IMPROVING HEAT STRESS TOLERANCE IN POTATO (SOLANUM TUBEROSUM) L.

Amira R. Sallam^{1*}, Asmaa A. Mahdi² and Ahmed A. El-Homosany³

¹Tissue Culture Unit, Department of Genetic Recourses, Desert Research Center, El-Matareya, Cairo, Egypt

²Biochemistry Unit, Department of Genetic Recourses, Desert Research Center, El-Matareya, Cairo, Egypt

³Laboratory of *in Vitro* Storage Plant and Cryopreservation, National Gene Bank, Agricultural Research Center

*E-mail:

eat stress is one of the major abiotic stresses affecting potato growth and productivity in semi-arid and growing zones. Using new biotechnology approaches and application of nanomaterials could improve the productivity and profitability of potato. Silicon nanoparticles (SiO₂ NPs) responsible for improvements lead finally to the enhancement of plant growth and productivity under salinity, drought, and heavy metal stresses. In this study, the effectiveness of SiO₂ NPs at 5, 10 and 20 ppm under different levels of heat of 25, 35 and 45°C on growth and biochemical parameters was in vitro studied, for four potato cultivars. Results referred to the superiority of Agria, which was positively and significantly affected by SiO₂ NP treatments followed by Hermes, and Cara. On the other hand, there was no significant effect of SiO₂ NPs on Diamond cv, under different heat levels. At 45°C, Agria cv. produced the highest value of microtubers weight and length at 0, 5, 10 and 20 ppm of SiO₂ NPs, followed by Diamond with SiO₂ NPs of 5 and 20 ppm. The heighest vegetative characteristics of Agria were 14.67 cm for shoot length, 7.00 cm for shoots/explant, 5 cm for root length, and 10.33 for roots number/ explant, at 35°C with 10 ppm SiO₂ NPs. About harvesting, for the same cultivar, microtubers weight was 0.89, 0.79 and 0.93 g at 45°C, without significant differences among SiO₂ NPs. Microtubers number was 5.33 by 5 ppm at 25°C. Microtubers length was 1.43 cm with 5 and 10 ppm SiO₂ NPs at 45°C. For microtubers diameter, there was no significant effect among SiO₂ NPs at all heat levels. Also, glutathione higher value was obtained by 5 ppm at 45°C. Concerning lipid peroxidation level, the lowest level of the toxic product malondialdehyde (MDA) was obtained by 0 ppm, increased in other treatments at 25°C. At 35°C, the minimum level of MDA

was recorded by 20 ppm and in general the highest temperature applied (45°C) increased MDA accumulation.

Keywords: potato, heat stress, microtubers, nanomaterials, SiO₂ NPs, glutathione, lipid peroxidation

INTRODUCTION

Potato (Solanum tuberosum L.) is the most important tuber crop and fourth main food crop in the world after maize, rice and wheat, which grows in about 150 countries and plays a vital role in the global food system. Potato ranks second in the list of the Egyptian agricultural exports after cotton, of which 171.012 metric tons were export to Europe and some Arab countries. It is cultivated in over 100 countries, and the global production of potatoes was estimated to be 370 million tons (FAOSTAT, 2019), feeding over a billion people worldwide (Moeinil et al., 2011 and Othman et al., 2016). Potato is a cool weather crop but now becomes a worldwide crop grown under many climatic conditions. The highest yield was obtained in regions with moderate climate, such as northern United States and northwestern Europe (Levy and Veilleux, 2007). Tuberization is optimal at short days, average temperatures in the 15-20°C range, tuber formation were declines above this range. Temperature above the optimal causes reduction in tuber yield and productivity, although moderately elevated temperatures of 20-25°C may enhance potato vegetative growth. High temperatures during the growing season affect its development and may lead to a drastic reduction in economic yield (Rykaczewska, 2015; Tang et al., 2018 and Momčilović, 2019). High temperatures decrease harvest index and thus, tuber weight and increase leaf dry matter (Hancock et al., 2014). Heat stress also causes tubers cracking, hollow heart, secondary growth, malformations, induces heat necrosis in the tuber flesh and stimulates conversion of starch to primary sugar leading to dark French fries (Minhas, 2012 and Wang-Pruski and Schofield, 2012).

