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Abstract: This paper proposes designing an optimal static output feedback controller for a 
structural-acoustics coupled system as efficient control architecture. Modelling of sound 
transmission through a plate-cavity-plate system is presented. In this coupled structural 
acoustic system, an approximate series solution is assumed for the displacements of the plates 
and the pressure inside the cavity. The solution of the coupled system is obtained using 
Galarkin’s method. The system to be modeled is consisting of a rectangular cavity with two 
flexible plates, one at the top of the cavity while the other at the bottom and four other fixed 
boundaries. Piezoelectric pair patches are considered to be bonded to the top plate, and each 
pair is assumed to produce a pure moment actuation. The top plate is exposed to an external 
pressure excitation due to a planar wave generated by a sound source mounted above the 
cavity. Displacements at the mid points are calculated for the upper and lower plates. In the 
control scheme, the controller gains have been optimally tuned using genetic algorithms.  The 
proposed architecture is compared to the linear quadratic Gaussian state feedback controller. 
 The two controllers are compared for the time responses. The proposed controller shows a 
superior performance with simple implementation requirements. 
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1. Introduction 
The characteristics of structure-acoustic systems for flight applications have a significant 
dependency on flight conditions over the entire flight envelope. These flight conditions could 
be defined in terms of flight speed and altitude. Designing a control, which has the capability 
to keep the system with acceptable behaviour regarding any change in the operating 
conditions, is considered as a challenging task. Gain scheduling has been effectively applied 
to similar control problems such as stability augmentation system (SAS) and control 
augmentation system (CAS) as well as it has been used for other structural applications [1]. 
The conceptual framework of gain schedule starts by breaking down the operating domain 
(flight envelopes) to a set of points. Each point has its own characteristics as functions of the 
flight conditions. A controller is designed for each point individually. These local controllers 
are scheduled to build a global one, when interpolation is employed to switch in between. The 
simplicity of the local control law should be sought in terms of implementation and 
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computation expenses. Since, any complicated control law leads to an impractical global one, 
which reduces the stability and performance robustness for such control. 
 
Linear quadratic regulator (LQR) is the most common technique applied to structural acoustic 
systems [2-3]. In LQR, state feedback controller is initially computed assuming that all states 
are measurable. The state feedbacks control gains are computed for specific design 
perspectives such as eigenvalues and/or eigenvectors assignments.  Although the technique 
has the capability to achieve a significant improvement in system behaviour, the resultant 
sophisticated architecture of the controller restricts the usage of such controller for a gain 
scheduling methodology or sensor/actuator optimal placement. In fact, the number of 
measurements is always less than the actual number of states. An estimator is then constructed 
to feed this control law by the estimated states. Such estimator is a dynamic system with the 
same order as the system.  In this case, the control has an inherent dynamics. Most of the 
structural acoustic systems have a massive number of states; the number of states could be 
hundreds or thousands. Consequently, the control law based on LQR with estimator has the 
same order, which is virtually impossible to be employed for gain scheduling. 
 
On the other hand, static output feedback (SOF) control is notable by a simple static 
architecture, while the measured outputs of an array of sensors are passed through a constant 
gain compensator matrix and back into the system as control forces. Computing this constant 
gain compensator matrix is considered as an optimization problem by any arbitrary 
performance index. The theory of an optimal SOF has been firstly presented in Ref [4]. The 
theory aims to optimally tune a static gain matrix to stabilizes the closed-loop system and 
minimize the quadratic performance given by system inputs and measurements as the case of 
LQR. However, unlike the LQR controller, SOF is easy to implement with more suitability 
for gain scheduling application and sensor/actuator placement.  This simplicity brings SOF to 
ahead of line especially for structural systems [1, 5-8], when these systems are described by 
hundreds of states while the number of actuator or sensor no more than ten. For example, if 
the system has an N states vector and an M inputs vector and an P outputs vector, using LQR 
delivers a controller with N x N states and M x P transfer matrix which is computationally 
expensive. Instead, SOF offers the controller as a M x P static matrix.  
 
