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Abstract: Prior methods for tracking multiple military objects include various optimal and 
suboptimal two-dimensional assignment algorithms which make nearest-neighbour 
measurement-to-track association. This method works reasonably well in case of small 
number of targets and high signal to noise ratio. Another method is to assign a weight for 
each measurement and use a weighted centroid of those measurements to update the track. 
This method of weighting the measurements is known as all-neighbour and overcomes the 
disadvantages of the nearest-neighbour data association. Unfortunately, the computational 
complexity of an optimal all-neighbour data association technique limits its practical 
realization using even the fastest computers available. For this reason, many different tracking 
techniques have been developed which sacrifice optimal performance for the sake of 
computational feasibility. This paper proposes a new computationally feasible measurement 
weighting method to the problem of multiple targets tracking in a noisy environment. 
Computer simulation results indicate that the proposed weighting method successfully tracks 
multiple targets with a lower computational complexity and a little prior knowledge. 
 
 
Keywords: Nearest-neighbor association, All-neighbor association, Kalman Filter, Tracking, 
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1.  Introduction  
The main objective of any tracking system is to estimate and predict the target tracks.  This is 
of interest in both civilian applications, such as civilian air traffic control, and military 
applications, such as air defense systems [1, 2]. When tracking multiple targets, data 
association decides which of the received measurements to use to update each target track. 
There are two solutions to the data association problem; the neighbor-neighbor filter (NNF) 
and the all-neighbor filter (ANF) [3]. In the NNF, one measurement, at most, can be used to 
update a given target track. The measurement that is closet to the predicted target 
measurement is used to update a given target track. In this approach, measurements are 
assigned to existing tracks in such a way to optimize an overall association measure. 
Blackman [4] provides an excellent description of NNF tracking techniques. The performance 
of the NNF does not work reasonably in case of low signal to noise ratio and large number of 
targets. Instead of using only one measurement among all the received ones and discarding 
the others, the ANF uses all of the validated measurements with different weights. The result 
is that the updated target estimate may contain contributions from more than one 
measurement with some association weights [3].
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The multiple hypothesis tracker (MHT) is recognized as the theoretically optimum approach 
in Bayesian sense under idealized modeling assumptions. It based upon use of the a posteriori 
probability as calculated using Bayes' rule. Unfortunately, the computational complexity of 
the MHT limits its practical realization using even the fastest computers available [5]. 
Furthermore, a priori knowledge of the signal environment is required. For this reason, many 
different tracking techniques have been developed which sacrifice optimal performance for 
the sake of computational feasibility. Bar-shalom and Fortman [2] developed the joint 
probabilistic data association filter for tracking multiple targets. It is used to track multiple 
targets by evaluating the measurement-to-track probabilities for all measurements and all 
tracks for the last scan of measurements and combining the estimates based on the individual 
probability weights. Unfortunately, the implementation of this filter is infeasible due to the 
computational complexity required to perform tracking [6-8].  
 
This paper proposes a new weighting method for tracking multiple targets. It incorporates all 
of the validated measurements, in a gate, with different fuzzy weights to update the state 
estimates. The proposed method is able to track multiple targets with a little prior knowledge 
and a lower computational complexity. The remainder of this paper is organized as follows. 
Problem formulation of multitarget tracking is addressed in Section 2. The proposed 
weighting method is presented in Section 3. To demonstrate the feasibility and efficiency of 
the proposed method, simulated multiple targets tracking, based on Monte Carlo simulations, 
is reported in Section 4. Performance comparison with NNF is also presented in Section 4. 
Finally, Section 5 contains conclusions. 
 
 

2.  Problem Formulation 
Consider the case of multiple ( tn ) target tracks in the presence of nearby objects. Assume 

validation gates of the targets are defined in some way, and mn  validated measurements are 

found inside them. A validation gate of a target is the gate in which the true measurement will 
appear with high probability. The target validation gates indicate the feasible joint events. 
Define the validation matrix as [9-12]: 
 

,........,,2,1,.......,,2,1],[ mtij njniwW          (1) 

 
with binary elements ijw . If measurement j  lies in the validation gate of target i , the 

corresponding element ijw =1. Thus 

 






,otherwise                 0,

 target of gaten  validatioe within thfallst measuremen if,1 ij
wij    (2) 

