
Paper: ASAT-13-CE-14
13th International Conference on
AEROSPACE SCIENCES & AVIATION TECHNOLOGY,
ASAT- 13, May 26 – 28, 2009, E-Mail: asat@mtc.edu.eg
Military Technical College, Kobry Elkobbah, Cairo, Egypt
Tel : +(202) 24025292 – 24036138, Fax: +(202) 22621908

1/17

Performance Evaluation of a Genetic Algorithm Based Approach
to Network Intrusion Detection System

B. Abdullah*, I. Abd-alghafar**, Gouda I. Salama** and A. Abd-alhafez**

Abstract: The purpose of the work described in this paper is to provide an intrusion detection
system (IDS), by applying genetic algorithm (GA) to network intrusion detection system.
Parameters and evolution process for GA are discussed in detail and implemented. This
approach uses information theory to filter the traffic data and thus reduce the complexity. We
use a linear structure rule to classify the network behaviors into normal and abnormal
behaviors. This approach applied to the KDD99 benchmark dataset and obtained high
detection rate up to 99.87% as well as low false positive rate 0.003%. Finally the results of
this approach compared with available machine learning techniques.

Keywords: Intrusion Detection System, Genetic Algorithm, Open Source Weka software.

1. Introduction
Internet and local area networks are expanding at an amazing rate in recent years, not just in
the terms of size, but also in the terms of changing the services offered and the mobility of
users that make them more vulnerable to various kinds of complex attacks. While we are
benefiting from the convenience that new technology has brought us, computer systems are
exposed to increasing number and complexity of security threats.

Of particular importance, thus, is the ability of applying rapidly new network security policies
in order to detect and react as quickly as possible to the occurring attacks.
Different techniques have been developed and deployed to protect computer systems against
network attacks (anti-virus software, firewall, message encryption, secured network protocols,
password protection). Despite all the efforts, it is impossible to have a completely secured
system. Therefore, intrusion detection is becoming an increasingly important technique that
monitors network traffic and identifies network intrusions such as anomalous network
behaviors, unauthorized network access, or malicious attacks to computer systems.

Intrusion detection systems are typically classified with respect to placement as: host based or
network based [1]. A host based IDS will monitor resources such as system logs, file systems
and disk resources; whereas a network based intrusion detection system monitors the data
passing through the network.

There are two general categories of intrusion detection systems (IDSs) [2] as: misuse
detection and anomaly based. Misuse detection systems are most widely used and they detect

* Yemeni Armed Forces , belalarh@gmail.com
** Egyptian Armed Forces

Paper: ASAT-13-CE-14

2/17

intruders with known patterns as: network packet, like source address, destination address,
source and destination ports or even some key words of the payload of a packet. These
systems exhibit a drawback in the sense that only the attacks that already exist in the attack
database can be detected, so this model needs continuous updating, but they have a virtue of
having very low false positive rate. Anomaly detection systems identify deviations from
normal behavior and alert to potential unknown or novel attacks without having any prior
knowledge of them. They exhibit higher rate of false alarms, but they have the ability of
detecting unknown attacks and perform their task of looking for deviations much faster.

Genetic algorithm (GA) field is one of the up-coming fields in computer security, especially
in intrusion detection systems (IDS) [3, 4, 5]. GA operates on a population of potential
solutions applying the principle of survival of the fittest to produce better and better
approximations to the solution of the problem that GA is trying to solve. At each generation, a
new set of approximations is created by the process of selecting individuals according to their
level of fitness value in the problem domain and breeding them together using the operators
borrowed from the genetic process performed in nature, i.e. crossover and mutation. This
process leads to the evolution of populations of individuals that are better adapted to their
environment than the individuals that they were created from, just as it happens in natural
adaptation.

Anup Goyal and Chetan Kumar [18], generate a rule using the principles of evolution in a GA
to classify all types of smurf attack labels in the training data set. With false positive rate is
also quite low at 0.2% and accuracy rate is as high as 100%.

The early effort of using GAs for intrusion detection can be dated back to 1995, when M.
Crosbie and E. Spafford, [19] applied the multiple agent technology and GP to detect network
anomalies. Each agent monitors one parameter of the network audit data and GP is used to
find the set of agents that collectively determine anomalous network behaviors. This method
has the advantage of using many small autonomous agents, but the communication among
them is still a problem. Also the training process can be time-consuming if the agents are not
appropriately initialized.