In this paper, an optimal SOF is offered for damping plates vibration of a plate-cavity-plate 
system. The proposed optimal SOF is compared to LQR as a design base. The comparative 
study is presented in purpose to emphasize the ability of SOF to deliver a reasonable 
behaviour with less computation and more practical implementation. The organization of the 
paper proceeds as follows. In Section 2, modelling of sound transmission through a plate-
cavity-plate system is presented. In Section 3, a brief discussion for both LQR and SOF is 
presented to damp the induced plates vibration due to external pressure excitation of the upper 
plate. The optimization technique of SOF is presented in Section 4 using genetic algorithms 
(GA). In Section 5, SOF is tested for a generic numerical model.  The results are compared 
with LQR control. Finally the conclusions have been made in Section 6. 
 
 
2. Modelling of the Plate-Cavity-Plate Problem 
The system to be modelled is consisting of a rectangular cavity with two flexible plates, one at 
the top of the cavity while the other at the bottom and four other fixed boundaries. 
Piezoelectric (PZT) pair patches are considered to be bonded to the top plate (see Fig.1), and 
each pair is assumed to produce a pure moment actuation when an electric signal is used to 
excite them. The flexible plate is exposed to an external pressure excitation due to a planar 
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wave generated by a sound source assumed to be mounted above the cavity. The inner 
dimensions of the cavity are xcL , ycL  and zcL , in the x , y , and z  directions respectively, 
and the effective dimensions of the plate are xpL  and ypL . As shown in the schematic of the 
plate-cavity-plate system (Fig. 1), two coordinate systems are used to describe the system; the 
first one with the origin at cO is used for the cavity, and the second one with the origin at pO is 
used for the plates. The plate may have larger dimensions than the cavity. The two plates are 
set such that one of them is at the top of the cavity at zcLz = , while the other is at the bottom 
of the cavity at 0=z . Throughout the analysis, the ambient values are indicated with the 
subscript o)( . For convenience, the structural-acoustic system modelling is divided into the 
following subsystems: (i) the plate-cavity-plate system, (ii) the plate-piezo system, and (iii) 
the piezo-plate-cavity-plate system. 
 

 

 
 
 
 

 
(a) (b) 

Figure 1 (a) Schematic of the plate-cavity-plate system used for the analysis 
model, (b) Centres locations of the actuator pairs on the upper plate 

 
 

2.1 The plate-cavity-plate system 
The two governing equations of this system are the conservation of mass equation and the 
conservation of momentum equation. In three-dimensional space, making use of linear 
approximations, the wave equation describing the sound field inside the cavity can be 
obtained as: 
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where );,,( tzyxP  is the air pressure inside the cavity, ρ  is the medium density and cγ   is 
cavity damping coefficient. The speed of sound in a medium assuming isentropic flow is 
defined as [9] 
 

ρd
dPc =

 
(2)

 
At a rigid boundary, the normal component of the air particle velocity is set to zero, and at a 
flexible boundary, it is set equal to the normal velocity of the flexible plate. Thus, the 
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boundary conditions can be stated as: 
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where );,( tyxw  is the normal displacement of the flexible boundary, and  n  is the direction 
normal to the boundary.  The pressure field inside the cavity can be expressed in the series 
form  
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where ),,( zyxiΦ are used to describe the spatial field and )(tqi are used to describe the 
associated temporal part of the pressure response. The spatial functions )(xiψ , )(yiϕ  and 

)(ziΓ are assumed to be orthogonal. Substituting Eq. (4) into Eq. (1), integrating over the 
volume of the cavity (Galarkin’s approach), and making use of the orthogonality conditions 
and the boundary conditions, the cavity governing equations can be derived to have the 
following form 
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Eq. (5) will be used later with the plate-piezo equations to satisfy the boundary condition at 
the flexible plate.  
 