 
For an example, suppose that 2tn  (two targets), and 4mn  (four measurements fall 

within the validation gates of the two targets), as depicted in Fig.1. Figure 1 shows that 
measurement 1 falls within the gate of target 1 )1( 11  , and outside the gate of target 2 

)0( 21  . The scenario of Fig.1 can be represented by the following validation matrix [13-
15]: 
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Suppose that the number of validated measurements ,)( mn defined as 

)}(..,..........),(),({ 21 kkk
mnzzz , 

 are received at scan k . The dynamical and measurement models of the thi  target, 
,......,,2,1 tni  are defined as [16-18] 

 
,)()()1( kkk iiii vxFx           (4) 

),()()()( kKkk iiii wxHz          (5) 

 
where )(kix  is an n dimensional state vector of the thi  target at scan k , )(kiz is an m  

dimensional attribute vector, )(kiv  is a noise input vector, )(kiw is a measurement noise 

vector, iF  is an nn  state transition matrix, and iH  is an nm  measurement matrix. The 

process noise and the measurement noise are assumed to be uncorrelated, zero mean Gaussian 
with covariance matrices  
 

,))(()( kCovk ii vQ            (6) 

.))(()( kCovk ii wR            (7) 
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Fig. 1   Problem formulation with four measurements and two targets 

 
 
Given mn  measurements, it is required to determine the track estimates for all existing targets 

( tn targets). It is difficult to determine precisely which target corresponds to each of the 

closely spaced received measurements. The problem is to construct the target state estimate 
by using the uncertain measurements originating from the targets in track. In a noise-free 
environment, each target track i  is predicted and updated based on correct measurements as 
follows [1-4, 16, 18] (assuming the Kalman filter least squares estimator): 
 

)|(ˆ)|1(ˆ kkkk iii xFx  ,         (8) 
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)()()|1( kkkk iiiii QFPFP  ,        (9) 

),1(~)1()|1(ˆ)1|1(ˆ  kkkkkk iiii zKxx       (10) 

)|1(])1()1([)1|1( kkKkkk iiii  PHKIP ,     (11) 

 
where the Kalman filter gain )(kiK and the innovation )1(~ kiz are given by 

 
1)]1()1()|1()1([)1()|1()1(  kkkkkkkkk iiiiii RHPHHPK ,  (12) 

)|1(ˆ)1()1()1(~ kkkkk iiii  xHzz .       (13) 

 
The covariance matrix of the innovation is given by 
 

.)1()|1()1()1( iiiii kkkkk RHPHS         (14) 

 
The problem is how to assign one measurement, from all, to update a target track [13, 18]. 
 
 

3.  Proposed Weighting Method 
Given a number of received measurements ,mn  it is required to group them into tn  targets 

according to some similarity measure. Define the error between a received measurement j  
and a target i  as the square error (inner product induced norm): 
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    (15) 

 
where ijz~ is called the innovation vector between measurement j  and target i . Define the 

error matrix e  as 
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The similarity measures between all targets and all measurements )( ijs  are determined such 

that the sum of the square errors )( sE  is minimum, i.e. to minimize  
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where each error is weighted by the square of the corresponding degree of similarity measure.  
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This problem can be treated as a clustering problem and can be solved using fuzzy clustering 
techniques. The solution for { jisij ,, } which achieves a minimum value of the square error 

is given by [7]:   
 

,.,..........,1,.......,,2,1,

)/1(
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     (18) 

 
where ijs  represents the similarity between target i  and measurement j . Note that if ije , 

the corresponding similarity measure ijs  will be 0 . The similarity values are normalized such 

that, for a given track ,i the contributions of all measurements equal unity, i.e., 
 





mn

j
tij nis

1

.,........,2,1,1          (19) 

 
According to the normalized weights of the similarity measures { jisij ,, }, the state 

estimate of target i  is updated using the equation  
 

.........,,2,1,)1(~)1()|1(ˆ)1|1(ˆ
1

tij

n

j
ijiii nikskkkkk
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

zKxx    (20) 

 
The update covariance matrix is obtained as. 
 

)1|1()1|1()1|1( 21  kkkkkk iii PPP ,     (21) 

 
where )1|1(1  kkiP and )1|1(2  kkiP  are defined as 

 
),|1(])1()1([)1|1(1 kkKkkk iiii  PHKIP      (22) 
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In summary, the proposed method consists of the following steps:  
 

(1)  Construct the validation matrix ,...,,2,1,...,,2,1],[ mtij njniwW  with binary 

elements ijw such that otherwise.0and, if1 ijwij   

(2)  Based on the validation matrix W , evaluate the error matrix using (16) and construct 

the similarity weights { jisij ,, } using (18).  