Li [20] propose a GA-based method to detect anomalous network behaviors. Both
quantitative and categorical features of network data are included when deriving classification
rules using GA. The inclusion of quantitative features may lead to increased detection rates.
However, no experimental results are available yet.

Xiao et al. [21] present an approach that uses information theory and GA to detect abnormal
network behaviors. Based on the mutual information between network features and the types
of network intrusions, a small number of network features are closely identified with network
attacks. Then a linear structure rule is derived using the selected features and a GA. The use
of mutual information reduces the complexity of GA, and the single resulting linear rule
makes intrusion detection efficient in real-time environment. However, the approach
considers only discrete features.

Rest of the work is organized as follows. Section 2 gives the overview of the genetic
algorithm. In section 3 genetic algorithm based IDS (GAIDS) employed. In section 4 the
preprocessing and features extraction phase employed. In section 5 training and testing phase
using GA is employed. Experimental setup is given in Section 6. Discussion and experimental
results is written in Section 7. Conclusions are written in Section 8.

Paper: ASAT-13-CE-14

3/17

2. Genetic Algorithm Overview
Genetic algorithms (GA) are search algorithms based on the principles of natural selection
and genetics. The bases of genetic algorithm approach are given by Holland [8] and it has
been deployed to solve wide range of problems.

GA evolves a population of initial individuals to a population of high quality individuals,
where each individual represents a solution of the problem to be solved. Each individual is
called chromosome, and is composed of a predetermined number of genes [9]. The quality of
each rule is measured by a fitness function as the quantitative representation of each rule’s
adaptation to a certain environment. The procedure starts from an initial population of
randomly generated individuals. Then the population is evolved for a number of generations
while gradually improving the qualities of the individuals in the sense of increasing the fitness
value as the measure of quality. During each generation, three basic genetic operators are
sequentially applied to each individual with certain probabilities, i.e. selection, crossover and
mutation. The algorithm flow is presented in Fig. 1.

Fig.1. Genetic algorithm flow [2].

A genetic algorithm is quite straightforward in general, but it could be complex in most cases.
For example, during the crossover operation, there could be one-point crossover or even
multiple point crossovers. There are also parallel implementations of genetic algorithms.
Sometimes series of parameters (for example, mutation rate, crossover rate, population size,
chromosome size, number of evolutions or generations, and how the selection is done) needs
to be considered with specific selection process that the Selection[11,12,13,15] is the stage of
a genetic algorithm in which individual genomes are chosen from a population for later
breeding (recombination or crossover). There are several generic selection algorithms, such as
tournament selection, fitness proportionate selection (also known as roulette-wheel selection),
linear Ranking Selection and exponential Ranking Selection. The final goal is to search the
solution space in a relatively short period of time [10].

Paper: ASAT-13-CE-14

4/17

3. Genetic Algorithm based IDS (GAIDS)
The proposed Genetic Algorithm Intrusion Detection System (GAIDS) is depicted in fig.2
which consists of the following two phases:

 Pre-processing and Features Extraction Phase: randomly select two separated
training and testing data sets from the full DARPA data set, convert the symbolic
features into numerical ones, normalize the data set, and select most suitable features.

 Training and Testing Phase: Initialize population, evaluate this population, create
new generation, evaluate new generation, and apply genetic operators on the new
generation until the most suitable individual is reached, and we use the most suitable
individual for training and testing phase as following:

 Training Phase: In this phase GAIDS is trained using the training data set.
 Testing Phase: Measures the performance of the system to the testing data set.

Fig.2.The simple structure of the proposed model

4. The Features Extraction and preprocessing phase
Figure.3 shows a detailed block diagram of the GAIDS preprocessing phase.

 Data Sets Extraction: Two subsets of the full data set were randomly selected and
used as training and testing data sets.

 Symbolic to Numerical Conversion: Some features have symbolic form (e.g.
protocol type). These features were converted into numerical ones by assigning a
unique number for each feature. The resulting map is used to do the same for the
testing data set.

 Normalization: It is often useful to scale the inputs to fall within a specific range, in
the proposed system Equation 1 was used to normalize the training and testing data
sets, [17].