 

2.2 The piezoelectric actuator-plate system 
The plate–piezo system is treated here as a multi-laminate system that consists of three plies 
in places where the piezo pair patches are bonded to the plate, and as a single ply plate 
otherwise. Making use of the assumptions used in earlier studies [10], the plate displacement 
can be described by 
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where h  is the thickness, D  is the plat stiffness, pγ   is the plate damping coefficient, E  is 
the modulus of elasticity, ν  is the Poisson’s ratio, 31d  is the PZT dielectric constant, and iV  is 
the control voltage applied to the thi  PZT patches.  The quantity iχ  is unity where the thi  PZT 
patch pair is present, and zero elsewhere [13]. The plate response is assumed in the series 
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where the )(tiη are temporal functions and the appropriate expressions for the spatial 
functions )()( yandx ii βα  are obtained from the work of [11]. The upper plate only has the 
PZT patches and the incident pressure waves are excite it. Hence, the equations governing the 
two plates can be written as 
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where the subscript U)(  and L)(  are used to refer to the upper and lower plates respectively. 
 
 

2.3 The coupled piezo-plate-cavity-plate system 
In this section, the plate-cavity system is coupled with the piezoelectric actuator-plate system 
to obtain the governing equations for the coupled cavity subsystem. The boundary conditions 
at the flexible boundary are recalled from Eq. (3) 
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Making use of this boundary condition along with Eqs. (4) and (8), and making use of the 
orthogonality property, we get the following equation: 
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After substituting Eq. (11) into Eqs. (5) and (6), we get the equation governing a pressure-
field mode as follows: 
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The last terms on the left-hand side of Eq. (13) represent the structural-acoustic coupling in 
the system. At this stage, it is assumed that the spatial functions in Eq. (4) are given by rigid-
body cavity modes; that is [10, 12-13] 
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where the indices iii nandml ,,  are associated with the spatial functions of the thi rigid cavity 
mode, in the zandyx ,, directions, respectively. The constants iA  are chosen to satisfy the 
orthogonality conditions. Using Eq. (14) the spatial function )(zjΓ  at each plate will be 
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Making use of Eq. (15) in Eq. (13), it is found that 
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The equations governing the plate modal amplitudes are obtained by making use of Eqs. (4), 
(7), (8) and (14). After making use of the orthogonality properties and boundary conditions, 
the equations governing the modal amplitudes of the plates are obtained as: 
 

[ ]

( )
∑ ∫

∫∑

∑

=

∞

=

∞

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∇

−

+
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
=

++++

k

i
i

A
piiU

pztpztp
jj

t
i

A
p

s
Uijj

i
i

pp

zc

i
j

i
UiijijUjjjUjpUjpp

tVAyx
dEhh

tpAyxptqByBx
L

A

tIyIxDtIyIxDtth

p

p

ijij

1

231

1

)()(

1

)(d),(
)1(

)(d),()()1(

)(2)()()(

χ
ν

βα

βα

ηηηγηρ &&&

 (17a)

 



Paper: ASAT-13-CT-22
 
 

 7/17 

[ ]

∑

∑
∞

=

∞

=

=

++++

1

)()(

1

)(

)(2)()()(

i
i

pp

zc

i

i
LiijijLjjjLjpLjpp

tqByBx
L
A

tIyIxDtIyIxDtth

ijij

ηηηγηρ &&&

 (17b)

 
where the different spatial integrals are given by 
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In Eq. (17), the incident pressure loading can be expressed as the product of spatial and time 
domain functions; that is, 
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Now, Eqs. (16) and (17) can be represented in matrix from, after truncating the infinite 
number of modes to the first M  plate modes and N  acoustic modes, as follows: 
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In these equations { } MM
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For simplicity, the damping coefficients will be assumed constant during the numerical 
analysis ( 002.0== pc γγ ). The matrices pccp KandM  describe the structural-acoustic 
coupling, while the matrices ppK represent the plate stiffness matrix. Eqs. (20) represent the 
time-domain model developed for the system shown in Fig. 1. After determining the modal 
amplitudes from these equations, the plate displacements );,( tyxw  and the pressure fields 
inside the cavity );,,( tzyxp can be obtained from the following relations: 
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3. Control Approach 
 

