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Abstract: This paper proposes designing an optimal static output feedback controller for a
structural-acoustics coupled system as efficient control architecture. Modelling of sound
transmission through a plate-cavity-plate system is presented. In this coupled structural
acoustic system, an approximate series solution is assumed for the displacements of the plates
and the pressure inside the cavity. The solution of the coupled system is obtained using
Galarkin’s method. The system to be modeled is consisting of a rectangular cavity with two
flexible plates, one at the top of the cavity while the other at the bottom and four other fixed
boundaries. Piezoelectric pair patches are considered to be bonded to the top plate, and each
pair is assumed to produce a pure moment actuation. The top plate is exposed to an external
pressure excitation due to a planar wave generated by a sound source mounted above the
cavity. Displacements at the mid points are calculated for the upper and lower plates. In the
control scheme, the controller gains have been optimally tuned using genetic algorithms. The
proposed architecture is compared to the linear quadratic Gaussian state feedback controller.
The two controllers are compared for the time responses. The proposed controller shows a
superior performance with simple implementation requirements.
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1. Introduction

The characteristics of structure-acoustic systems for flight applications have a significant
dependency on flight conditions over the entire flight envelope. These flight conditions could
be defined in terms of flight speed and altitude. Designing a control, which has the capability
to keep the system with acceptable behaviour regarding any change in the operating
conditions, is considered as a challenging task. Gain scheduling has been effectively applied
to similar control problems such as stability augmentation system (SAS) and control
augmentation system (CAS) as well as it has been used for other structural applications [1].
The conceptual framework of gain schedule starts by breaking down the operating domain
(flight envelopes) to a set of points. Each point has its own characteristics as functions of the
flight conditions. A controller is designed for each point individually. These local controllers
are scheduled to build a global one, when interpolation is employed to switch in between. The
simplicity of the local control law should be sought in terms of implementation and
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computation expenses. Since, any complicated control law leads to an impractical global one,
which reduces the stability and performance robustness for such control.

Linear quadratic regulator (LQR) is the most common technique applied to structural acoustic
systems [2-3]. In LQR, state feedback controller is initially computed assuming that all states
are measurable. The state feedbacks control gains are computed for specific design
perspectives such as eigenvalues and/or eigenvectors assignments. Although the technique
has the capability to achieve a significant improvement in system behaviour, the resultant
sophisticated architecture of the controller restricts the usage of such controller for a gain
scheduling methodology or sensor/actuator optimal placement. In fact, the number of
measurements is always less than the actual number of states. An estimator is then constructed
to feed this control law by the estimated states. Such estimator is a dynamic system with the
same order as the system. In this case, the control has an inherent dynamics. Most of the
structural acoustic systems have a massive number of states; the number of states could be
hundreds or thousands. Consequently, the control law based on LQR with estimator has the
same order, which is virtually impossible to be employed for gain scheduling.

On the other hand, static output feedback (SOF) control is notable by a simple static
architecture, while the measured outputs of an array of sensors are passed through a constant
gain compensator matrix and back into the system as control forces. Computing this constant
gain compensator matrix is considered as an optimization problem by any arbitrary
performance index. The theory of an optimal SOF has been firstly presented in Ref [4]. The
theory aims to optimally tune a static gain matrix to stabilizes the closed-loop system and
minimize the quadratic performance given by system inputs and measurements as the case of
LQR. However, unlike the LQR controller, SOF is easy to implement with more suitability
for gain scheduling application and sensor/actuator placement. This simplicity brings SOF to
ahead of line especially for structural systems [1, 5-8], when these systems are described by
hundreds of states while the number of actuator or sensor no more than ten. For example, if
the system has an N states vector and an M inputs vector and an P outputs vector, using LQR
delivers a controller with N x N states and M x P transfer matrix which is computationally
expensive. Instead, SOF offers the controller as a M x P static matrix.

In this paper, an optimal SOF is offered for damping plates vibration of a plate-cavity-plate
system. The proposed optimal SOF is compared to LQR as a design base. The comparative
study is presented in purpose to emphasize the ability of SOF to deliver a reasonable
behaviour with less computation and more practical implementation. The organization of the
paper proceeds as follows. In Section 2, modelling of sound transmission through a plate-
cavity-plate system is presented. In Section 3, a brief discussion for both LQR and SOF is
presented to damp the induced plates vibration due to external pressure excitation of the upper
plate. The optimization technique of SOF is presented in Section 4 using genetic algorithms
(GA). In Section 5, SOF is tested for a generic numerical model. The results are compared
with LQR control. Finally the conclusions have been made in Section 6.