 Xn= 2 * (X - Xmin) / (Xmax - Xmin) -1 (1)

where: Xmin, Xmax: are the Minimum and maximum value of the original inputs, respectively.
 Xn: is the normalized output.

Retrain

Output

Genetic Algorithm
Classifier

DARPA
Data Set

5 million
Records

Learning
PhasePreprocessing

Testing
subset

Learning
Subset

Preprocessing
Testing Phase

Paper: ASAT-13-CE-14

5/17

Fig 3. GAIDS preprocessing phase Major components

The resulting output will fall in the range [-1, +1]. The training data set will have M features,
N1 intrusion type, and Q1 records. The testing data set will have M features, N2 intrusion type,
and Q2 records.

Features Selection
The all 41 features in the KDD cup data set are listed with its descriptions and its numbers in
the appendix A.

This experiment reduces the dimension of the 41 features of the data set size that can be used
in classifications by select two types of features:

First type, 18 features are selected over 41 features based on the target operating system i.e.
(features that used in windows operating system) that showing below:

(duration, protocol_type {tcp,udp,icmp}, service {red_i,netbios_ns,urh_i,netbios_dgm,etc.),
flag, src_bytes, dst_bytes, land, wrong_fragment, urgent, count, srv_count, serror_rate,
srv_serror_rate, rerror_rate, srv_rerror_rate, same_srv_rate, diff_srv_rate, srv_diff_host_rate).
Second type 31 features are selected over 41 features based on the information gain that
explained below.

Full Data Set
Five Million Records

Extract Random Training Data Set Extract Random Testing Data Set

Convert Symbolic Features into
Numerical Values

Convert Symbolic Features into
Numerical Values

Features Map

Data Normalization and other data filters
(Training Data)

Data Normalization and other data filters
 (Testing Data)

Normalization
Parameters

Selected Features
(Training Data)

Selected Features
(Testing Data)

Selection
Parameters

Training Data Set is ready with:
M Features;
N1 intrusion Types; and Q1 Records.

Testing Data Set is ready with:
M Features;

N2 intrusion Types; and Q2 Records.

Paper: ASAT-13-CE-14

6/17

 -Information Gain Let S be a set of training set samples with their corresponding labels.
Suppose there are m classes and the training set contains si samples of class I and s is the total
number of samples in the training set. Expected information needed to classify a- given
sample is calculated as [1]:

(2))(log),....,,(
1

221 



m

i

ii
m

S

S

S

S
SSSI

 A feature F with values { f1, f2, …, fv } can divide the training set into V subsets { S1, S2,
…, Sv } where Sj is the subset which has the value fj for feature F. Furthermore let Sj contain
sij samples of class i. Entropy of the feature F is [1]:

(3)),.......,(*
...

)(1

1

1
mjj

v

j

mjj
SSI

S

SS
FE 






Information gain for F can be calculated as [1]:

 (4) E(F) -)S.,,I(S Gain(F) m1 

In [1], information gain is calculated for class labels by employing a binary discrimination for
each class. That is, for each class, a dataset instance is considered in-class, if it has the same
label; out-class, if it has a different label. Consequently, as opposed to calculating one
information gain as a general measure on the relevance of the feature for all classes, we
calculate an information gain for each class. Thus, this signifies how well the feature can
discriminate the given class (i.e. normal or an attack type) from other classes. Figure.4 in the
appendix B shows the maximum information gain for each feature.

In addition, Table.1 details the most discriminative class label for each feature. For majority
of the features (31 over 41), normal, smurf and Neptune are the most discriminative classes.
That is to say, there are many features that can discriminate these classes accurately. There are
9 features with very small maximum information gain (e.g. smaller than 0.001), which
contribute very little to intrusion detection. Moreover features 20 and 21 (outbound command
count for FTP sessions and hot login, respectively) do not show any variations in the training
set therefore they have no relevance to intrusion detection.