In vitro propagation of potato is generally used to produce new lines, store germplasm, incubate microtubers or minitubers which thus are easy to store and transport (Uranbey, 2017). Microtubers are magic solution to insure healthy and free-virus asexual seeds (Islam et al., 2017 and Mohapatra and Batra, 2017). Multifactors control formation of microtubers like sucrose, temperature, growth regulators and genotypes (Emara et al., 2017 and Hossain et al., 2017). Microtubers formation is effective at sucrose concentrations ranged between 60-90 g L⁻¹ and the low temperature (18°C) (Khalil et al., 2017).

Nanotechnology is widely used in plant biotechnology and has a wide range of applications, such as nutrient consumption, plant germination, plant growth, and stress tolerance in agriculture. Nanoparticles (NPs) are increasingly being used to trigger the production of beneficial secondary

metabolites from natural sources. Considering their diverse impacts on live cells, their potential microscopic size, vast surface area, reactivity, and strong propensity to penetrate the plasma membrane make them excellent for biological applications (Sharada et al., 2018). However, in terms of callus culture, the relevance of NPs in plant secondary metabolism remained unclear (Wang et al., 2016). Several studies reported the positive influence of NPs application on different plants' growth and development, particularly at low concentrations under different abiotic stress conditions (Mahdi, 2017; Hassan et al., 2018; Farroh et al., 2020; Mahdi et al., 2020 and El-Saber et al., 2021). The beneficial effects of silicon and its role for plants are well established. Silicon NPs have unique physiological properties that enable them to penetrate plants and alter their metabolic processes. Silicon NPs mesoporous structure makes them ideal nano-carriers for a variety of compounds that might be useful in agriculture and as elicitors in the tissue culture field (Rastogi et al., 2019). Silicon is also considered somewhere between an essential and non-essential element for plants, as it is not required for the survival of most plants, but plants benefit and are better adapted to different environmental stress conditions in the presence of silicon (Luyckx et al., 2017). Silicon has also been observed to be used by plants to strengthen their cell walls. SiO₂ NPs can also reduce the transpiration rate of the plant, rendering it more resistant to limited water supply (drought), high temperature and humidity (Adisa et al., 2019; Rastogi et al., 2019; Rajput et al., 2021 and Verma et al., 2021).

Heat stress is one of the most significant environmental conditions that can harm agricultural plants, impairing a variety of physiological and biochemical processes (Paradiso et al., 2020). Heat stress also causes oxidative stress in plants by accelerating the production of reactive oxygen species (ROS) such as singlet oxygen, superoxide anion, hydrogen peroxide and hydroxyl radical (Hasanuzzaman et al., 2020). Autocatalytic peroxidation of membrane lipids and pigments, as well as changes in membrane permeability and functions, are the principal consequences of ROS (Xu et al., 2008). Lipid peroxidation has long been employed as a marker of free radical damage to cell membranes under stressful situations. The main and well-studied product of Poly Unsaturated Fatty Acid (PUFA) peroxidation is malondialdehyde (MDA). This aldehyde is a very harmful substance that deserves to be thought of as more than a lipid peroxidation marker (Rio et al., 2005). Different aldehydes are generated when PUFAs in bio-membranes are peroxidized, including the extremely reactive aldehyde MDA. It is mostly produced in chloroplasts (Yamauchi et al., 2008).

Therefore, the objective of this study was to investigate the effectiveness of SiO_2 NPs in elevating the negative effect of heat stress on micropropagation and microtubers formation of four potato varieties (Agria, Cara, Diamond and Hermes) and some biochemical characters.

MATERIALS AND METHODS

The present study was carried out during the period from 2018 to 2020 at the Tissue Culture Unit, Genetic Resources Department, Desert Research Centre, Cairo, Egypt and National Gene Bank, Agricultural Research Centre, Giza, Egypt.

1. In Vitro Preparation

1.1. Culture medium

Murashige and Skoog (MS) micro and macro-elements medium (1962) were used in the present study (Sigma-Aldrich, Germany). The pH of the medium was adjusted to 5.7 using 1.0 M HCl or 1.0 M NaOH. Phytagel at 3% (w/v) was added after pH adjustment. Media were dispensed into glass jars and sterilized for 20 min at 121°C (15-psi steam pressure with an extended cycle time of 30 min).

1.2. Explants

Tubers were brushed and washed under running water to exclude mud, dirties, and kept in closed paper bags at 24°C until small sprouts appeared. The excised eye buds (sprouts) were rinsed in distilled water, dipped in 70% ethanol for one min and stirred in 0.1% mercuric chloride for 10 min. To overcome phenols formation, materials were put in an antioxidant-sterilized solution (100 mg L⁻¹ ascorbic acid and 150 mg L⁻¹ citric acid) for 10 min. Finally, sprouts were rinsed with sterile distilled water three times.