2. Modelling of the Plate-Cavity-Plate Problem

The system to be modelled is consisting of a rectangular cavity with two flexible plates, one at
the top of the cavity while the other at the bottom and four other fixed boundaries.
Piezoelectric (PZT) pair patches are considered to be bonded to the top plate (see Fig.1), and
each pair is assumed to produce a pure moment actuation when an electric signal is used to
excite them. The flexible plate is exposed to an external pressure excitation due to a planar
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wave generated by a sound source assumed to be mounted above the cavity. The inner
dimensions of the cavity are L ., L, and L,, in the x, y, and z directions respectively,

xc?> —yc 2C *
and the effective dimensions of the plate are L,, and L . As shown in the schematic of the

plate-cavity-plate system (Fig. 1), two coordinate systems are used to describe the system; the
first one with the origin atQ, is used for the cavity, and the second one with the origin at O is

used for the plates. The plate may have larger dimensions than the cavity. The two plates are
set such that one of them is at the top of the cavity atz =L, , while the other is at the bottom

c ’
of the cavity atz=0. Throughout the analysis, the ambient values are indicated with the
subscript( ),. For convenience, the structural-acoustic system modelling is divided into the
following subsystems: (i) the plate-cavity-plate system, (ii) the plate-piezo system, and (iii)
the piezo-plate-cavity-plate system.

ACOUSTIC SOURCE

Sy
PZT PATCHES - L 5 5 5
&7 77 S
z
e
= olp I
(b)

Figure 1 (a) Schematic of the plate-cavity-plate system used for the analysis
model, (b) Centres locations of the actuator pairs on the upper plate

2.1 The plate-cavity-plate system
The two governing equations of this system are the conservation of mass equation and the
conservation of momentum equation. In three-dimensional space, making use of linear
approximations, the wave equation describing the sound field inside the cavity can be
obtained as:

P 18P

vipyy S 19T
7/C at COZ atZ (1)

where P(X,Y,z;t) is the air pressure inside the cavity, p is the medium density and y, is
cavity damping coefficient. The speed of sound in a medium assuming isentropic flow is

defined as [9]
dpP
c= | 2
ip ()

At a rigid boundary, the normal component of the air particle velocity is set to zero, and at a
flexible boundary, it is set equal to the normal velocity of the flexible plate. Thus, the
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boundary conditions can be stated as:

oP 062w at rigid boundary

E P at flexible boundary

€)

where W(X,y;t) is the normal displacement of the flexible boundary, and n is the direction

normal to the boundary. The pressure field inside the cavity can be expressed in the series
form

P(XY.2:1) = Y@, (%.1.2) ;1) = Y, (0 ¢, (1) [ (D) 6, (V) @)

where ®@;(X,Y,z)are used to describe the spatial field and ¢, (t) are used to describe the
associated temporal part of the pressure response. The spatial functionsy,(X),,(y) and
I';(z) are assumed to be orthogonal. Substituting Eq. (4) into Eq. (1), integrating over the

volume of the cavity (Galarkin’s approach), and making use of the orthogonality conditions
and the boundary conditions, the cavity governing equations can be derived to have the
following form

1 &%*a _ —dh
—%+7 G, kiz—(l“idd—Z] q =0 (5)

c? at> ‘Cat

0

L 2 L 2 L 2
¢ (dy, = (do. = (dT,
k2 _[j [d_'/)’(j dx + j (ﬁ] dy + j (Ej dz] (6)

Eq. (5) will be used later with the plate-piezo equations to satisfy the boundary condition at
the flexible plate.

where

2.2 The piezoelectric actuator-plate system
The plate—piezo system is treated here as a multi-laminate system that consists of three plies
in places where the piezo pair patches are bonded to the plate, and as a single ply plate
otherwise. Making use of the assumptions used in earlier studies [10], the plate displacement
can be described by

(hp - hpzt) Epzt d31
(1-v)

DV*W -+ p, hy W+ W= Py = P = 2 W AAU) (7)