Table 1. List of features for which the class is selected most relevant[1]

Class Label

Relevant Features

normal
smurf
Neptune
back
Land
Teardrop
ftp_write
guess_pwd
buffer_overflow
warezclient

 1, 6, 12, 15, 16, 17, 18, 19, 31, 32, 37
 4, 25, 26, 29, 30, 33, 34, 35, 38, 39
 2, 3, 5, 23, 24, 27, 28, 36, 40, 41
 10, 13
 7
 8
 9
 11
 14
 22

Paper: ASAT-13-CE-14

7/17

5. Training and Testing Phase using GA
The proposed GA-based intrusion detection approach contains two modules where each work
in a different stage. In the training stage, a set of classification rules are generated from
network audit data using the GA in an offline environment. In the intrusion detection stage,
the generated rules are used to classify incoming network connections in the real time
environment. Once the rules are generated, the intrusion detection is simple and efficient. In
the following sections, we focus our discussions on deriving the set of rules using GA. To
determine a fitness value of each rule, the following fitness function is deployed [16]:

(5)
BA

fitness




Where α is the number of correctly detected attacks, A is the total number of attacks in the
training dataset,  is the number of normal connections incorrectly characterized as attacks,
i.e. false-positives, and B is the total number of normal connections in the training dataset.
Scale of fitness values is [-1, 1], where -1 is the lowest and 1 the highest value. High detection
rate and low rate of false-positives result in a high fitness value. On the other side, low
detection rate and high rate of false-positives result in a low fitness value.

5.1. Detection Algorithm Overview
List 1 shows the major steps of the employed detection algorithm as well as the training
process. It first generates the initial population, sets the defaults parameters, and loads the
network audit data. Then the initial population is evolved for a number of generations. In each
generation, the qualities of the rules are firstly calculated, then a number of best-fit rules are
selected, and finally the GA operators are applied to the selected rules. The training process
starts by randomly generating an initial population of rules (line 1). The weights and fitness
threshold values are initialized in line 2. Line 3 calculates the total number of records in the
audit data. Lines 4-19 calculate the fitness of each rule and select the best-fit rules into new
population. Lines 20-23 apply the crossover and mutation operators to each rule in the new
population. Finally, line 24 checks and decides whether to terminate the training process or to
enter the next generation to continue the evolution process.

6. Experimental Setup

 6.1. Objective
KDDCUP 99[6] data set used to train and test the system classifier. The dataset has been
provided by MIT Lincoln Labs [6]. It contains a wide variety of intrusions simulated in a
military network environment set up to acquire nine weeks of raw TCP/IP dump data for a
local-area network (LAN) simulating a typical U.S. Air Force LAN. The LAN was operated
as if it were a true Air Force environment, peppered with multiple attacks. Hence, this is a
high confidence and high quality data set. They set up an environment to collect TCP/IP
dump rows from a host located on a simulated military network. Each TCP/IP connection is
described by 41 discrete and continuous features (e.g. duration, protocol type, flag, etc.) that
listed in appendix A, and labeled as either normal, or as an attack, with exactly one specific
attack type (e.g. Smurf, Perl, etc.). These 22 attacks and normal labels concluded in the
available 10% of the DARPA data set are listed with number of samples for each class
(attack, normal) and category for each class in Table.2. Attacks fall into four main categories:

Paper: ASAT-13-CE-14

8/17

List 1. Major steps of the detection algorithm.

Algorithm: Rule set generation using genetic algorithm.
Input: Network audit data, number of generations, and population size.
Output: A set of classification rules.

1. Initialize the population
2. W1 = 0.2, W2 = 0.8, T = 0.5
3 N = total number of records in the training set
4. For each chromosome in the population
5. A = 0, AB = 0
6. For each record in the training set
7. If the record matches the chromosome
8. AB = AB + 1
9. End if
10. If the record matches only the “condition” part
11. A = A + 1
12. End if
13. End for
14. Fitness = W1 * AB / N + W2 * AB / A
15. If Fitness > T
16 Apply the 4 different selection algorithms
17. Select the chromosome into new population
18. End if
19. End for
20. For each chromosome in the new population
21. Apply crossover operator to the chromosome
22. Apply mutation operator to the chromosome
23. End for
24. If number of generations is not reached, go to line 4

(i) Denial of Service Attacks (DOS) in which an attacker overwhelms the victim host

with a huge number of requests.
(ii) User to Root Attacks (U2R) in which an attacker or a hacker tries to get the access

rights from a normal host in order, for instance, to gain the root access to the
system.

(iii) Remote to Local Attacks (R2L) in which the intruder tries to exploit the system
vulnerabilities in order to control the remote machine through the network as a
local user.

(iv) Probing in which an attacker attempts to gather useful information about machines
and services available on the network in order to look for exploits.