3.1 LQR-State Estimator Design 
The state space representation for the plate-cavity-plate system given in Section 2 is described 
as: 
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where xNx ℜ∈ is the state vector, xx NNA ×ℜ∈  is the system state dynamic matrix, uNu ℜ∈ is the 
actuator command vector, ux NN

uB ×ℜ∈  is the control actuation matrix, dNd ℜ∈ is the 
disturbance vector, dx NN

dB ×ℜ∈  is the disturbance actuation matrix, yNy ℜ∈ is the sensor 
measurement vector, xy NNC ×ℜ∈ is the matrix relating the sensor measurement vector to the 
state vector. For state feedback control law, the control actuator vector u is linearly related to 
the state vector x by 
 

( ) ( )txKtu x−=  (25)
 
where xu NN

xK ×ℜ∈ is the control gain matrix. The control gain matrix Kx is computed based on 
specific design criteria such as pole placement or assigned eigenvector. Also, optimization is 
applied to compute the matrix Kx to minimize a cost function J(t,x,u). One of the most widely 
used and widely used method to design a full state feedback control for linear systems is the 
optimal LQR. Thus, the cost function J(t,x,u) is defined as  
 

( ) ( ) ( ) ( ) ( )[ ] τττττ duRuxQxu,x,tJ
0

TT∫
∞

+=  (26)

 
where xx NNQ ×ℜ∈  is a symmetric positive semi-definite state weighting matrix, and uu NNR ×ℜ∈  
is a symmetric positive definite control effort weighting. Since measuring the states is not 
possible, so estimation is the choice. If the estimate of the state vector is denoted by x̂ , then 
the control law in equation (25) becomes 
 

( ) ( )tx̂Ktu x−=  (27)
 
One method of estimating the state is to construct a full-order model of the plant dynamics as 
 

( ) ( ) ( ) ( ) ( ))ˆ(ˆˆ txCtyLtuBtxAtx −++=&  (28)
 
where yx NNL ×ℜ∈  is the estimator gain matrix to stabilize the dynamics of  estimating error 
defined as  
 

( ) ( )te)LCA(te −=&  (29)
 
To success the estimation process, the estimation dynamics in equation (29) should be faster 
than the expected dynamics of the system. Combining both system and estimator dynamics, 
the overall system dynamics in the state form is  
 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⎥

⎦

⎤
⎢
⎣

⎡
e
x

LCA
BKBKA

e
x

0&

&

 
(30)
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3.2 Static Output Feedback Control 
Unlike the LQR controller, SOF assumes the control law as linear combination between the 
measurement vector y and actuation vector u as 
 

( ) ( )tyKtu y−=  (31)
 
where yu NN

yK ×ℜ∈  is the control gain matrix for SOF. This matrix is computed to stabilize the 
closed-loop system and minimize the quadratic performance J(t,x,u). By substation from (31) 
to (26), the cost function J(t,x,u) is then defined as 

( ) ( )[ ] ( ) τττ dxCKRKCQxu,x,tJ
0

y
T
y

TT∫
∞

+=  (32)

 
The cost function ( )u,x,tJ  is bounded, if the system is stable with positive definite matrix Q. 
The first order condition for this optimization problem is [1, 7]  
 

( ) 1TTT
u

1
y CPCSPCBRK

−−−=  (33)
 
The matrices xx NNP ×ℜ∈  and xx NNR ×ℜ∈  are given by a set of coupled nonlinear matrix 
equations in terms of system parameters and Ky. Thus, the calculation of Ky involves the 
solution of three equations including the equation (33) for Ky and the Lyapunov equations 
given as [1, 7] 
 

0BB)CKBA(PP)CKBA( T
dd

T
yuyu =+−+−  (34)

0CRKKCQ)CKBA(SS)CKBA( y
T
y

T
yu

T
yu =++−+−  (35)

 
Equations (33)-(35) are set of 3xNxN nonlinear equations. Solving this set of equations 
requires a special tool. Many iterative algorithms have been proposed to solve these set of 
equations. A detailed survey of the various computational efforts to solve optimal SOF 
problem is presented in [14]. Most of these algorithms incline for a local minimum points or 
being non-convergent. For that reason, in this paper genetic algorithm (GA) is proposed as a 
global search technique to solve equations (33)-(35).  
 