Kk
i=1
where h is the thickness, D is the plat stiffness, y, is the plate damping coefficient, E is
the modulus of elasticity, v is the Poisson’s ratio, d,, is the PZT dielectric constant, and V, is

the control voltage applied to the i"" PZT patches. The quantity y, is unity where the i" PZT
patch pair is present, and zero elsewhere [13]. The plate response is assumed in the series
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WO Y3t = X () A, 7, () ®)

where the 7,(t)are temporal functions and the appropriate expressions for the spatial
functions ¢;(x) and S.(y) are obtained from the work of [11]. The upper plate only has the

PZT patches and the incident pressure waves are excite it. Hence, the equations governing the
two plates can be written as

< (h — d

DV*w, +p, hy Wy + 7, Wy = Py = Py; — D, — (;’“ )’m Ly, V(1) (9a)
i=1 -
DV*w,_ +p, h) Wi ++y, W, =p, (9b)

where the subscript ( ), and ( ), are used to refer to the upper and lower plates respectively.

2.3 The coupled piezo-plate-cavity-plate system
In this section, the plate-cavity system is coupled with the piezoelectric actuator-plate system
to obtain the governing equations for the coupled cavity subsystem. The boundary conditions
at the flexible boundary are recalled from Eq. (3)

oP o*w,
wl T (10a)
oP 0w,
2., T (10b)

Making use of this boundary condition along with Egs. (4) and (8), and making use of the
orthogonality property, we get the following equation:

a_zj q;t)= pOZBX“) Y5, () (11a)
8_zj a; (t)-—poZBx“) Y7 () (11b)
where
Bx” = j o, (X)w; (X)dx (12a)
vy = j B ()@ (y)dy (12b)

After substituting Eq. (11) into Egs. (5) and (6), we get the equation governing a pressure-
field mode as follows:
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40+ 6,0+k g0~ [ p.Y BB “’]( | k-] o) a3

The last terms on the left-hand side of Eq. (13) represent the structural-acoustic coupling in
the system. At this stage, it is assumed that the spatial functions in Eq. (4) are given by rigid-
body cavity modes; that is [10, 12-13]

: I, 7 X A m zy i n 7z
v, (0 = \/%cos( = J 7=~ cos( » J N)- ﬁ—mcos( - J (14)

where the indices |, m, and n, are associated with the spatial functions of the i"rigid cavity

mode, in the X, Yy, and zdirections, respectively. The constants A are chosen to satisfy the
orthogonality conditions. Using Eq. (14) the spatial function I';(z) at each plate will be

(Fi(Z)LL = (_1?_] At upper plate
(F ( )Xat plate - A (15)
(Fj(z)1 .= j at lower plate
2= \/L_zc

Making use of Eq. (15) in Eq. (13), it is found that

1. _ I’z miz® nix’
C_2 Qj(t)+7cqj(t)+ E + 12 + 12 qct)

Z

[( \/IL z BB (c)}]U (t) — (\/L_ poZ BB (C)}?L =0

The equations governing the plate modal amplitudes are obtained by making use of Egs. (4),
(7), (8) and (14). After making use of the orthogonality properties and boundary conditions,
the equations governing the modal amplitudes of the plates are obtained as:

(16)

PN Ty (O + 7,775 (1) + D [IXj + ij']77Uj (t)+2D; IX;; 1y;77: ()

o iA
:;( 1)L Bx(p)By(mq(t) [jajﬂjpﬁi(X,y)dAp}pi‘(t) (172)

zC p

k h, +h, d
2[_[0!],3( + ) pzt 931 ZZU(Xi’yi)dAp]Vi(t)

i=l | A (1 - V)
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poh i, (0 + 7,7, ©+D[Ix, + 1y, |7, ©+2D3 Ix, ly,7, ()

i (17b)
-3 ﬁ_ Bx('By'” g, (1
where the different spatial integrals are given by
B, = j v (et (X)dx i = j (V) ()dy
x, =Ta,-(x)%dx jﬂ( ) ﬂ W gy (18)
I, = fd ;f") () ly, = chd b '(y)ﬁ (y)dy

In Eq. (17), the incident pressure loading can be expressed as the product of spatial and time
domain functions; that is,

Py (%, Y1) = 7 (X, y) py (1) (19)

Now, Egs. (16) and (17) can be represented in matrix from, after truncating the infinite
number of modes to the first M plate modes and N acoustic modes, as follows:

M5 0 0 |7, D, 0 0 (7 Ko Ki 0 |(my F, R/
U L e . h
M, M, Mg 4+ 0 D, O0]qg|+ 0 K, 0 qj=]0 0 [ v

