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Performance Analysis of Hybrid Phase Shift Keying (HPSK) over 
Generalized Nakagami Fading Channels 
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Abstract: Bit Error Rate (BER) of Hybrid Phase Shift Keying (HPSK) modulation systems is 
shown to outperform OQPSK and GMSK by 3 dB. HPSK performance through Nakagami 
Fading Channels is also considered. 
 
Keywords: Hybrid Phase Shift Keying (HPSK), and Bit Error Rate (BER) 
 
 
1. Introduction 
Hybrid Phase Shift Keying (HPSK) is used in WCDMA systems thanks to its low peak-to-
average power ratio. This low ratio of peak-to-average power results in reducing the number of 
zero crossing of phase transitions of the output transmitted signal. In this paper we prove that 
HPSK outperforms other Quadrature modulation techniques suck as OQPSK by 3dB. 
 
The paper is organized as follows: Section II describes the HPSK constellation in case of two 
channels at different amplitudes. Section III derives an expression for the conditional probability 
of error of HPSK modulated signal over AWGN. In section IV we apply the obtained expression 
in evaluating the performance of HPSK modulated signal over a generalized Nakagmi –m 
channel. Finally section V includes numerical results and comments. 
 
 
2. The HPSK Constellation 
The Hybrid Phase Shift Keying (HPSK) has been proposed as the spreading technique for 
WCDMA to eliminate the zero crossings for every other signal transition and to eliminate the  
0o -degree phase shift transitions for every other chip point, as well as to improve the BER 
measure of the DS-WCDMA system performance. 
 
In 3G systems the mobile Station (MS) can transmit more than one channel. The different 
channels are assigned to either I or Q path. 
 
In the case of transmitting only two channels as in figure (1) one of the channels (DPDCH or R-
Pilot) is applied to the I path and the other channel (DPCCH or R-FCH) is applied to the 
Q path [1] . 
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Additional high data rate channels are combined alternatively on the I or Q paths. Each channel is 
spread by a different orthogonal even-numbered Walsh code.In the general case the channels can 
be at different power levels as in figure (2) which maps onto a rectangular four Quadrature 
amplitude Modulation (QAM) constellation. 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
Fig.1 the basic reverse channel structure of 3G system 

 
 

 
 
 

The QAM signal waveforms may be expressed as: 
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chA chch QI     , Ich and Qch are the information bearing signals amplitudes of I path 

channel and Q path channel respectively. 
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So the QAM signal waveform may be viewed as a linear combination of two orthogonal wave 
forms f1(t) and f2(t) such that [2] : 
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Where, Sm1 and Sm2 are the component of the two dimensional vector Sm :    Sm=[Sm1     Sm2]   , 
 
  (4)                                                                                    ]Q   [IS chchm   
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ch
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where:         Ach …… is the amplitude of the chip signal  

m ….is the phase of the signal vector and it varies with m        m=1, 2, 3, 4  

 
 

in the 4-QAM  according to the position of the vector point and according to the value of  Ich and 
Qch 
                                           

(6)                                                                       ]sinA   cos[AS mchmchm   

 
In the reverse link of DS-CDMA systems the Ich and Qch are complex scrambled with a complex 
scrambling signal (Is+jQs) as in figure 3. 
 
The final I and Q signals are produced mathematically by the multiplication of the two complex 
signals; the complex data signal (ID+jQD) which has already spread into chips (Ich+jQch), and the 
complex scrambling signal (Is+jQs) so the final I and Q signals are: 
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Fig.2   4-QAM constellation for two channels at different amplitudes 
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Since final constellation is formed by complex multiplication of the two signals of chip 
constellation and scrambling constellation which is always QPSK constellation as in Figure (4)-, 
then: 
from (9) and (10) we conclude that the final signal (I+jQ) is a QPSK constellation with two 
dimensional vector representation Smn where : 
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Where A=Ach.As ;  n=1,2,3,4  ; m=1,2,3,4   and   M=4 
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This new constellation has points that rotate according to the angle: mn 
 )12(

4
 , while m    

changes according to the value of Ich and Qch  for example if n=1,  the point (Ich  , Qch) will be 
transferred by the angle equal to    (45o + m  ) . So the new constellation is really an eight point 

constellation with two independent QPSK constellation as shown in Figure (5) according to the 
value of m . 

