

11 0.097 11296 99.90 

 
In the SMO algorithm we obtained classification with 100% training accuracy, and with 
99.9903% testing accuracy, that shown in Table 13. And the false positive rate is 0% and the 
detection rate of intrusions is 100%, that shown in Table 12:  
 
 

Table 12. Evaluate intrusions using SMO in weka for exp 2. 
 

 Predicted label 
 

Normal 
 

Intrusions 
(DOS) 

Samples Rates% Samples Rates% 
Actual class Normal 31366 100 0 0 

Intrusions(DOS) 0 0 11307 100 

  
Table 13 compares our approach with the three algorithms (j48, BayesNet, SMO) in the weka 
software for the Exp 1 and Exp 2. In particular we show the training accuracy, testing 
accuracy, detection rate, and the false positive rate. In exp 1 the testing accuracy in our 
GAIDS is better than the BayesNet algorithm in weka but the best training and testing 
accuracy 100%, 99.994% respectively, obtained in the SMO algorithm in weka, and the false 
positive rate in our GAIDS 0.003% is very low, better than the false positive rate in the j48 
and BayesNet algorithms in weka, but the false positive rate in SMO algorithm in weka is the 
best that is 0%. And the detection rate 99.87% in our GAIDS is very good but lower than 
detection rate in the j48, BayesNet, and SMO algorithms in weka, but the best detection rate 
100% obtained in the SMO algorithm in weka.   
 
  

Table 13. Comparisons between our GAIDS and three algorithms in weka software. 
 

               Exp 1 Exp 2 
Algorit
hms 

Training 
accuracy
% 

Testing 
accuracy% 

Detection 
rates% 

FP 
rates
% 

Training 
accuracy% 

Testing 
accuracy% 

Detection 
rates% 

FP 
rate%

GAIDS 99.9695 99.971 99.87 0.003 99.582 99.67 99.82 0.5
J48 in 
weka 

99.983 99.58 99.98 0.006 99.9977 99.987 99.991 0

BayesN
-et in 
weka 

99.978 99.9839 99.98 0.021 99.7586 99.6744 99.90 0.293

SMO in 
weka 

100 99.994 100 0 100 99.9903 100 0 
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In exp 2 the testing accuracy in our GAIDS is the same as the BayesNet algorithm in weka 
but the best testing and training accuracy 100%, 99.9903% respectively, obtained in the SMO 
algorithm in weka, and the false positive rate in our GAIDS 0.5% is low, but lower than the 
false positive rate in the j48, BayesNet, and SMO algorithms in weka, but the false positive 
rate in SMO and j48 algorithm in weka is the best that is 0%. And the detection rate 99.82% 
in our GAIDS is very good but lower than detection rate in the j48, BayesNet, and SMO 
algorithms in weka, but the best detection rate 100% obtained in the SMO algorithm in weka.    
In general the our results obtained from our GAIDS in experiment 1 is better than the our 
results obtained from our GAIDS in experiment 2, more specifically in the false positive rate 
that in exp 1 is 0.003% but in exp 2 is 0.5%, so that the selected 18 out of 41 features is most 
used and better than the selected 31 out of 41 features. 
 
 
8. Conclusions 
In this work genetic algorithm approach was deployed to intrusion detection. Genetic 
algorithm was used to obtain classification rules for intrusion detection. GA-approach 
demonstrated that can be used either to classify network connections as either normal or 
intrusive or further classify attacks by their type.  
 
Our system is using two types selected features of the network connections 18 out of 41 
features that used for the target operating system (windows) and 31 out of 41 features selected 
using information theory to identify the most important features of network connections, that 
maintaining high detection rates, so it can perform intrusion detection process fast and could 
be applied to high speed networks.  
 
High attack detection rate and low false-positive rate demonstrate advantages of applying GA 
technique to intrusion detection, that by using 18 out of 41 features in experiment 1 this 
approach obtain high detection rate of intrusion is 99.87% and low false positive rate that is 
0.003%, but when 31 out of 41 features used in experiment 2 we obtain detection rate and 
false positive rate lower than experiment 1, so the that 18 out of 41 features that used in 
windows OS is better than the 31 out of 41 features obtained by information gain. 
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Appendix A. Description of KDD 99 Intrusion Detection Dataset Features 
 
Table A.1. List of features with their descriptions and data types (summarized from [1]) 
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Appendix B: Information gain of each feature 

 

 
Fig 4. Information gain of each feature 

 
 