0 0 ML i 0 0 D 0 K. Kgln 0 0

pp

Koy feR"™M, M, K leR™™, M, e "™, K, eR"™,

F, e RM! and F, € ™. The different quantities in the above equation are given by:

In these equations {M op > e

MY =M. =diag |p,h, | (21a)
M, =M =diag L%} (21b)
-1
Mgp:p{%axgsy@] o1
Mg =—p, A Bx'“ By (21d)
\/L_ZC ji ji
D:Jp - Dll;p = diag Lpr (21e)
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D,. = diag |7, | 21f)
KY =K. =2DIx, ly, |+ D diag|Ix, +1y, | 2lg)
N L e
K = K =diag B + E + E (21h)
DA ,
Ko =| —- - JBX(,-ip)By(jip) 21i)
-
A BXE"’BVE‘”} 21j)
Fo=| - [a B o dAp] (21K)
AP
I (h, +h,,)E,.d
FY =| - J.aiIBi p (lp_tv)pt 31 Vi, (xj,yj)dAp] (210)
AP

For simplicity, the damping coefficients will be assumed constant during the numerical
analysis (7, =y, =0.002). The matrices M and K. describe the structural-acoustic
coupling, while the matrices K  represent the plate stiffness matrix. Egs. (20) represent the

time-domain model developed for the system shown in Fig. 1. After determining the modal
amplitudes from these equations, the plate displacements W(X,y;t) and the pressure fields

inside the cavity p(X,Y,z;t)can be obtained from the following relations:

wy (% y;0 ] [C8 (% y) 0 0 7y (1)
p(X,y,z:t) = 0 C®(x,y,2) 0 q(t) (22)
Wi (X, Y;t) 0 0 C" (%) |7 ()
where
Cy" = [ai (X)B; (Y)] (23a)
C” = [y, (0, (VT ()] (23b)
C =[a; (0B (y)] (23¢)

3. Control Approach
3.1 LQR-State Estimator Design

The state space representation for the plate-cavity-plate system given in Section 2 is described
as:
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(24)

where xe®"is the state vector, Ae R""« is the system state dynamic matrix, ue®R™ is the
actuator command vector, B, e R"™™M is the control actuation matrix, de®R™is the

. . . . . N, -
disturbance vector, By e R™M is the disturbance actuation matrix, ye®R ”is the sensor

measurement vector, Ce®'""*is the matrix relating the sensor measurement vector to the
state vector. For state feedback control law, the control actuator vector U is linearly related to
the state vector X by

u(t) =—Kx(t) (25)

where K, e RN is the control gain matrix. The control gain matrix Ky is computed based on

specific design criteria such as pole placement or assigned eigenvector. Also, optimization is
applied to compute the matrix K to minimize a cost function J(t,x,u). One of the most widely
used and widely used method to design a full state feedback control for linear systems is the
optimal LQR. Thus, the cost function J(t,x,u) is defined as

ex)- [ [ ()Qx(e) v ()R uE) Jor (26)

where Q e ®"N« is a symmetric positive semi-definite state weighting matrix, and R e ®NN
is a symmetric positive definite control effort weighting. Since measuring the states is not

possible, so estimation is the choice. If the estimate of the state vector is denoted by X, then
the control law in equation (25) becomes

u(t) =K X(t) 27)

One method of estimating the state is to construct a full-order model of the plant dynamics as
(t)= A X(t)+ B u(t)+L (y(t)-C (1)) (28)

where Le®™™ is the estimator gain matrix to stabilize the dynamics of estimating error
defined as

é(t)=(A-LC)elt) (29)
To success the estimation process, the estimation dynamics in equation (29) should be faster

than the expected dynamics of the system. Combining both system and estimator dynamics,
the overall system dynamics in the state form is

m {A_OBK A?fcm (30)
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3.2 Static Output Feedback Control
Unlike the LQR controller, SOF assumes the control law as linear combination between the
measurement vector y and actuation vector u as

u(t)=-K,y(t) 31

where K, e %Y is the control gain matrix for SOF. This matrix is computed to stabilize the

closed-loop system and minimize the quadratic performance J(t,x,u). By substation from (31)
to (26), the cost function J(t,x,u) is then defined as

0

J(t,x,u):j XT(T)[ Q +C'Ky RCK, ]x(r)dr (32)

