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Abstract: There are different ways to calculate the unloaded bandwidth of a series 
transmission resonator.  For this type of two-port resonators, the availability of both return 
loss (s11) and insertion loss (s21) over-determines the system; that is, the unloaded 3-dB 
bandwidth and hence the quality factor of the resonator can be calculated from either s21 or 
s11. This paper describes different techniques that can be used to determine the unloaded 
quality factor of a series two-port resonator in order to determine which formulae should be 
used to most accurately measure the unloaded 3-dB bandwidth of the resonator. Sources of 
errors are described for both s11 and s21 methods. Then the measurement uncertainty is 
analyzed and compared to obtain the most accurate Q0 reading.  
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1. Introduction 
Microwave resonators are important circuit components for devices like filters, diplexers, 
multipliers, and oscillators. As such, a fast and accurate characterization of the resonator is 
essential in assisting circuit designers to accurately predict the performance of any microwave 
circuit in which the resonator is used. Resonators are characterized by their resonant 
frequency (f0) and quality factor (Q). Three important parameters associated with a resonator 
are the resonator unloaded quality factor (Q0), the coupling coefficient (κ), and the loaded 
quality factor (QL). The unloaded quality factor establishes an upper limit for the resonator 
performance, while coupling coefficient describes the interaction between the resonator and 
interfaced microwave circuits. An accurate measurement of the unloaded Q-factor of a 
microwave resonator is of prime importance. Although the unloaded Q may be calculated 
theoretically, it cannot be directly measured in practice. Therefore, It was an attractive area of 
research starting from slotted line measurements [1] and ending with vector network 
analyzers (VNA) [2,3]. Q-factor measurements could be either reflection type or transmission 
type[4,5]. The latter is very popular [6,7,8] and is investigated in this paper.  
 
This paper describes different techniques that can be used to determine the unloaded quality 
factor of a series transmission resonator. One of these techniques is using transmission 
parameter s21 and the loaded 3-dB points. The uncertainty of this technique is analyzed in [5]. 

                                                 
 
* Egyptian Armed Forces, aeltager@yahoo.ca 



Paper: ASAT-13-CM-35
 
 

2/10 
 

In this paper two other techniques; namely  using s21 and the unloaded 3-dB points, and using 
return loss s11 and the unloaded 3-dB points, are discussed and analyzed. The availability of 
both s11 and s21 over-determines the system; that is, s21 can be calculated based on the 
knowledge of s11 and vice versa. This paper determines which formulae should be used to 
most accurately measure the unloaded 3-dB bandwidth of the resonator. Sources of errors are 
described for both s11 and s21 methods. Then the measurement uncertainty is analyzed and 
compared to obtain the most accurate Q0 reading. 
 
 
2. Methods of Measuring the Unloaded Quality Factor 
This section describes the different techniques that can be used to determine the unloaded 
quality factor of a series two-port (transmission) resonator.  The equations presented here are 
based on those which have been derived in [5].  
 

a) Using the Loaded 3-dB Points and s21 
 
This technique is the most often encountered in practice. It is found that the loaded and 
unloaded Qs are related through Equation 1 [2,5].  
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It is also seen that the s21 parameter at resonance, which is real valued, is given by Equation 2 
[5].  
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By isolating  from Equation 2 and substituting the value into Equation 1, the result of 
Equation 3 is obtained.  
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The s21 parameter at resonance is easily obtained, leaving QL to be measured if Equation 3 is 
to be used. Also, the squared magnitude of s21 at the loaded 3-dB points can be obtained:   
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Close inspection of Equations 2 and 4 reveals that the squared magnitude of s21 at the loaded 
3 dB points is exactly half the squared magnitude of s21 at resonance (s21

res).  This means that 
the loaded 3 dB points occur at s21

res - 3 dB exactly, which provides a quick method of 
determining QL for use in Equation 3.  
 
 
 

b) Using the Unloaded 3-dB Points and s21 
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Equation 2 allows the coupling coefficient , which is frequency invariant, to be evaluated at 
resonance.  Equation 5, provides the unloaded 3-dB points of s21 directly, allowing Q0 to be 
calculated directly. 
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c) Using the Unloaded 3-dB Points and s11 
 
If one has access to the reflection coefficient magnitude, then the coupling coefficient may be 
extracted using Equation 6.   
 