The scope of these experiments was focused to generate classifiers or rules for different attack
types and one normal type belonging to different classes. The training data set contains 42674
connection records of the available 10% of the training set containing as published by Lincoln
Labs which contains 494,021 connections for training of the attacks and normal type and the
testing data set contains 31016 connection records of the attacks and normal type, as shown in
Table 3. Hence, we wanted to create a rule that can classify all of these connections with a

Paper: ASAT-13-CE-14

9/17

minimal false positive rate. Although we would have apply our implementation to the attacks
and normal types and connection features, the enormous training time complexity of the
algorithm, very large data sets and lack of time restricted us. The training and testing
connection records are classified in our experiments with the two types of the selected
features that showed in section (7). From the Table 2, clearly that the attacks in the denial of
service(DOS) category and normal category represent 98.93% of the available 10% KDD data
set, i.e. attacks in the denial of service(DOS) category and normal category contains 488735
connection records from the 10% KDD data set that contains 494020 connection records, so
in our experiments we focused the our classification on the two category (Normal & DOS).

6.2. Tools
For our implementation, we have used the GALIB java library [23] especially suited to
develop Gas and java runtime environment jre1.5. Owing to the large hypothesis search space
and high time complexity, we wanted to use a tool or library that is high on performance and
computing speed. After a comprehensive survey of many tools, we decided to use GALIB
since it is a java library, has been widely used by other researchers and well documented. We
used a windows operating system with a Pentium 4 processor, 160GB of hard disk space and
1 GB of RAM to execute the computer program.

Table 2. Class labels that appears in 10% KDD” dataset work [1].

.Attack

#Sample Category.

Smurf.
Neptuno

Back.
Teardrop.

Pod.
Land.

Normal.
Satan.

Ipsweep.
Portsweep.

Nmap.
Warezclient.

Guess_passwd.
Warezmaster.

Imap.
ftp_write.
multihop.

phf.
spy.

buffer_overflow
rootkit

loadmodule.
perl.

280790
107201
2203
979
264
21

97277
1589
 1247
1040
 231
1020
53
20
12
 8
 7
4
2

30
 10
9
3

 DoS
 DoS
 DoS
 DoS
 DoS
 DoS

normal
probe
probe
probe
probe

r2l
r2l
r2l
r2l
r2l
r2l
r2l
r2l
u2r
u2r
u2r
u2r

Paper: ASAT-13-CE-14

10/17

Table 3. Class distribution for training and test data for the our dataset

 Normal Intrusions (DOS) Total
Train 32957 9717 42674
Test 26782 4234 31016

The University of Waikato in New Zealand [14], implements all the machine learning algorithms in
the open source weka software called Weka. Weka is a collection of machine learning algorithms
for data mining tasks. The algorithms can either be applied directly to a dataset or called from
your own Java code. Weka contains tools for data pre-processing, classification, regression,
clustering, association rules, and visualization. It is also well-suited for developing new
machine learning schemes.

6.3. Performance measures
To evaluate our system, besides the classical accuracy measure, the two standard metrics of
detection rate and false positive rate developed for network intrusions, have been used.
Table 4 shows these standard metrics [22]. Detection rate (DR) is computed as the ratio
between the number of correctly detected intrusions and the total number of intrusions, that is

veTruePositi#iveFalseNegat#

veTruePositi#


DR (6).

False positive(FP) (also said false alarm) rate is computed as the ratio between the numbers of
normal connections that are incorrectly classifies as intrusions and the total number of normal

connections, that is
iveFalsePosit#veTrueNegati#

iveFalsePosit#
FP


 (7).

Table 4. Standard metrics to evaluate intrusions [22].

 Predicted label

Normal

Intrusions

(DOS)
Samples Rates% Samples Rates%

Actual class Normal True Negative

False Positive

Intrusions
(DOS)

False Negative

True Positive

7. Discussion and Experimental Results
This section report two different experiments to show the performance of the GA compared
with the available machine learning algorithms in open source weka software. The first
experiment used 18 out of 41 features and the second experiment used 31 out of 41 features.