0

The cost function J(t,x,u) is bounded, if the system is stable with positive definite matrix Q.
The first order condition for this optimization problem is [1, 7]

K, =—R'BsPCT (cPCT " (33)

The matrices Pe®R" ™ and ReR"™M are given by a set of coupled nonlinear matrix
equations in terms of system parameters and Ky. Thus, the calculation of Ky involves the
solution of three equations including the equation (33) for Ky and the Lyapunov equations
given as [1, 7]

(A-B,K,C)P+P(A-B,K,C)" +ByBj =0 (34)
(A-B,K,C)'S+S(A-B,K,C)+Q+CTKJRK,C=0 (35)

Equations (33)-(35) are set of 3xNxN nonlinear equations. Solving this set of equations
requires a special tool. Many iterative algorithms have been proposed to solve these set of
equations. A detailed survey of the various computational efforts to solve optimal SOF
problem is presented in [14]. Most of these algorithms incline for a local minimum points or
being non-convergent. For that reason, in this paper genetic algorithm (GA) is proposed as a
global search technique to solve equations (33)-(35).

4. Optimal SOF Search Using Genetic Algorithms

Genetic algorithm (GA) is now considered as one of the most popular optimization and search
techniques. The first obvious application for the algorithm was traced back to 1962, when
Holland introduced the algorithm in his work studying adaptive system [15]. The algorithm
has then received an enormous exploration by Goldberg [16]. The main advantages of GA are
its global optimization performance and the ease of distributing its calculations among several
processors or computers as it operates on population of solutions that can be evaluated
concurrently. It is a very simple method, generally applicable, not inclined to local
optimization problems that arise in a multimodal search space, and no needs for special
mathematical treatment. Moreover the algorithm is more applicable for the discontinuous
problem, as in the case of the present study, unlike the conventional gradient-based searching
algorithms.

10/17



Paper: ASAT-13-CT-22

Basically, genetic algorithm works based on the mechanism of natural selection and
evolutionary genetics. The algorithm starts by coding the variables to binary strings
(chromosomes). Every chromosome has n genes. The gene is a binary bit by value zero or
one. Three main operations control the procedure of the GA: reproduction, crossover, and
mutation. Reproduction is processing to select the parent form a generation. The process is
based on survival of the fittest (highest performance index). In this way, the reproduction
process guides the search for best individuals (high performance index). After the individuals
are selected, crossover process is then used to swap between two chromosomes by specific
probabilistic decision. The crossover process generates offspring carrying mixed information
from swapped parents (chromosomes). Mutation is the mechanism to prevent the algorithm
from local optimal points by adding some degree of randomness. The process is performed by
alternation of the gene from zero to one or from one to zero with the mutation point
determined uniformly at random. The mutation rate should be consider carefully, since higher
mutation rate means more number of generations are required for algorithm convergence and
low mutation rate may lead to converge for local minimum. The algorithm maintains a
constant size of generation by select the fittest chromosomes from parents and offsprings. The
algorithm iteratively operates to converge for schema matches by some tolerance. Roughly, a
genetic algorithm works as shown in Table (1). Further description of genetic algorithms can
be found in Goldberg [16].

Table 1. The pseudo-code of Genetic Algorithm

BEGIN GA
Make initial population at random.
WHILE NOT (stopping condition) DO
BEGIN
Select parents from the population.
Produce offspring from the selected
parents (crossover).
Mutate the individuals.
Extend the population adding the offspring to it.
Reduce the extended population.
END
Output the best individual found.
END GA

The algorithm listed in Table (1) is now used to solve equations (33)-(35). The step of this

optimization is summarized as
e Generate an initial guessing of Ky. For efficiency of the algorithm, the steady gains of
the transfer matrix of LQR m[e]g can be used as an initial value. The initial value

should guarantees that the system is stable or all the poles of [A-ByK,C] are in the left
hand side. If the system is unstable for the generated Ky. The cost function is set to be
Zero.

e Compute P from equation (34) and S from equation (35). Such solution requires
rewritten the two equations as a set of linear equation of both S;; and Pj;.

e Compute the estimated Ry from equation (33). The cost function is then defined as

1
Ky (i,0)- Ky (. J) (36)

2

=

B N\/ Nu
£+

i=1 j=1

where ¢ is an arbitrarily small value prevents generating any singularity. The pseudo code in
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Table 1 keep iterates to search for maximum F or minimum value between the estimated and
actual matrix K.

