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Abstract: The radar tracking system prefers to have an estimated covariance matrix  in a single 
snapshot in order to estimate the next position of a moving target. Recent research provides the 
inflation method and the projection approximation subspace tracking (PAST) method to estimate the 
DOA based on successive snap shots where an objective function, such as minimize the DOA 
estimation error, is defined and minimized. In this paper we provide complete analysis in addition to 
computer simulations for the mentioned recently published DOA estimation methods. Their behaviors 
are compared with the traditional, parametric, Eigen decomposition and spatial smoothing methods. 
Although the spatial smoothing method outperforms the other traditional method, that it could estimate 
the DOA of both coherent and non coherent signals at higher SNR. The recent DOA estimation 
method provided the capability of tracking a moving source as well as estimating the DOA of fixed 
location source. PAST method, can track moving signal sources, which change their direction. 
 
 
1. Introduction 
The subspace methods such as MUSIC or ESPRIT, for direction of arrival (DOA) estimation, are 
based on the Eigen structure of the estimated covariance matrix of the data received by antenna array.  
As the number of the array snapshots increases as the accuracy of the estimated covariance matrix 
increases, consequently the accuracy of the estimated DOA.  However, these methods are still too 
complicated to admit real-time implementations and they are unsuitable for non-stationary 
environments. In many applications, such as tracking of a moving source of electromagnetic radiation 
it is required to estimate the DOA for every new snapshot. Therefore, adaptive subspace-based 
methods are introduced to overcome this drawback and to alleviate the computational overhead for 
fast subspace tracking. The adaptive Pisarenko’s Harmonic Retrieval (PHR) method, proposed by 
Thompson [1], utilizes an adaptive method such as least mean-square (LMS) to obtain a set of 
minimum eigenvectors to estimate the noise subspace and consequently the DOAs of the array 
impinging signals. The Gauss-Newton iterations [2] [3], and conjugate gradient methods [4] can also 
be applied to seek the largest or smallest eigenvalues and their corresponding eigenvectors adaptively. 
Rank revealing URV decomposition [5, 6] is proposed to track the signal or noise subspace. Yang et al 
proposed an inflation method which combines many adaptive PHRs for tracking of the noise subspace 
[7]. Besides, a general inflation method was also addressed to overcome the setbacks of the original 
inflation method [8]. On the other hand, a projection approximation subspace tracking (PAST) method, 
based on recursive-least-square (RLS) method via a novel interpretation of the projection as an 
unconstrained optimization problem was considered in [9]. The tracked subspace is then employed by 
the MUSIC or ESPRIT to locate the DOAs of the array impinging signals. 
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This paper provides analytic evaluation of the proposed methods for subspace tracking as well as 
computer simulation for their behavior for different practical situations. Sections II and III provide 
brief description as well as analytic derivation of the inflation method and PAST method for signal or 
noise subspace tracking respectively.  Section IV provides computer simulation for the behavior of the 
inflation and PAST methods for noise subspace tracking and the utilization of MUSIC method for 
DOAs estimation based on the tracked noise subspace. Finally section V provides conclusions and 
recommendations for future work.   
 
 
II. Inflation Method for DOA Estimation 
The subspace-based methods such as MUSIC and ESPRIT are based on batch estimation of the data 
covariance matrix. This estimation requires a large number of consequent array snapshots which 
makes the subspace based method unsuitable for non-stationary environments. Therefore, adaptive 
subspace-based methods are introduced to overcome this drawback. In this paper, some DOA tracking 
methods are analyzed and evaluated through computer simulation. Namely, the inflation method [7], 
and the PAST method [9, 10] are considered. Yang et al [7] proposed a highly parallel method, 
denoted by the inflation method, for the estimation of the signal or noise subspace of the correlation 
matrix of the received data by an adaptive array. The general formulation of the inflation method 
results from an asymptotic argument which shows the signal or noise subspace computation to be a 
constrained searching procedure. The basic structure of the adaptive Pisarenko’s Harmonic Retrieval 
(PHR) is illustrated in Fig.1 [1]. It is consists of L elements antenna array followed by adaptive 
weights vector. An adaptive subspace based methods such as the least mean square, LMS and the 
recursive least squares, RLS [11] are used to obtain the optimum weights by an iterative procedure. 
These optimum weights vector will converge to the signal or noise subspace. The detailed structure of 
the adaptive Eigen-subspace Linear Combiners for direction of arrival estimation is shown in Fig.2. 