7.1. Experiment 1
For the first experiment that used 18 out of 41 features that explained in section 4. In GAIDS
we were able to create a rule that could successfully classify data with 99.9695% training

Paper: ASAT-13-CE-14

11/17

accuracy, and with 99.971% testing accuracy, that shown in Table 13. And with the false
positive rate is 0.003% and the detection rate of intrusions is 99.87%, that shown in Table 5:

In the open source weka software, we use three algorithms of the available algorithm in this
software, and these algorithms that we used: decision tree (j48 algorithm), Bayes Network
algorithm (BayesNet), and Support vector machine (SMO (Sequential Minimal
Optimization)). And after we applied the same training and testing data that used in our work
(GAIDS) to these algorithms, we obtain the following: In the j48 algorithm we obtained
classification with 99.98% training accuracy, and with 99.958% testing accuracy, that shown
in Table 13. And the false positive rate is 0.006% and the detection rate of intrusions is
99.98%, that shown in Table 6.

Table 5. Evaluate intrusions using GA in GAIDS exp 1.

 Predicted label

Normal

Intrusions (DOS)

Samples Rates% Samples Rates%
Actual class Normal 32956 99.99 1 0.003

Intrusions (DOS)

12 0.12 9705 99.87

Table 6. Evaluate intrusions using j48 in weka for exp 1.

 Predicted label

Normal

Intrusions
(DOS)

Samples Rates% Samples Rates%
Actual class Normal 32955 99.993 2 0.006

Intrusions
(DOS)

2 0.02 9715 99.98

In the BayesNet algorithm we obtained classification with 99.97% training accuracy, and with
99.983% testing accuracy, that shown in Table 13. And the false positive rate is 0.021% and
the detection rate of intrusions is 99.98%, that shown in Table 7:

Table 7. Evaluate intrusions using BayesNet in weka for exp 1.

 Predicted label

Normal

Intrusions
(DOS)

Samples Rates% Samples Rates%

Actual class Normal 32950 99.97 7 0.021

Intrusions
(DOS)

2 0.02 9715 99.98

In the SMO algorithm we obtained classification with 100% training accuracy, and with
99.994% testing accuracy, that shown in Table 13. And the false positive rate is 0% and the
detection rate of intrusions is 100%, that shown in Table 8:

Paper: ASAT-13-CE-14

12/17

Table 8. Evaluate intrusions using SMO in weka for exp 1.

 Predicted label

Normal

Intrusions
(DOS)

Samples Rates% Samples Rates%
Actual class Normal 32957 100 0 0

Intrusions
(DOS)

0 0 9717 100

7.2. Experiment 2
For the second experiment that used 31 out of 41 features that explained in section 4. In
GAIDS we were able to create a rule that could successfully classify data with 99.582%
training accuracy, and with 99.67% testing accuracy, that shown in Table 13. And with the
false positive rate is 0.5% and the detection rate of intrusions is 99.82%, that shown in
Table 9:

Table 9. Evaluate intrusions using GA in GAIDS exp 2.

 Predicted label

Normal

Intrusions
(DOS)

Samples Rates% Samples Rates%
Actual class Normal 31208 99.5 158 0.5

Intrusions
(DOS)

20 0.177 11287 99.82

After we applied the same training and testing data that used in our work (GAIDS) to the
algorithms in weka software, we obtain the following:. In the j48 algorithm we obtained
classification with 99.997% training accuracy, and with 99.987% testing accuracy, that shown
in Table 13. And the false positive rate is 0% and the detection rate of intrusions is 99.991%,
that shown in Table 10:

Table 10. Evaluate intrusions using j48 in weka for exp 2.

 Predicted label

Normal

Intrusions
(DOS)

Samples Rates% Samples Rates%
Actual class Normal 31366 100 0 0

Intrusions
(DOS)

 1 0.0088 11306 99.991

In the BayesNet algorithm we obtained classification with 99.75% training accuracy, and with
99.67% testing accuracy, that shown in Table 13. And the false positive rate is 0.293% and
the detection rate of intrusions is 99.90%, that shown in Table 11:

Paper: ASAT-13-CE-14

13/17

Table 11. Evaluate intrusions using BayesNet in weka for exp 2.

 Predicted label

Normal

Intrusions
(DOS)

Samples Rates% Samples Rates%
Actual class Normal 31274 99.7 92 0.293

Intrusions
(DOS)

11 0.097 11296 99.90

In the SMO algorithm we obtained classification with 100% training accuracy, and with
99.9903% testing accuracy, that shown in Table 13. And the false positive rate is 0% and the
detection rate of intrusions is 100%, that shown in Table 12:

Table 12. Evaluate intrusions using SMO in weka for exp 2.