One of these two constellations corresponds to
45o

m 
  and it rotates by angle equal 

to 1 ( 45 )om  
 from the original axes. 

The other QPSK constellation corresponds to o
m 45  and rotates with angle equal to 

)45(2
o

m   from the original axes. 

So the new final constellation consists of two independent QPSK constellations with complex 
scrambling. 
 

 
The vector representation of the first constellation is: 
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And the vector representation of the second constellation is: 
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So the constellation of the two channels generally has eight points distributed around a circle 
with the angular distribution determined by the relative   levels of the two channels signals 
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Fig.5 the final constellation of the scrambled chip of different channel amplitudes 
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3. Probability of error of HPSK modulated signal over AWGN 
We concluded in the previous section that the final constellation of the two channels at different 
amplitudes consists of two independent QPSK constellations with complex scrambling. The 

average value of the amplitude of the new constellation is 2  times the value of the amplitude of 
the traditional QPSK. To obtain the BER of the HPSK modulated signal as a measure of its 
performance we will assume that this signal is transmitted over an additive white Gaussian noise 
(AWGN) channel. The received signal is demodulated with correlated demodulator or a matched 
filter demodulator and produces the vector   
r = [r1, r2, r3 ….rN]  
where the demodulator decomposes the received signal and the noise into n- dimensional vector. 
The vector r contains all the relevant information in the received signal waveform to obtain the 
optimum decision rule based on the observations vector r .The optimum detector is designed to 
make a decision on the transmitted signal in each signal interval based on the observation of the 
vector r in each interval such that the probability of correct decision is maximized.  The decision 
criterion is based on selecting the signal corresponding to the maximum of the set of posterior 
probabilities {P(Sm/r)} whish may be expressed as: 
        

)14...(....................................................................................................
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)()./(
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SPSrP
rSP mm

m   

where: P(r/Sm) is the conditional probability pdf of the observed vector given Sm and P(Sm) is 
the prior probability of the mth signal being transmitted (m=1, 2, 3, 4). 
P(r) can be expressed as: 
                                                   

)15..(....................................................................................................)()./()(
1




M

m
mm SPSrPrP  

And since the denominator in (14) is independent of which signal is transmitted then the decision 
rule based on finding the signal that maximizes P(Sm/r) is equivalent to finding the signal that 
maximizes P(r/Sm) knowing  that the M signals are equally probable for all M (P(Sm)=1/M).  
The decision based on the maximum of the conditional Pdf (P(r/Sm)) or any monotonic function 
of it is called maximum likelihood (ML) criterion. So the likelihood function in the AWGN 
channel is given generally by: 
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where  
N0…. Is the noise power spectral density. 
N……the dimesion of the received vector r 
rk ….. the Kth components of the received vector r 
Smk …The kth component of the mth transmitted signal 
Taking the natural logarithm of equation (16): 
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The maximum of ln P(r/Sm) over Sm is equivalent to finding the signal Sm that minimizes the 
Euclidean distance D(r,Sm) where : 
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And it is called the distance metrics 
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Minimizing the metric ),( mSrD  is equivalent to maximizing the metric 
 C(r,Sm)=- ),( mSrD  

   C(r,Sm)=- mSr.2 …………………………………………(20) 

 
The optimum maximum likelihood (ML) detector computes a set of M correlation metrics 
C(r,Sm) and selects the signal corresponding to the largest correlation metric [3] . 
Applying this metric in our study case, r is the received signal vector r=[r1     r2] which is 
projected onto each of the four possible transmitted signals vectors Sm for m =1,2,3,4  where 
M=4  
We can consider that the correlation detector in the case of HPSK modulated signal is equivalent 
to a phase detector that computes the phase of the received signal from ‘r’ and selects the signal 
Sm whose phase is closest to ‘r’.  
Since the phase of r is: 

                                        )21.........(............................................................tan
1

21
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The probability of error can be computed if we determine the Power density function of r .  
We consider the case in which the transmitted signal phase is equal to zero as in Figure (6) which 
corresponds to the transmitted vector  

1S [ s        0] 
Where s  is the energy of the transmitted HPSK signal S1(t) 

The received signal vector has two components r1 and r2  
               r=[r1       r2] 

                                    r = [ 1ns 
       n2] …………………………………….. (22) 