 
Fig.1. Structure of the adaptive Pisarenko’s Harmonic Retrieval 

 

 
Fig.2. Adaptive Eigen-subspace Linear Combiners 
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The matrix of the adaptive weights are considered as m- identical independent linear combiners each 
combiner is an orthonormal set of weights, which is given by  

  miwwwW T

Liiii ,,2,1,,,, 11    

For stationary data, the output of the 
thi  linear combiner is 
    mitXWty H

ii ,,2,1,                                  (1) 

The number of combiners, m, is chosen to be equal to the estimated number of signals impinging the 
array, M which determines the dimension of the signal subspace. Conversely, it may be   chosen as  

MLm  , for estimation  of the noise subspace. 
 
In stationary situation, the desired steady-state weights could be obtained by minimizing a 
cost function with respect to the signal subspace or maximizing it with respect to the noise 
subspace estimation. The cost function is defined as the average power of the linear 
combiners output and it is given by  

)]([][ HH yytrEYYEJ   )()]([ RWWtrWXXWtrE HHH                    (2) 
 
Minimization of cost function J could be accomplished by applying the constrained gradient-search 
procedure. If the convergence rate   is constant, then, the weight matrix is updated by [7]. 

      ttWtW  1'                                 (3) 

Where, W(t) is obtained by taking the Gram-Schmidt orthogonalization of the columns of  tW '  and 

   is a small positive constant.  t  is an estimator of the gradient of J with respect to W , which is 

approximated by    kykX i .  

 
The update equations of the inflation method can be summarized as follows: 

       kykWkXkX iiii 111        MLi  ,,3,2                 (4) 
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A generalized inflation method is proposed in [8], where the updated data vector can be expressed as  

       kykWkXkX iiii 111        MLi  ,,3,2                 (9) 

   kXkX 1
                                          (10) 

Where,   is a forgetting factor which is ranged as  .10   
 
 
III. A projection Approximation Subspace Tracking (PAST) method. 
A projection Approximation Subspace Tracking (PAST) method [9, 12] is based on a novel 
interpretation of the signal subspace as the solution of a projection like unconstrained minimization 
problem. The unconstrained minimization can be solved by RLS [11, 13] techniques by making an 
appropriate projection approximation. More specifically, based on the data model, we first consider an 
unconstrained cost function given by 
 

   2
XWWXEWJ H      WWRWWtrRWWtrRtr HHH .2           (11) 
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With the corresponding correlation matrix, ][ H
X XXER  . We can approximate (11) by replacing 

the involved expectation with an exponentially weighted sum to yield 

         21 )( iXtWtWiXtWJ Ht     

])()()()()([])()()([2])([ tWtWtWtRtWtrtWtRtWtrtRtr HHH      (12) 
 
Where, ti 1  and the forgetting factor is   10   . 

 
Note that   tWJ  in (12) is identical to  WJ  in (11) except for the use of the exponentially 
weighted correlation matrix, defined as      
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to replace the original correlation matrix R. The main issue of the PAST method is to approximate 

   iXtW H  in (12), which is the unknown projection of X(i) onto the columns of W(t) by  

     iXiWiY H 1 .  Therefore, we can obtain the modified cost function given by  
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Which is quadratic in the elements of  tW . 
 

We expect   tWJ '   to be a good approximation for   tWJ   and the matrix  tW  

minimizing   tWJ '  to be a good estimate for the signal subspace of  tR . The main advantage of the 
PAST method is the exponentially weighted least squares criterion in (14), which can be solved by 

applying various RLS methods [11]. Therefore, the modified cost function   tWJ '   is minimized if  
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Note that a more efficient and numerically more robust method is to apply the matrix inversion lemma 
to compute the inverse of  tRyy  {denoted as P(t)} or to use the Q-R updating technique to calculate 

the Cholesky factor of  tRyy  recursively [11], that 

Choose  0P  and   0W  suitably 
FOR  ,2,1t  DO 
     tXtWtY H 1      (18) 

     tYtPth 1      (19) 

     ]/[ thYthtg H      (20) 

       }1{
1

thtgtPTritP H


   (21) 

       tYtWtXte 1     (22) 

       tgtetWtW H 1     (23) 
 
These above equations summarize the PAST method for tracking the signal subspace. The operator 

 .Tri  indicates that only the upper (or lower) triangular part of   1 yyRtP   is calculated and its 

Hermitian transposed version is copied to the other lower (or upper) triangular part. This RLS scheme 
reduces the number of operations and preserves the Hermitian symmetry of   tP   in presence of 
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rounding errors. The initial values   0P  and   0W  have to be chosen suitably.  0P  has to be a 

Hermitian positive definite matrix.  0W  should contain M orthonormal vectors. However, we usually 

set  0P  to the MM    identity matrix and the columns of   0W  to the M leading unit vectors of 

the LL  identity matrix. 
 