5. Simulation Results

5.1 Structure-acoustic model
Here, the numerical simulations obtained from the analytical model developed are presented.
The numerical values used are shown in Table (2).Table 2 The numerical values used during
simulation

Plate Cavity PZT Patch
L, =24 inch | L, =24 inch Low =2 inch
L, =18 inch L, =18 inch L =1 inch
h, =0.0625 inch | L, =20 inch | h, =00125 inch
E, =71x10" Nm® | ¢, =343 omisec | E, =105x10° Nm?
Py =2700 kgim®* | p, =121 kg/m® | d;, =247x10" mv
% =0.3 v =03

The natural frequencies of the clamped plate have been calculated by using the following
approximate formula, which is based on an energy (Raleigh) technique [11]:

f —£ L G_'A‘+G_T+M 37
L) h |t Lf 0 A2 37
pp p Xp yp Xp —yp

where the dimensionless parameters G and H are given in [11]. These parameters are
functions of the indices i (in the x direction) and  (in the y direction) and the boundary

conditions for the plate. The cavity natural frequencies are calculated through the following
equation [9]:

2 2 2
e =2 ('i”J | Mz +(”i”J i=012,.. j=012,... k=012,.. (38)
27 Lyc I-yc L

where the indices I;, m;, and n, are associated with the spatial functions of the i" rigid cavity

mode in the X, y, and z directions respectively. Using Egs. (4) and (8), one can easily obtain

the modes shapes for the plate and the cavity (see Fig. 2). The first few natural frequencies of
the uncoupled and coupled system are tabulated as shown in Table (3).

Due to the complexity of the structural-acoustic coupling of this system, the effect of the
stiffness coupling matrix K. and the inertia coupling matrix M, on the coupled natural

frequencies cannot be easily realized. In Table (2), the entries of M, increase the values of

the first few acoustic resonance frequencies above their uncoupled values, hence, contributing
a “mass reduction” effect. On the other hand, the entries of K decrease the values of the

low (vibration) resonance frequencies below their uncoupled values, hence, contributing a
“stiftness reduction” effect.
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Table 3 The undamped natural frequencies (Hz) of the uncoupled
and coupled system

Uncoupled System Coupled system
Cavity Plate
Mode Closed Form Mode Approximate Plates-Cavity-Plate System
Formula Formula

11010 281.33 111 44.452 Plates 42.75 43.85
0]0]1 337.60 211 76.017 Plates 67.447 68.407
0]11]0 375.11 311 127.66 Plates 132.98 134.11
11011 439.45 212 132.78 Plates 180.24 181.31

11110 468.89 312 181.70 Cavity 285.41

Plate Mode (1,1) Plate Mode (2,1)

A e,
"‘ \\\\%'”ﬁ
LA W}}:%
S
‘%&‘;\‘%ﬁ/f

Figure 2 Plate and cavity mode shape
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5.2 Control scheme
For the uncompensated and compensated systems, we will use 17 plate vibration modes (M)
and 3 cavity acoustic modes (N). The structure acoustic model outputs are nine displacements
at the upper plate, nine displacements at the lower plates, and three pressures inside the
cavity. Nine control actuators are assumed to be at the upper plate. The actuators and
displacements positions are distributed in equal areas over the plates while the pressures are
measured inside the cavity at (127, 97, 4.5”), (1.25”, 47, 9.25”), and (22.75”, 1.75”, 1.25") in X, y and
z directions respectively.

GA propagates based on the algorithm previously listed in sec. 4. The mutation rate is 10%.
Each generation has a fixed population size 100 or no generation overlap. The algorithm is
convergent for all techniques with 1000 generations. The resultant optimal controller gains in
based on GA are given as