 
4. Optimal SOF Search Using Genetic Algorithms 
 
Genetic algorithm (GA) is now considered as one of the most popular optimization and search 
techniques. The first obvious application for the algorithm was traced back to 1962, when 
Holland introduced the algorithm in his work studying adaptive system [15]. The algorithm 
has then received an enormous exploration by Goldberg [16]. The main advantages of GA are 
its global optimization performance and the ease of distributing its calculations among several 
processors or computers as it operates on population of solutions that can be evaluated 
concurrently. It is a very simple method, generally applicable, not inclined to local 
optimization problems that arise in a multimodal search space, and no needs for special 
mathematical treatment. Moreover the algorithm is more applicable for the discontinuous 
problem, as in the case of the present study, unlike the conventional gradient-based searching 
algorithms. 
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Basically, genetic algorithm works based on the mechanism of natural selection and 
evolutionary genetics. The algorithm starts by coding the variables to binary strings 
(chromosomes). Every chromosome has n genes. The gene is a binary bit by value zero or 
one. Three main operations control the procedure of the GA: reproduction, crossover, and 
mutation. Reproduction is processing to select the parent form a generation. The process is 
based on survival of the fittest (highest performance index). In this way, the reproduction 
process guides the search for best individuals (high performance index). After the individuals 
are selected, crossover process is then used to swap between two chromosomes by specific 
probabilistic decision. The crossover process generates offspring carrying mixed information 
from swapped parents (chromosomes). Mutation is the mechanism to prevent the algorithm 
from local optimal points by adding some degree of randomness. The process is performed by 
alternation of the gene from zero to one or from one to zero with the mutation point 
determined uniformly at random. The mutation rate should be consider carefully, since higher 
mutation rate means more number of generations are required for algorithm convergence and 
low mutation rate may lead to converge for local minimum. The algorithm maintains a 
constant size of generation by select the fittest chromosomes from parents and offsprings. The 
algorithm iteratively operates to converge for schema matches by some tolerance. Roughly, a 
genetic algorithm works as shown in Table (1). Further description of genetic algorithms can 
be found in Goldberg [16]. 
 

Table 1. The pseudo-code of Genetic Algorithm 
 

BEGIN GA  
Make initial population at random.  
WHILE NOT (stopping condition) DO  
              BEGIN  
                  Select parents from the population.  
                   Produce offspring from the selected  
                  parents   (crossover).  
                  Mutate the individuals.  
                  Extend the population adding the offspring to it.  
                  Reduce the extended population.  
               END  
           Output the best individual found.  
END GA 

 
The algorithm listed in Table (1) is now used to solve equations (33)-(35). The step of this 
optimization is summarized as 

• Generate an initial guessing of Ky. For efficiency of the algorithm, the steady gains of 
the transfer matrix of LQR [ ]yu0s

Glim
→

can be used as an initial value. The initial value 

should guarantees that the system is stable or all the poles of [A-BuKyC] are in the left 
hand side. If the system is unstable for the generated Ky. The cost function is set to be 
zero. 

• Compute P from equation (34) and S from equation (35).  Such solution requires 
rewritten the two equations as a set of linear equation of both Sij and Pij. 

• Compute the estimated yK~ from equation (33). The cost function is then defined as 
 

( ) ( )∑∑
= =

−+

=
y uN

1i

N

1j
2yy j,iK~j,iK

1F

ε

 
(36)

 
where ε  is an arbitrarily small value prevents generating any singularity.  The pseudo code in 
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Table 1 keep iterates to search for maximum F or minimum value between the estimated and 
actual matrix Ky. 
 