Where n1 and   n2 are jointly Gaussian random variables with mean and variances 

E(r1)= s   , E(r2)=0    and    σr12=σr22=σr2=1/2 N0 .    Consequently, 

The joint Pdf of r1 and r2 is: 
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The Pdf of the phase r  is obtained by a change in variables from (r1,r2) to (A,  r ) where : 
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is the symbol SNR and  s  is the energy of the HPSK signal 

For large values of s >>1 and 
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Fig.6 The HPSK vector constellation 
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When s1(t) is transmitted a decision of error is made if the noise causes the phase to fall outside 
the range [-π/4   π/4], and hence the probability of a symbol error is  
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By substituting for )( rr

P   in equation (31) 

Performing the change of variables, we find: 
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Performing the change of variables from      r  to   

sr  2.sin   We find 
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Since s  in the case of HPSK is equal to  bbs k  4)(2:   
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Since the transmitted signals represented by the vector points of the final constellation are equally 
likely to be transmitted and since the 8-points are distributed around a circle consisting of two 
independent QPSK constellations with complex scrambling then the average probability of the 
symbol error in the case of two channels at different amplitudes is:   
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Where P1 (e) is the probability of symbol error of the first        constellation corresponding 
to 4511  , P2 (e) is the probability of   symbol error of the second constellation 

corresponding to 22 45     . 
Substituting (34) into (35) ,we get  
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N
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The bit error probability in this case is: 
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0
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N
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Or,        Pb=Q( 4 )……………...…………..…...(38) 

Where γ is the SNR (=εb/No). Equation (38) shows an improvement of the BER of HPSK over 
that of QPSK. 

 
4. The performance of HPSK signal over a generalized Nakagami –m channel  
The mobile communication channel is noisy, multipath and is subjected to fading. The channel 
fading conditions depend on the propagation conditions and the clutter types the waves propagate 
through. In some cases the fading can be more severe than Rayleigh, while in other cases where 
line of sight or near line of sight conditions is available, the signal will be more stable.  The 
Nakagami distribution is shown to fit results more generally than other distributions [4]. In this 
section we will evaluate the average BER of HPSK systems subjected to Nakagami fading. We 
will evaluate the expected value of the conditional Pb as given by equation (38) over Nakagami 
distribution.  
In Nakagami fading channel the path amplitude probability density function is given by: 
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Where m …is the fading parameter and it describes the fading severity it is defined as the ratio of 
moments or it is the ratio of the square of the mean signal power to the variance of the signal 
power 
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And, 

                                                 ][ 2rE                …….………………………..(41) 
The received signal power γ follows gamma distribution and its pdf is given by  
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Such that 5.0,0  m  
The average probability of error will be given by 

       )43......(............................................................)()/()(
0



   dfePeP  

Or, 

        )44...(............................................................)()4()(
0



   dfQeP  

 
The Integral of the average probability is evaluated in [5]. The average probability of error is 
finally given by: 
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Where 2F1(a,b;c,x) is the Gauss Hypergeometric Function [6] defined by: 
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The last equation is the integral representation of 2F1 and is valid under the assumption that   
|x|≤1. In our case, the integral representation reduces to: 
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The average BER can then be given by: 
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Where 
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The substitution (t = sin2 (ө)/x), is useful to solve the integral. Finally, we have for arbitrary 
value of m:  
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And for integer m, (51) will result into: 
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Special Cases: 
The probability of error is computed for different value of m. For the case of severe fading; m= ½ 
(the half Gaussian distribution). Equation (51) reduces to: 

         )54.........(..................................................................................................../)arcsin( xPe   

And for m =3/2, equation (51) will reduce to: 
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                                                      )55.......(......................................../)1(arcsin xxxPe   
For m=1(the case of Rayleigh fading), the average probability of error in (52) reduces to: 

                                                                                )56.......(........................................2/1 yPe   
For m=2, equation (52) will result to: 
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And for m=3(very close to Rician fading), equation (52) will result to:   

                                            )58(........................................16/310158 53 yyyPe   
5. Results and Comments 
In this paper we come to an easy to evaluate expressions for the BER of HPSK performance in 
Nakagami fading channel. The cases of more severe fading than Rayleigh, Rayleigh and Racian 
fading are considered. Figure (7) shows the probability of error of HPSK for different values of 
m. The Cases of BPSK and QPSK are 6dB and 3dB worse than HPSK respectively.   
 

 
Fig.7 BER vs SNR(dB) of HPSK in Nakagami Fading Channels 
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