00794 21673  -0.6508 19377 3.4689 07875  1.5617 20.0916  -3.4176
03919 19768  0.6801 39719 -3.3297 37009  -1.2979 2.873 42381
-1.6105 25678 -1.9866 -1.2247 13101 34713 1.2833 -2.895 1.6081
22,1648 -1.0049  -3.6032 38132 0.2503 0.8901  -2.6947 3.3785 3.1538
-0.0305 15006  1.105 16422 -2.7485 -4.6117  3.3297 222503 -3.2491
08852 37179 09316 L7717 1652 3.6252 31221 -4.8022 1.4371
2243 15324 15543 07387 23211 12735 -33541 1.0488 -2.6386
31197 -42943  1.906 1.42 -3.8596 27021 -1.044 1.7326 4.663
-4.6044 27143 -0.2405 3.9328 25263 28828 -2.9438 2.2723 1.8181
; 03114  -0.0403  -0.0794 -0.0745  0.1624 -0.0183  -0.0549 0.0867  -0.0183
K. _ 02601  0.1697 02576 -0.0769  0.1282 -0.0427  0.094 0.0085 0.1502 (39)
1000 -0.0037  -0.0012  -0.0012 0.0012  -0.0037 -0.0037  -0.0012 20.0012  -0.0012
224505  -4.1062  3.8327 44212 -1.0879 15372 0.8779 -4.4188 1.2662
4011 03919  -4.768 4221 -4.0085 09512 -1.8596 -0.2454 1.5372
42063 33394 03114 29194 41209 22112 -0.0354 1.2686 -3.1148
42234 47778 -3.1319 3.4957 23724 1.293 1.7766 22,9609  3.5446
-1.3907  -4.0037  3.8205 20085  1.1441 02137  2.8462 4917 4.0061
3.0513 13053 3.6129 35641 -4.6239 0.536 1.1856 3.4029 -1.2833
1696 21331 2348 -1.5055  -0.7778 30195  -2.8901 -3.989 -0.8828
42991 03993 3.2662 0917 1.1954 48755 -3.5763 3.1661 2.4872
1569 24335  4.0818 34176 -1.5201 -0.3382  -0.7827 3.8376 4.9145

In equation (39), the controller at the operating condition listed in Table (2) is given. Such
control is a static one. At different operating conditions, other controller matrices could be
computed following the same algorithm. The global controller is generated by tabulating the
local controller with these flight conditions, while interpolation is employed to switch in
between. On the other hand, the LQR delivers a controller with the same size; however each
element is a transfer function of order 75" Such controller is computationally inefficient and
virtually impossible to be applied for gain scheduling approach. In fact, LQR provides better
performance than SOF, but the performance of the SOF still has an acceptable performance.

Using the previous analysis, numerical simulation is applied to the system. The objective in
the simulation is to attenuate the vibration for the upper and lower plates. Figs. 3-4 illustrate
the resulting pressure response for damped sinusoidal pressure input. It is observed that the
maximum amplitude and the settling time are highly reduced and the response can be tuned to
a certain values by adjusting the parameters used in the control model.

14/17



Paper: ASAT-13-CT-22

I T T T

I | |

I o L | |

I g o | |

| g2o . ¥ .
) © O | |

! % mw | |

| € ©® © | |

| QO 9 a | |

Q ¢ C

g @ @~ "4 T Tr T [t Sl
|5 & & | |

| & E E | |

1 c 0O O | |

| D O O I I

i s R T
I 1 | |

I 1 | |

I . | |

L L O R 2 S T R
I T | |

I | | |

I | | |

I | | |
e e e | e e
I | | |

I | | |

I | | |

I | | |
N B L I
I | | |

I | N | |

I | | |
[ B L L T R
I | | |

I | | |

I | edan, | |

I | 3 et | |

F— = = — 4 - = — — S S Fom—— o — = = —
I [ A | |

I | " i | |

I | T SLLLLTTPN L |

! | ot e nnn - |
e arsp e [
I ;.........Mm..r... | | | |

I | F . | |

I | | | ] —

L 1 1 1 - 1

© < « o o < © )

(w) 81e|d J8ddn IO} JUBWSOE|DSIP

10

time (sec)

Figure 3 Uncompensated and compensated time responses due

to impulse pressure input for the upper plate

x 10

T T T T T T
W | | | | |
| | | | |
dﬁLu% | | | | |
H @ -4 - R -
T3 I I | |
O O .
2= | | | | |
cC ®© ®© .
O B 0 I | - | | |
Q< & ! | | | !
HE @ @|-F-——-1-—— Tttt - — -
S aQ o 3 | |
o E E I I
c O O | |
2 0O O | |
M - e oo T
1 |
i |
i |
B L PUNTRIRRIR - [E R —
|
..... ,
..... |
|
e B [ T e M
A L - 1 TERE————————— Lo
- o o — e — — t———-
|
|
|
; 2P
w a4 . - 1 o 1o T & o u©
o - (=] = - Qi