 
5. Simulation Results 
 

5.1 Structure-acoustic model 
Here, the numerical simulations obtained from the analytical model developed are presented. 
The numerical values used are shown in Table (2).Table 2 The numerical values used during 
simulation 
 

Plate Cavity PZT Patch 

xpL  = 24 inch xcL  = 24 inch xpztL  = 2 inch 

ypL  = 18 inch ycL  = 18 inch ypztL  = 1 inch 

ph  = 0.0625 inch zcL  = 20 inch pzth  = 0.0125 inch 

pE  = 7.1 x 1010 N/m2 oc  = 343 m/sec pztE  =  10.5 x 106 N/m2 

pρ  = 2700 kg/m3 oρ  = 1.21 kg/m3 31d  = -247 x 10-12 m/V 
ν  = 0.3     ν  = 0.3  

 
The natural frequencies of the clamped plate have been calculated by using the following 
approximate formula, which is based on an energy (Raleigh) technique [11]: 
 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++= 224

4

4

4 2
2 ypxp

ji

yp

j

xp

i

pp
ij LL

HH
L
G

L
G

h
Df

ρ
π

 
(37)

 
where the dimensionless parameters G and H are given in [11]. These parameters are 
functions of the indices i  (in the x direction) and j  (in the y direction) and the boundary 
conditions for the plate. The cavity natural frequencies are calculated through the following 
equation [9]: 
 

,....2,1,0k,....2,1,0j,....2,1,0i;     
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n
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m
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⎛
+⎟⎟

⎠

⎞
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⎝

⎛
=

πππ
π

 (38)

 
where the indices kji nandml ,, are associated with the spatial functions of the thi  rigid cavity 
mode in the zandyx ,, directions respectively. Using Eqs. (4) and (8), one can easily obtain 
the modes shapes for the plate and the cavity (see Fig. 2). The first few natural frequencies of 
the uncoupled and coupled system are tabulated as shown in Table (3). 
 
Due to the complexity of the structural-acoustic coupling of this system, the effect of the 
stiffness coupling matrix pcK  and the inertia coupling matrix cpM  on the coupled natural 
frequencies cannot be easily realized. In Table (2), the entries of cpM  increase the values of 
the first few acoustic resonance frequencies above their uncoupled values, hence, contributing 
a “mass reduction” effect. On the other hand, the entries of pcK  decrease the values of the 
low (vibration) resonance frequencies below their uncoupled values, hence, contributing a 
“stiffness reduction” effect. 
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Table 3 The undamped natural frequencies (Hz) of the uncoupled 
and coupled system 

 
Uncoupled System Coupled system 

Cavity Plate 

Mode Closed Form 
Formula Mode Approximate 

Formula 
Plates-Cavity-Plate System 

1 0 0 281.33 1 1 44.452 Plates 42.75 43.85 
0 0 1 337.60 2 1 76.017 Plates 67.447 68.407 
0 1 0 375.11 3 1 127.66 Plates 132.98 134.11 
1 0 1 439.45 2 2 132.78 Plates 180.24 181.31 
1 1 0 468.89 3 2 181.70 Cavity 285.41 

 
 

Plate Mode (1,1) 

 

Plate Mode (2,1) 

 
Plate Mode (1,2) 

 

Plate Mode (3,1) 

 
Cavity Mode (1,0,0) 

 

Cavity Mode (0,0,1) 

 
Cavity Mode (0,1,0) 

 

Cavity Mode (1,0,1) 

 
Figure 2 Plate and cavity mode shape  
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5.2 Control scheme 
For the uncompensated and compensated systems, we will use 17 plate vibration modes (M) 
and 3 cavity acoustic modes (N). The structure acoustic model outputs are nine displacements 
at the upper plate, nine displacements at the lower plates, and three pressures inside the 
cavity. Nine control actuators are assumed to be at the upper plate. The actuators and 
displacements positions are distributed in equal areas over the plates while the pressures are 
measured inside the cavity at (12”, 9”, 4.5”), (1.25”, 4”, 9.25”), and (22.75”, 1.75”, 1.25”) in x, y and 
z directions respectively. 
 