 Predicted label

Normal

Intrusions
(DOS)

Samples Rates% Samples Rates%
Actual class Normal 31366 100 0 0

Intrusions(DOS) 0 0 11307 100

Table 13 compares our approach with the three algorithms (j48, BayesNet, SMO) in the weka
software for the Exp 1 and Exp 2. In particular we show the training accuracy, testing
accuracy, detection rate, and the false positive rate. In exp 1 the testing accuracy in our
GAIDS is better than the BayesNet algorithm in weka but the best training and testing
accuracy 100%, 99.994% respectively, obtained in the SMO algorithm in weka, and the false
positive rate in our GAIDS 0.003% is very low, better than the false positive rate in the j48
and BayesNet algorithms in weka, but the false positive rate in SMO algorithm in weka is the
best that is 0%. And the detection rate 99.87% in our GAIDS is very good but lower than
detection rate in the j48, BayesNet, and SMO algorithms in weka, but the best detection rate
100% obtained in the SMO algorithm in weka.

Table 13. Comparisons between our GAIDS and three algorithms in weka software.

 Exp 1 Exp 2
Algorit
hms

Training
accuracy
%

Testing
accuracy%

Detection
rates%

FP
rates
%

Training
accuracy%

Testing
accuracy%

Detection
rates%

FP
rate%

GAIDS 99.9695 99.971 99.87 0.003 99.582 99.67 99.82 0.5
J48 in
weka

99.983 99.58 99.98 0.006 99.9977 99.987 99.991 0

BayesN
-et in
weka

99.978 99.9839 99.98 0.021 99.7586 99.6744 99.90 0.293

SMO in
weka

100 99.994 100 0 100 99.9903 100 0

Paper: ASAT-13-CE-14

14/17

In exp 2 the testing accuracy in our GAIDS is the same as the BayesNet algorithm in weka
but the best testing and training accuracy 100%, 99.9903% respectively, obtained in the SMO
algorithm in weka, and the false positive rate in our GAIDS 0.5% is low, but lower than the
false positive rate in the j48, BayesNet, and SMO algorithms in weka, but the false positive
rate in SMO and j48 algorithm in weka is the best that is 0%. And the detection rate 99.82%
in our GAIDS is very good but lower than detection rate in the j48, BayesNet, and SMO
algorithms in weka, but the best detection rate 100% obtained in the SMO algorithm in weka.
In general the our results obtained from our GAIDS in experiment 1 is better than the our
results obtained from our GAIDS in experiment 2, more specifically in the false positive rate
that in exp 1 is 0.003% but in exp 2 is 0.5%, so that the selected 18 out of 41 features is most
used and better than the selected 31 out of 41 features.

8. Conclusions
In this work genetic algorithm approach was deployed to intrusion detection. Genetic
algorithm was used to obtain classification rules for intrusion detection. GA-approach
demonstrated that can be used either to classify network connections as either normal or
intrusive or further classify attacks by their type.

Our system is using two types selected features of the network connections 18 out of 41
features that used for the target operating system (windows) and 31 out of 41 features selected
using information theory to identify the most important features of network connections, that
maintaining high detection rates, so it can perform intrusion detection process fast and could
be applied to high speed networks.

High attack detection rate and low false-positive rate demonstrate advantages of applying GA
technique to intrusion detection, that by using 18 out of 41 features in experiment 1 this
approach obtain high detection rate of intrusion is 99.87% and low false positive rate that is
0.003%, but when 31 out of 41 features used in experiment 2 we obtain detection rate and
false positive rate lower than experiment 1, so the that 18 out of 41 features that used in
windows OS is better than the 31 out of 41 features obtained by information gain.

References:

[1] H. Güneş Kayacık, A. Nur Zincir-Heywood, Malcolm I. Heywood,. " Selecting

Features for Intrusion Detection: A Feature Relevance Analysis on KDD 99
Intrusion Detection Datasets". Dalhousie University, Faculty of Computer Science,
6050 University Avenue, Halifax, Nova Scotia. B3H 1W5 2006.
http://www.cs.dal.ca/projectx/ .