(w) a1e|d J8MOJ J0} Juswaoe|dsip

10

time (sec)

Figure 4 Uncompensated and compensated time responses due

to impulse pressure input for the lower plate
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6. Conclusions

In this work, the development of a static output feedback controller for structure-acoustics
coupled based on genetic-optimization is studied. Modelling of sound transmission through a
plate-cavity-plate system is presented. The proposed controller is used in vibration damping
of the plates. In the control scheme, the procedure offers a controller for practical utilization.
The technique was successfully applied to one operating point. The proposed controller is a
static matrix with more applicability to be scheduled. This information is unobtainable from
other control methods such as a linear quadratic regulator. The piecewise interpolated could
be used to extend across the flight envelope. Also, the performance of the controller is
compared by the linear quadratic regulator. Based on the numerical simulations, the LQR
technique has the ability to damp the vibration more than the proposed static output feedback.
Such results were predicted since LQR assumes more available information than the SOF.
Although the linear quadratic regulator shows better performance, the static feedback offer
more practical controller. The controller is a trade-off between feasibility and performance.

References

[1] Mayuresh P., and Dewey H., “Output Feedback Control of the Nonlinear Aeroelastic
Response of a Slender Wing” Journal of Guidance, Control and Dynamics, Vol. 25, No.
2, Mar.-Apr. 2002, pp. 302 — 30.

[2] Gharib M. and Tawfik M., “Active Control OF Interior Noise in A Rectangular Cavity
with Two Flexible Plates”, 12th International Conference on Aerospace Sciences &
Aviation Technology, ASAT-12, Cairo, Egypt, 29-31 May 2007.

[3] Preumont A., and Seto K., Active control of structures, Wiley, 2008.

[4] Smith, D., Clark, L., Duke, Smith, “Optimal Transducer Placement for Output Feedback
Control of Broadband Structural Acoustic Radiation,” AIAA-1997-1316.

[5] Levine, W. S. and Athans, M., “On the Determination of the Optimal Constant Output
Feedback Gains for Linear Multivariable Systems,” IEEE Transactions on Automatic
Control , Vol. AC-15, No. 1, Feb. 1970, pp. 44 — 48.

[6] Waszak, M. R. and Srinathkumar, S., “Flutter Suppression for the Active Flexible
Wing: A Classical Design,” Journal of Aircraft, Vol. 32, No. 1, Jan. — Feb. 1995, pp. 61
—67.

[7] Wouter P., Oliver N., and Stephen J., “Centralized and decentralized control of
structural vibration and sound radiation” Journal of the Acoustical Society of America,
119, (3), 1487-1495. March 2006.

[8] Yuan, X., Caraballo, P., Yanl, H., Ozbay, A., Serrani, J., DeBonis, H., and Myatt, M.,
“Reduced-order Model-based Feedback Controller Design for Subsonic Cavity Flows,”
43rd AIAA Aerospace Sciences Meeting and Exhibit, 10 - 13 January 2005, Reno,
Nevada.

[9] Kinsler L. E., Frey A. R., Coppens A. B., and Sanders J. V., Fundamentals of Acoustics,
Fourth Edition, John Wiley and Sons, Inc., New York, (2000).

[10] Balachandran B. and Sampath A. and Park J, “Active control of interior noise in a three-
dimensional enclosure”, Smart Materials and Structures 5, 89-97 (1996).

[11] Blevins J., Formulas for Natural Frequency and Mode Shapes, Van Nostrand Reinhold
Company, (1978).

[12] Kuttruff H., Room Acoustics, 2nd Edition, Spon Press, New York, 1981.

[13] Moustafa Al-Bassyiouni and Balachandran B., “Sound transmission through a flexible
plate into an enclosure: structural-acoustic model”, Journal of Sound and Vibration 284,
467-486 (2005).

16/17



Paper: ASAT-13-CT-22

[14] Makila, P. M. and Toivonen, H. T., “Computational Methods for Parametric LQ
Problems — A Survey,” IEEE Transactions on Automatic Control, Vol. AC-32, No. 8,
August 1987, pp. 658 — 671.

[15] Holland J,” Adaptation in Natural and Artificial Systems,” The University of Michigan
Press, 1975.

[16] Goldberg, David E., “The Design of Innovation: Lessons from and for Competent
Genetic Algorithms “, Boston, MA: Kluwer Academic Publishers, 2002.

17/17