GA propagates based on the algorithm previously listed in sec. 4. The mutation rate is 10%. 
Each generation has a fixed population size 100 or no generation overlap. The algorithm is 
convergent for all techniques with 1000 generations. The resultant optimal controller gains in 
based on GA are given as  
 

=
1000
K T

 

0.0794 2.1673 -0.6508 1.9377 3.4689 0.7875 1.5617 -0.0916 -3.4176 

-0.3919 1.9768 0.6801 3.9719 -3.3297 3.7009 -1.2979 -2.873 4.2381 

-1.6105 2.5678 -1.9866 -1.2247 1.3101 3.4713 1.2833 -2.895 1.6081 

-2.1648 -1.0049 -3.6032 3.8132 0.2503 0.8901 -2.6947 3.3785 3.1538 

-0.0305 1.5006 1.105 -1.6422 -2.7485 -4.6117 3.3297 -2.2503 -3.2491 

0.8852 3.7179 0.9316 -1.7717 1.652 -3.6252 3.1221 -4.8022 1.4371 

-2.243 -1.5324 1.5543 0.7387 2.3211 1.2735 -3.3541 1.0488 -2.6386 

3.1197 -4.2943 1.906 1.42 -3.8596 2.7021 -1.044 1.7326 4.663 

-4.6044 -2.7143 -0.2405 -3.9328 -2.5263 2.8828 -2.9438 -2.2723 1.8181 

0.3114 -0.0403 -0.0794 -0.0745 0.1624 -0.0183 -0.0549 -0.0867 -0.0183 

0.2601 0.1697 0.2576 -0.0769 0.1282 -0.0427 0.094 0.0085 0.1502 

-0.0037 -0.0012 -0.0012 0.0012 -0.0037 -0.0037 -0.0012 -0.0012 -0.0012 

-2.4505 -4.1062 3.8327 4.4212 -1.0879 -1.5372 0.8779 -4.4188 1.2662 

-4.011 0.3919 -4.768 4.221 -4.0085 0.9512 -1.8596 -0.2454 1.5372 

-4.2063 3.3394 -0.3114 2.9194 4.1209 -2.2112 -0.0354 1.2686 -3.1148 

-4.2234 4.7778 -3.1319 3.4957 2.3724 1.293 1.7766 -2.9609 3.5446 

-1.3907 -4.0037 3.8205 2.0085 1.1441 0.2137 2.8462 4.917 4.0061 

-3.0513 -1.3053 3.6129 3.5641 -4.6239 0.536 1.1856 3.4029 -1.2833 

1.696 2.1331 -2.348 -1.5055 -0.7778 3.0195 -2.8901 -3.989 -0.8828 

-4.2991 0.3993 3.2662 0.917 1.1954 -4.8755 -3.5763 3.1661 2.4872 

-1.569 2.4335 4.0818 -3.4176 -1.5201 -0.3382 -0.7827 3.8376 4.9145  

(39)

 
In equation (39), the controller at the operating condition listed in Table (2) is given. Such 
control is a static one. At different operating conditions, other controller matrices could be 
computed following the same algorithm. The global controller is generated by tabulating the 
local controller with these flight conditions, while interpolation is employed to switch in 
between. On the other hand, the LQR delivers a controller with the same size; however each 
element is a transfer function of order 75th. Such controller is computationally inefficient and 
virtually impossible to be applied for gain scheduling approach. In fact, LQR provides better 
performance than SOF, but the performance of the SOF still has an acceptable performance.  
 
Using the previous analysis, numerical simulation is applied to the system. The objective in 
the simulation is to attenuate the vibration for the upper and lower plates. Figs. 3-4 illustrate 
the resulting pressure response for damped sinusoidal pressure input. It is observed that the 
maximum amplitude and the settling time are highly reduced and the response can be tuned to 
a certain values by adjusting the parameters used in the control model. 
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Figure 3 Uncompensated and compensated time responses due 

to impulse pressure input for the upper plate 
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Figure 4 Uncompensated and compensated time responses due 

to impulse pressure input for the lower plate 



Paper: ASAT-13-CT-22
 
 