21

1


res            (6) 

 
The unloaded 3-dB points are then given by Equation 7, again allowing Q0 to be measured 
directly.  There is no simple "-3 dB expression" for the reflection coefficient similar to that 
found for the s21 parameter of Method (a). 
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3. Description of the Sources of Errors 
 
In a perfect world, each of the three methods presented above would yield the same value for 
Q0.  However, uncertainty is present in all practical measurement systems, and the effects of 
uncertainty on our desired value must be determined.  The effects of system uncertainty on 
the results of Method (a) have been discussed in a recent paper by Kajfez [5].  In this paper, 
the uncertainty analyses for Methods (b) and (c) are derived in sections 4 and 5 respectively. 
It is assumed that the network analyzer has an absolute amplitude level uncertainty of p dB 
on the s21 reading and r dB on the s11 reading.  Additionally, it is assumed that there exists a 
frequency uncertainty f when reading the bandwidth.  The resonant frequency uncertainty is 
assumed to be error-free.   
 
4. Uncertainty Analysis for Method (b), Using s21 to Find the Unloaded 3-dB 
Points 
 
The first source of uncertainty using this method is in determining  using Equation 2 because 
there is a level uncertainty in the s21 parameter at resonance.  If p denotes the s21 magnitude at 
resonance in decibels (a negative value), with an uncertainty of p dB, then  can be 
expressed as Equation 8.  
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It is a straightforward task to prove that the absolute (linear) uncertainty of  is given by 
Equation 9.  
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Equation 5 is then used to calculate the unloaded 3 dB level of s21.  This calculated level has 
an uncertainty due to the uncertainty of .  If the  uncertainty is propagated in Equation 5, 
the resulting uncertainty of the calculated s21 level, expressed in decibels, is obtained as per 
Equation 10.  
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When Equation 5 is used to find the unloaded 3-dB level, designers are again faced with the 
uncertainty of the VNA of p dB when they try to establish this level.  This additional 
uncertainty at the 3 dB point is assumed to be independent of the uncertainty that was present 
at resonance, so the overall uncertainty of the unloaded 3-dB level, expressed in decibels, 
becomes that of Equation 11.  
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Later, linear value of |s21U|2 is used, and its (linear) error is given by Equation 12 by means of 
Equation 11.  So how can Equation 12 be used to find the uncertainty of the measured 
bandwidth? 
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The missing step is now provided.  From Fig. 1 it can be seen that the s21 parameter can be 
formulated as Equation 13.  
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Where the unloaded series transmission resonator is expressed as ZL = R+jX as shown in 
Fig.1. Thus, the squared magnitude of s21 near resonance can be expressed as Equation 14, if 
using  = Z0/R and ZL  R(1+jQ0BW) near resonance, where BW is the double-sided 
fractional bandwidth. 
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Fig. 1. Two port circuit model for a series transmission resonator 

 
Now, its is time to introduce uncertainties into Equation 14.  The first uncertainty is that of s21 
given by Equation 12.  The coupling coefficient has no uncertainty here because Equation 14 
has been derived analytically.  Hence BW has an absolute uncertainty that is expressed by 
BW(s21).  Using the fact that Q0BW = 1 at resonance, propagating the uncertainty through 
Equation 14 yields Equation 15. 
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The VNA is also assumed to have a bandwidth uncertainty of f, so the total uncertainty of 
the bandwidth is given by Equation 16.  
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Since Q0 = 1/BW, the absolute and relative uncertainties of Q0 are given by Equations 17 and 
18, respectively, completing the derivation. 
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5. Uncertainty Analysis for Method (c), Using s11 to Find the Unloaded 3-dB 
Points 
 
If Equation 7 is used to calculate the unloaded 3 dB points, a different Q0 uncertainty will 
result.  From Equation 6, knowing that || has an uncertainty of r, the absolute linear 
uncertainty of the coupling coefficient becomes that of Equation 19.   
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Propagating this error through Equation 7, the absolute uncertainty of the 3-dB s11 level, 
expressed in decibels, is given by Equation 20.  
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 The reading of this s11 level is subjected to the analyzer's uncertainty of r, and if this 
uncertainty is uncorrelated with the uncertainty at resonance, the total uncertainty of the 3-dB 
s11 level is given in decibels by Equation 21, and the absolute linear error of |s11U|2 is given by 
Equation 22. 
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The reflection coefficient can be expressed as Equation 23, from which its squared magnitude 
near resonance is approximated by Equation 24.   
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Propagating the uncertainty of |s11|

2 through Equation 24, one obtains the uncertainty of the 
bandwidth due to that of s11, and this is given by Equation 25.  
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The total bandwidth uncertainty and the resulting Q0 uncertainties are again given by 
Equations 16 through 18.  
 
 
6. Analysis and Comparison of the Uncertainties 
 
The uncertainties of the three above methods are more investigated and compared in this 
section. Using only s21, we first compare the relative uncertainties of Q0 for Methods (a) and 
(b) for the case of p = 0.1 dB, f = 1 kHz, and Q0 = 10 000.  The results are shown in Fig. 2. 
 