(3)  Normalize the similarity weights { jisij ,, } to satisfy (19). 

(4) Update the state estimate and covariance matrix according to (20)-(23).  
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4.  Performance Evaluation Using Monte Carlo Simulations  
We consider two simulated examples. The first example considers the case of four crossing 
targets. We assume that the targets are moving in straight lines without acceleration. 
Measurement data are created by simulating the actual target motion in two dimensions and 
then adding noise to the true measurements. The targets motion model is defined by (4) and 
(5), where the state transition matrix F  is given by 
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and T is the sampling interval.  
 
The state vector )(kx   contains the x- and y- target positions and velocities, i.e. 
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The measurements are the  x- and  y- target positions, i.e. the measurement matrix H is given 
by 
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Measurements are affected by noise which is modeled as Gaussian, zero mean, with a certain 
standard deviation. The noise sequence )(kw  has a covariance matrix  
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The values of the noise uncertainties are taken as  yx  55 m for all targets. The 

performance is evaluated based on 50-run Monte Carlo simulations. Fig.2 shows the tracks 
estimates obtained using the NNF, as well as the actual tracks. In this case, the closet 
measurement to the center of each validation gate is chosen as the correct measurement. It is 
clear from Figures 2 that the tracks estimates are far from the actual tracks, thus the NNF is 
not suitable in this case. Fig.3 shows the tracks estimates obtained using the proposed fuzzy 
Kalman filter. It is clear from Fig.3 that the proposed approach improves the tracks estimates 
and achieves much better performance than the NNF.  
 
The second example considers the case of a 3 maneuvering targets. The dominant 
acceleration in deterministic target maneuvers is coordinated turn because targets prefer to 
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maintain a high speed when in danger, turning rather than slowing down to avoid danger [5]. 
The initial state estimates and the corresponding initial covariance matrix are obtained by two 
points differencing of the measurements with a corresponding covariance matrix as in [2, 8]. 
Each target motion is initially in a straight line with constant velocity. The measurements are 
taken every 0.1 second. After generating 250 measurements (25 seconds), the targets institute 

a 10 g right turn  (g=9.8 sec/2m ) and hold the turn for 100 measurements and then return to 
straight lines motion for an additional 250 measurements (producing 600 measurements in 
all). The values of the noise uncertainties for the three targets are taken as 

m,3011  yx  m,3522  yx  and m4033  yx  . The performance is evaluated 

based on 50-run Monte Carlo simulations. Figure 4 shows the tracks estimates obtained using 
the proposed fuzzy Kalman filter as well as the actual tracks for all targets. Figure 4 shows 
that the proposed approach is efficient in case of maneuvering targets. It is worth noting that 
the proposed approach determines the fuzzy weights for all targets and measurements based 
on a single partition matrix which highly reduces the computational complexity compared to 
conventional fuzzy logic approaches and joint probabilistic data association techniques    
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Fig. 2   Performance of a 4-crossing targets tracker using NNF 
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Fig. 3   Performance of a 4-crossing targets tracker using Fuzzy Kalman filter 
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Fig. 4   Performance of a 3-maneuvering targets tracker using Fuzzy Kalman filter 

 
 
5.  Conclusion 
A new weighting method for tracking multiple targets has been developed. In the proposed 
method, the probability weights are replaced by fuzzy weights. It obtains the similarity 
measures between all measurements and all targets and then it updates the target state 
estimate and the covariance matrix using the fuzzy weights. Each weight represents the 
similarity measure between a measurement and a target. Unlike many all-neighbor tracking 
techniques, the proposed approach does not depend on probability measures. Unlike many 
conventional fuzz tracking techniques, the proposed approach does not use Fuzzy rules. Thus 
it highly reduces the computational complexity compared to other techniques reported in the 
literatures. It has been found that the proposed approach improves the tracks estimates and 
achieves much better performance than the nearest-neighbour filter. The proposed approach 
can easily be extended to the case of tracking in a cluttered environment. Monte Computer 
simulations have demonstrated the feasibility and effectiveness of the proposed approach in 
tracking some typical non-maneuvering and maneuvering targets.   
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