1.3. Establishment of *in vitro* cultures

Sterilized sprout meristems 0.3-0.5 mm, one meristem, were placed in culture tubes (25x150 mm) containing 10 ml of solid starting MS medium supplemented with 2 mg L⁻¹ D-calcium pantothenate, 0.1 mg L⁻¹ gibberellic acid and 30 g L⁻¹ sucrose. The medium was solidified with 3.0 g L⁻¹ phytagel. Combination between BAP and NAA were used for four cultivars mass micropropagation (Sallam, 2014). Cultures were incubated at $20\pm2^{\circ}$ C in a perfect darkness condition for 24 h then under 16 h (2000 lux, daily fluorescent tubes) for 2-4 weeks to produce *in vitro* virus-free-plantlet.

2. In Vitro Heat Stress Experiment

2.2. In vitro propagation under heat stress

In vitro multiplication of virus-free-stock plants were obtained through meristem culture using nodal cuttings with 1-2 nodes each on solid MS medium with D-calcium pantothenate 2 mg L⁻¹, and 30 g L⁻¹ sucrose and medium was gelled using 3% phytagel (Sallam, 2014). Media supplemented with different levels of SiO₂ NPs (0.0, 5.0, 10.0, and 20.0 ppm) combined with three degrees of heat (25, 35 and 45°C) in 12 treatments for each cultivar. Two plantlets (2 nodes) in each tube containing 12 ml medium and five culture tubes were considered as a treatment for the four cultivars. Cultures were incubated for 3-4 weeks at $20\pm2^{\circ}$ C under a 16 h photoperiod

using cool white fluorescent lights (50-60 μ E/m2/s light intensity). Shoot number, shoot length (cm), root number and root length (cm) were recorded for each micropropagule.

2.2. In vitro microtuberization under heat stress

The microtubers induction medium was MS basal nutrients supplemented with sucrose at 60 g L⁻¹, gelled with 3% phytagel (Sallam, 2014). Media supplemented with different levels of SiO₂ NPs (0.0, 5.0, 10.0, and 20.0 ppm) combined with three degrees of heat (25, 35, and 45°C) in 12 treatments /cultivar were tested. Two plantlets (2 nodes) in each tube containing 12 ml medium and five culture tubes were considered as a treatment for the four cultivars. Cultures were incubated for 10 days at 20±2°C under a 16 h photoperiod using cool white fluorescent lights (50-60 $\mu E/m2/s$ light intensity). Then, were incubated under complete darkness at 25°C as control in an incubator with heat treatments of 35 and 45°C for 90 days. Microtubers started to develop at the terminal or axillary ends of the shoots within 20-25 days and they were ready for harvesting after 80-90 days, depending upon genotype. The harvested parameters were microtubers number/ propagule, microtubers weight/ plant (g), average microtubers length (cm) and average microtubers diameter (cm). The harvested microtubers were cold stored and used as minitubers seed for greenhouse culturing.

3. Biochemical Markers Analyses

3.1. Total glutathione content

The level of glutathione in potato shoots was determined according to Moron et al. (1979), includes combining GSH with DTNB (5,5'-dithiobis nitro benzoic acid) to produce a yellow product that absorbs at 412 nm.

3.2. Lipid peroxidation content

Reactive oxygen species degrade lipids, making them one of the most sensitive cellular components (by peroxidation of unsaturated fatty acids in biological membranes). The TBARS (Thiobarbituric Acid Reactive Substances) assay is a well-known method for determining lipid peroxidation. The level of lipid peroxidation in potato shoots samples was measured in terms of estimating the end product, MDA (malondialdehyde) (Heath and Packer, 1968) with some modifications. About 0.5 g from potato shoots was homogenized in 2.5 mL of 0.1% (w/v) trichloroacetic acid (TCA). The homogenate was centrifuged at 14.000 rpm for 15 min. 5 % thiobarbituric acid (TBA, 2.0 mL) was mixed with 20% TCA solution and the mixture was heated at 95 ° C for 30 mins in a water bath and then incubated in an ice bath for 5 min. After centrifugation, the supernatant was read at 532 nm. The value for nonspecific turbidity of each sample at 600 nm was also recorded and subtracted from the absorbance recorded at

532 nm. The concentration of MDA-TBA adduct was calculated from MDA standard curve and converted to nmol g^{-1} fresh weight.