The results of Fig. 2 indicate that Method (a) always yields a smaller uncertainty.  This 
shouldn't be that surprising, since Method (a) does not use a calculation to determine the 3-dB 
points; instead, the level is 3 dB below resonance, exactly.  Method (b) uses a function of  to 

A
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determine the unloaded 3-dB points, a calculation that amplifies the uncertainty.  So the 
uncertainty of the coupling coefficient causes Method (b) to have more uncertainty than that 
of Method (a). 
 
Figure 2 also shows that the accuracy of both methods degrades as the coupling coefficient 
increases.  Upon careful reflection, this is due to the fact that the magnitude of s21 at 
resonance increases with the coupling coefficient.  If the level error of p dB is constant, this 
means that as s21 increases, its absolute uncertainty also increases.  As an example, 0.1 dB 
for a level of -30 dB represents a much smaller absolute uncertainty than does, say, 0.1 dB 
for a level of -5 dB.  Hence the increase in uncertainty with  is due directly to the fact that 
p is constant. 
 
 

 
(a) 

 

 
(b) 

Fig. 2. Relative Q0 Uncertainty versus Coupling Coefficient and Magnitude of S21  
for p = 0.1 dB, f = 1 kHz, and Q0 = 10 000 Using Methods (a) and (b) 
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Given this fact, the reflection coefficient at resonance decreases as the coupling coefficient is 
increased.  Hence the absolute uncertainty of s11 should go down as  is increased.  Method 
(c) is expected to be more accurate above a certain coupling coefficient level.  Comparisons 
of the relative Q0 uncertainty using Methods (a) and (c) are shown in Fig. 3 using the same 
parameters as those of Fig. 2. 
 
The results using Method (a) are identical to those published by Kafjez [5].  Using our 
uncertainty assumptions, and the assumption that p = r,  it is clear that s11 should be used 
instead of s21 above a certain coupling level.  This crossover level is given by crossover  1.255 
or |s21

res|crossover  -2.915 dB.  These levels are irrespective of the p, f, and Q0 levels, 
although the resulting maximum relative uncertainty of Q0 at the crossover point is of course a 
function of all of these parameters. 
 
Taking the maximum Q0 uncertainty as corresponding to that at the crossover level, we can plot 
the contributions to Q0 separately.  Equation 16 indicates that the absolute uncertainty of Q0 
is due to two contributions: one due to f and the other due (indirectly) to r or p.  
Combining Equations 16 and 18,  the relative uncertainty of Q0 can be expressed as Equation 
26. If f is zero, the relative uncertainty of Q0 due to the level uncertainty p = r will be 
given by Equation 25 without the Q0 in the denominator, that is, this contribution to the 
relative Q0 uncertainty will not be a function of Q0.  
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The maximum contribution due to p = r to the relative uncertainty of Q0, that is, 
Q0BW(s11), is plotted in Fig. 4. for  = 1.255.  The other term of Equation 26 depends on the 
parameters of the resonator and can be easily evaluated. 
 
 
7. Conclusion 
 
This paper describes three main techniques that can be used to determine the unloaded quality 
factor of a series transmission resonator. First, using transmission parameter S21 and the 
loaded 3-dB points. The uncertainty of this technique is analyzed in [5]. Second,  using S21 
and the loaded 3-dB points. And third, using return loss S11 and the unloaded 3-dB points. 
Second and third techniques are discussed and analyzed. This paper determines which 
technique should be used to most accurately measure the unloaded 3-dB bandwidth of the 
resonator. Sources of errors are described for both s11 and s21 methods. Then the measurement 
uncertainty is analyzed and compared to the first technique (method a) to obtain the most 
accurate Q0 reading. For the second technique (method b) it is worse than the first which is 
matched with theory. For the third technique (method c), it is found better than method (a) for 
coupling factors larger than certain value (crossover  1.255), otherwise, method (a) is better.  
Therefore, given the uncertainties in the measurement system, one can determine which 
parameter (s11 or s21) to use to obtain the most accurate Q0 reading.  Furthermore, the 
maximum uncertainty is calculated, which occurs for the special case of =1.255.   
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(a) 

 
 

 
(b) 

 
Fig. 3. Relative Q0 Uncertainty versus Coupling Coefficient and Magnitude of S21  

for r = p = 0.1 dB, f = 1 kHz, and Q0 = 10000 Using Methods (a) and (c) 
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Fig. 4. Maximum Error Contribution of the Level Uncertainty to the Relative 
Uncertainty of Q0 
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