 

IV. Simulation Results. 
IV.1. Simulation of Inflation Method 

As an illustration, an example is conducted to evaluate the inflation tracking method. The number of 
antennas elements in the linear array is assumed to be L=9 and 256 successive snapshots are utilized 
and the convergence factor   is set as 5105.2  .  Fig.3 shows the tracking curves for two stationary 

signal sources with fixed and distinct DOAs }10,10{  where the SNR is set to be 6 dB and 20 dB 
in Fig. 3 (a), (b) respectively.  Also, Fig.4 shows the tracking curves of two stationary signal sources 
with closely spaced DOA`s   5,5  where the SNR is set to be 6 dB and 20 dB in Fig.4 (a), (b) 

respectively. As we can observe from Fig.3, and Fig.4, the DOA tracking curve will converge, after 
about 200 iterations for distinct separated sources, }10,10{   for low SNR = 6dB.  Also it will 

converge at about 250 iterations for closely spaced sources,    5,5  for low SNR = 6dB. Finally 
increasing the SNR to 20 dB fasts the convergence of the inflation method for both cases of distinct 
and closely spaced sources. 
 
 

 
(a) DOA = {-10o, 100}, SNR = 6dB 

 

 
(b) DOA = {-10o, 100}, SNR = 20 dB 

Fig.3. Performance of inflation method for distinct spaced signal sources. 

 

 
(a) DOA = {-5o, 50}, SNR = 6dB 

 

 
(b) DOA = {-5o, 50}, SNR = 20dB 

Fig.4. Performance of inflation method for closely spaced signal sources. 

 
IV.2. Simulation of the PAST Method 

As an illustration, the same example is conducted to evaluate the PAST method. The SNR is 
set to be 6dB and 20dB, the number of array elements is assumed to be 9 elements and the 
number of considered snapshot is 256 snapshots. The forgetting factor   is set to 

equal 5105.2  . The tracking curve for estimating the DOA of two moving signals sources 



Paper: ASAT-13-CM-34 
 
 

6/7 
 

start at DOAs }10,10{  and approach each other are shown in Fig.5 (a), (b) for SNR = 6dB 
and 20dB respectively. The tracking curve for a very close space moving signals sources start 
at DOAs }5,5{  and approach each other are shown in Fig.6 (a), (b) for SNR =6dB and 
20dB respectively. It is clear from Fig. 6, that the PAST method, will estimate the true DOA 
of two signals starts at }5,5{  , after 100 iterations, for low SNR as in Fig. 6 (a), while the 
true DOA of two closely spaced signals is estimated after 20 iterations for high SNR as in Fig. 
6 (b). However in case of distinct, approaching sources the convergence is faster as in Fig. 5.  
 
Fig.7, presents the performance evaluate of the PAST method in estimating the DOA of one 
fixed at {-80} and two moving targets start at DOAs }12,8{  and approach each other. The 
performance is evaluated for different SNR = 6dB, 20 dB. It is clear from Fig. 7, that the 
PAST method successfully determine the DOA of the three sources (-8, 12, 8) after 50 
iterations.  Finally comparing Fig. 7 (a), (b) we can note that increasing of SNR fasts the 
convergence of the PAST Method. 
 
 
V. Conclusions 
The inflation tracking algorithm, is capable to track stationary signal sources with fixed and closely 
spaced DOA`s. Moreover, increase of SNR fasts the convergence of the inflation method.  PAST 
algorithm, can track moving signal sources, which change their direction. Increase of SNR fasts the 
convergence of the PAST Algorithm and provide accurate DOA estimation. It is recommended to 
study the required modifications to both analyzed algorithms in order to operate and cope with modern 
wide band communications signals. 

 
 

 
(a) DOA = {-10o, 100}, SNR = 6dB 

 

 
(b) DOA = {-10o, 100}, SNR = 20dB 

Fig.5. Performance of the PAST method for estimation the DOA of distinct moving sources. 
 

 
(a) DOA = {-5o, 50}, SNR = 6dB 

 

 
(b) DOA = {-5o, 50}, SNR = 20dB 

Fig.6. Performance of the PAST method for estimation the DOA of closely moving sources. 
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(a) DOA = {-8o, 80 , 120}, SNR = 6dB 

 
(b) DOA = {-8o, 80 , 120}, SNR = 20dB 

Fig.7. Performance evaluation of the PAST method for estimation the DOA of two moving 
and one fixed sources
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