4. Nanoparticles Applications

Pure preparation of SiO₂ nano powder (99%); 25 to 55 nm in size, was purchased from Sigma-Aldrich (Germany). The NPs were sonicated in sterilized MS medium to final concentrations of 0.5 or 2 mg L^{-1} . Plantlet fresh weight (CFW) was recorded after 30 and 45 days of incubation.

5. Statistical Analysis

Data of experiments were statistically analyzed as completely randomized design with four replicates. The recorded data were analyzed statistically using analysis of variance technique (ANOVA) and by multiple range tests (Steel et al., 1997). Duncan's Multiple Range Test as described by Duncan (1955) and Least Significant Difference (LSD) at $p \le 0.05$ level of confidence was employed to compare the differences among means.

RESULTS AND DISCUSSION

1. *In Vitro* Propagation and Microtuberization Under Heat Stress Conditions

For studying the effectiveness of SiO_2 NPs in elevating the negative effect of heat stress on micropropagation, microtubers formation and some biochemical characters, two experiments have been conducted *in vitro* using virus-free-mericlones stock plants of four potato cultivars (Agria, Cara, Diamond, and Hermes).

1.1. Vegetative and harvesting parameters

1.1.1. Agria cultivar

Results in table (1) and fig. (1) show the effect of SiO_2 NPs treatments under different levels of heat stress on vegetative characteristics of Agria potato cultivar after 4 weeks.

Regarding the effect of different treatments of SiO₂ NPs under heat stress levels on shoot length and number of shoots/explant in Agria cultivar, the results in table (1) indicate that 10 ppm SiO₂NPs at 35°C recorded the significantly highest shoot length (14.67 cm). The same treatment recorded the highest number of shoots (7) without significant differences with treatments of 5 and 10 ppm SiO₂NPs at 25 and 45°C. The highest root length (5 cm) was recorded with 10 ppm SiO₂ NPs at 35°C without significant differences with the same treatment of SiO₂-NPs at 25°C (4 cm), control treatment at 35 and 45°C and 20 ppm SiO₂-NPs at 45°C. The highest number of roots was obtained with 10 ppm SiO₂ NPs at 35°C (10.33) and 25°C (9.67) without significant differences between them. Meanwhile, control treatment without SiO₂ NPs under 25°C SiO₂ NPs at 5 ppm under 35°C and 20 ppm SiO₂ NPs under 25°C were not able to form any roots.

	-									
SiO ₂ -NPs conc.	0	5	10	20	0	5	10	20		
(ppm)		Shoot l	ength		Shoot number/ explant					
Temperature (°C)		(cn	n)		-					
25	7.67cde	5.33f	8.33bc	8.00bcd	3.33c	6.00ab	6.00ab	4.67bc		
35	7.00cdef	5.67ef	14.67a	6.00def	3.00c	3.67c	7.00a	3.67c		
45	5.33f	5.00f	10.00b	8.00bdc	3.67c	5.00abc	6.00ab	4.33bc		
		Root l	ength		Root number/ explant					
		(cn	n)							
25	0.00e	0.73de	4.00ab	0.00e	0.00d	3.00bc	9.67a	0.00d		
35	4.67ab	0.00e	5.00a	1.67cde	5.00b	0.00d	10.33a	4.33b		
45	3 17abc	2 67bcd	0 93de	3 50abc	2 77bc	2.00bc	1.00c	1.00c		

Table (1). Effect of SiO₂-NPs under different levels of heat stress on shoot length, shoot number, root length and root number of Agria potato cultivar after four weeks.

Results in table (2) and fig. (1) show the effect of SiO_2 NPs under different levels of heat stress on the harvested Agria microtuber characteristics *in vitro* under complete darkness after 90 days.

Table (2). Effect of SiO₂ NPs under different levels of heat stress on microtuber weight/plant, number, length and diameter of Agria potato cultivar after three months under complete darkness.