 [2] Zorana Bankovic, Dus an Stepanovic, Slobodan Bojanic, Octavio Nieto- Taladriz,
"Improving network security using genetic algorithm approach". Computers and
Electrical Engineering 33 (2007) 438–451.

[3] Gong RH, Zulkernine M, Abolmaesumi P. "A Software Implementation of a Genetic
Algorithm based approach to Network Intrusion Detection". In: Proceedings of the sixth
international conference on software engineering, artificial intelligence, networking and
parallel/distributed computing and first ACIS international workshop on self-assembling
wireless networks (SNPD/SAWN‘05), 2005.

[4] Chittur A. "Model Generation for an Intrusion Detection System Using Genetic
Algorithms, publications/gaids-thesis01.pdf, accessed in 2006.

 http://www1.cs.columbia.edu/ids/

Paper: ASAT-13-CE-14

15/17

 [5] Folino G, Pizzuti C, Spezzano G. "GP ensemble for Distributed Intrusion Detection
Systems". In ICAPR, 3rd international conference on advances in pattern recognition,
LNCS, Springer Verlag, 3686/2005, Bath, UK, August 2005.

[6] KDD Cup 1999 data. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html, October

1999.
 [7] Lu W, Traore I. "Detecting new forms of network intrusion using genetic programming".

Comput Intell;20(3):470–90, 2004
[8] Holland J. "Adaptation in natural and artificial system. Ann Arbor". The University of

Michigan Press; 1975.
[9] S.N.Sivanandam · S.N.Deepa. "Introduction to Genetic Algorithms". Springer-Verlag

Berlin Heidelberg 2008.
[10] Pohlheim, Hartmut.. “Genetic and Evolutionary Algorithms: Principles, Methods and

Algorithms". 30 Oct. 2003.
 URL: http://www.geatbx.com/docu/algindex.html.
[11] Brad L. Miller and David E. Goldberg, "Genetic Algorithms, Tournament Selection, and

the Effects of Noise"1995.
[12] http://en.wikipedia.org/wiki/Fitness_proportionate_selection
[13] Kwang Y. Lee, Mohamed A. El-Sharkawi, "Modern heuristic optimization

techniques"2008.
[14] Weka: Data Mining Software, http://www.cs.waikato.ac.nz/ml/weka/
[15] Topias Blickle, Loather Thiele." A Comparison of Selection Schemes used in Genetic

Algorithm", Swiss Federal Institute of Technology (ETH) Gloriastresse 35, 8092
Zurich,Nr. 11,December 1995.

[16] Chittur A. "Model Generation for an Intrusion Detection System Using Genetic
Algorithms", 2006.

 http://www1.cs.columbia.edu/ids/publications/gaids-thesis01.pdf
[17] Khaled Labib and V. Rao Vemuri, “NSOM: A Real-time Network-Based Intrusion

Detection System Using Self-Organizing Maps”, University of California, Davis, 2002.
[18] Anup Goyal and Chetan Kumar "GA-NIDS: A Genetic Algorithm based Network

Intrusion Detection System", 2008.
[19] M. Crosbie and E. Spafford, “Applying Genetic Programming to Intrusion Detection”,

Proceedings of the AAAI Fall Symposium, 1995
[20] W. Li, “A Genetic Algorithm Approach to Network Intrusion Detection”, SANS

Institute, USA, 2004.
[21] T. Xiao, G. Qu, S. Hariri, and M. Yousif, “An Efficient Network Intrusion Detection

Method Based on Information Theory and Genetic Algorithm”, Proceedings of the 24th
IEEE International Performance Computing and Communications Conference (IPCCC
‘05), Phoenix, AZ, USA. 2005.

[22] Gianluigi Folino, Clara Pizzuti and Giandomenico Spezzano, "GP Ensemble for
Distributed Intrusion Detection Systems". ICAPR 54-62, 2005.

 [23] Genetic Programming Classifiers Library,
http://sourceforge.net/project/downloading.php?group_id=211385&filesize=10861307&filena

me=WekaGP-3-4-12.zip&90497168

Paper: ASAT-13-CE-14

16/17

Appendix A. Description of KDD 99 Intrusion Detection Dataset Features

Table A.1. List of features with their descriptions and data types (summarized from [1])

Paper: ASAT-13-CE-14

17/17

Appendix B: Information gain of each feature

Fig 4. Information gain of each feature