 16/17 

6. Conclusions 
In this work, the development of a static output feedback controller for structure-acoustics 
coupled based on genetic-optimization is studied. Modelling of sound transmission through a 
plate-cavity-plate system is presented. The proposed controller is used in vibration damping 
of the plates. In the control scheme, the procedure offers a controller for practical utilization. 
The technique was successfully applied to one operating point. The proposed controller is a 
static matrix with more applicability to be scheduled. This information is unobtainable from 
other control methods such as a linear quadratic regulator.  The piecewise interpolated could 
be used to extend across the flight envelope. Also, the performance of the controller is 
compared by the linear quadratic regulator. Based on the numerical simulations, the LQR 
technique has the ability to damp the vibration more than the proposed static output feedback. 
Such results were predicted since LQR assumes more available information than the SOF. 
Although the linear quadratic regulator shows better performance, the static feedback offer 
more practical controller. The controller is a trade-off between feasibility and performance. 
 
 
References 
[1] Mayuresh P., and Dewey H., “Output Feedback Control of the Nonlinear Aeroelastic 

Response of a Slender Wing” Journal of Guidance, Control and Dynamics, Vol. 25, No. 
2, Mar.-Apr. 2002, pp. 302 – 30. 

[2] Gharib M. and Tawfik M., “Active Control OF Interior Noise in A Rectangular Cavity 
with Two Flexible Plates”, 12th International Conference on Aerospace Sciences & 
Aviation Technology, ASAT-12, Cairo, Egypt, 29-31 May 2007. 

[3] Preumont A., and Seto K., Active control of structures, Wiley, 2008. 
[4] Smith, D., Clark, L., Duke, Smith, “Optimal Transducer Placement for Output Feedback 

Control of Broadband Structural Acoustic Radiation,” AIAA-1997-1316. 
[5] Levine, W. S. and Athans, M., “On the Determination of the Optimal Constant Output 

Feedback Gains for Linear Multivariable Systems,” IEEE Transactions on Automatic 
Control  , Vol. AC-15, No. 1, Feb. 1970, pp. 44 – 48. 

[6] Waszak, M. R. and Srinathkumar, S., “Flutter Suppression for the Active Flexible 
Wing: A Classical Design,” Journal of Aircraft, Vol. 32, No. 1, Jan. – Feb. 1995, pp. 61 
– 67. 

[7] Wouter P., Oliver N., and Stephen J., “Centralized and decentralized control of 
structural vibration and sound radiation” Journal of the Acoustical Society of America, 
119, (3), 1487-1495. March 2006. 

[8] Yuan, X., Caraballo, P.,  Yan1, H., Ozbay, A.,  Serrani, J., DeBonis, H., and Myatt, M., 
“Reduced-order Model-based Feedback Controller Design for Subsonic Cavity Flows,” 
43rd AIAA Aerospace Sciences Meeting and Exhibit, 10 - 13 January 2005, Reno, 
Nevada. 

[9] Kinsler L. E., Frey A. R., Coppens A. B., and Sanders J. V., Fundamentals of Acoustics, 
Fourth Edition, John Wiley and Sons, Inc., New York, (2000). 

[10] Balachandran B. and Sampath A. and Park J, “Active control of interior noise in a three-
dimensional enclosure”, Smart Materials and Structures 5, 89-97 (1996). 

[11] Blevins J., Formulas for Natural Frequency and Mode Shapes, Van Nostrand Reinhold 
Company, (1978). 

[12] Kuttruff H., Room Acoustics, 2nd Edition, Spon Press, New York, 1981. 
[13] Moustafa Al-Bassyiouni and Balachandran B., “Sound transmission through a flexible 

plate into an enclosure: structural-acoustic model”, Journal of Sound and Vibration 284, 
467-486 (2005). 

 



Paper: ASAT-13-CT-22
 
 

 17/17 

 
[14] Makila, P. M. and Toivonen, H. T., “Computational Methods for Parametric LQ 

Problems – A Survey,” IEEE Transactions on Automatic Control, Vol. AC-32, No. 8, 
August 1987, pp. 658 – 671. 

[15] Holland J,” Adaptation in Natural and Artificial Systems,” The University of Michigan 
Press, 1975. 

[16] Goldberg, David E., “The Design of Innovation: Lessons from and for Competent 
Genetic Algorithms “, Boston, MA: Kluwer Academic Publishers, 2002. 

 
 