SiO ₂ -NPs	conc. 0	5	10	20	0	5	10	20		
(pp	m) <u>N</u>	licrotuber	s weight/pl	ant	Microtubers number					
Temperature (°C)			(g)							
25	0.37bc	0.49b	0.26bcd	0.40bc	2.67bc	5.33a	4.00ab	3.67ab		
35	0.00d	0.52b	0.43b	0.29bc	0.00c	2.00bc	3.33ab	1.67bc		
45	0.13cd	0.89a	0.79a	0.93a	1.33bc	2.00bc	1.33bc	2.00bc		
		Microtu	bers length		Microtubers diameter					
		(cm)			(C	m)			
25	0.47b	0.53b	0.53b	0.53b	0.40a	0.30a	0.33a	0.37a		
35	0.00c	0.30bc	0.60b	0.33bc	0.00b	0.80a	0.40a	0.77a		
45	0.47b	1.43a	1.43a	1.10a	0.27a	0.70a	0.80a	0.70a		

Referring to results in table (2), they show that, the highest value of microtubers weight/plant were recorded at 45°C without significantly differences between treatments of SiO₂-NPs of 5, 10 and 20 ppm (0.89, 0.79 and 0.93 g, respectively). For number of microtubers, 5 ppm of SiO₂ NPs at 25°C appeared to be the significantly highest number of microtubers (5.33), whereas the control treatment at 35°C cannot able to give any microtubers. As for microtubers length, the highest length of 1.43 cm was recorded with 5 and 10 ppm of SiO₂ NPs at 45°C. Nevertheless, SiO₂ NPs treatments had no significant effect on microtubers diameter with all heat stress levels.

1.1.2. Cara cultivar

Results in table (3) and fig. (2) show the effect of SiO_2 NPs under different levels of heat on the vegetative characteristics of Cara potato cultivar *in vitro* after 4 weeks.

Table (3). Effect of SiO₂ NPs under different levels of heat stress on shoot and root length, and number of Cara potato cultivar after four weeks

	••••••										
SiO ₂ -NPs conc.	0	5	10	20	0	5	10	20			
(ppm)		Shoot 1	length		Shoot number/ explant						
		(cr	n)								
Temperature (°C)											
25	5.00c	10.00ab	5.00c	10.67a	3.00bcd	3.33abc	3.00bcd	3.33abc			
35	6.00c	9.33ab	6.33c	8.83b	3.00bcd	4.00ab	3.67abc	4.67a			
45	5.33c	5.50c	4.67c	4.67c	2.33de	4.00ab	3.33abc	1.67e			
		Root l	ength]	Root num	ber/ explan	t			
		(cr	n)								
25	3.00b	5.00b	3.00b	4.00b	5.00ab	4.33ab	4.33ab	4.33ab			
35	3.00b	7.00a	5.00b	3.67b	1.67cd	3.00bc	6.00a	6.00a			
45	0.17c	0.43c	0.13c	0.00d	2.33bcd	1.33cd	2.33bcd	0.00d			

Concerning Cara shoots length, data in table (3) shows that the highest value (10.67 cm) was obtained when 20 ppm SiO₂ NPs was used at 25°C, followed by 5 ppm of SiO₂ NPs at 25°C and 35°C (10.0 and 9.33 cm), consecutively without significant differences among them. The highest shoot number (4.67) was also achieved on the same treatment of SiO₂ NPs (20 ppm) at 35°C, followed by 5 ppm of SiO₂ NPs at 35°C and 45°C (4.0), respectively without significant differences among them. Concerning root length, results cleared that 5 ppm SiO₂ NPs at 35°C recorded the significantly the highest value (7.0 cm). While the highest root number (6.0) were obtained with both 10 and 20 ppm SiO₂ NPs at 35°C, followed by all treatments of SiO₂ NPs at 25°C (4.33). While, treatment of 20 ppm of SiO₂ NPs at 45°C could not able to form any roots.

Results in table (4) and fig. (2) show the effect of SiO_2 NPs under different levels of heat stress on the characteristics of harvested Cara potato cultivar *in vitro* under complete darkness for 90 days.

Regarding the microtubers weight/ plant, the highest mean value (0.42 g) was recorded at 25°C without SiO₂ NPs, followed by 20 ppm of SiO₂ NPs at the same heat level (0.27 g) without a significant difference between them. About microtubers number, there were no significant differences among all the treatments, except 45°C with different SiO₂ NPs concentration, which did not form any microtubers. With reference to microtubers length, the highest mean value (0.30 cm) was recorded with control (without SiO₂ NPs) at 25°C heat level. Concerning microtubers diameter, the highest mean values were recorded without SiO₂ NPs at 25 and

45°C, 10 ppm of SiO₂ NPs at 35°C and 20 ppm of SiO₂ NPs at 25°C (0.23, 0.26, 0.27 and 0.27 cm, respectively) without significant differences among them.

	cuit	Ival alter	three mo	muns in vi	<i>ii o</i> unuci	complet		o.				
	SiO ₂ -NPs conc.	0	5	10	20	0	5	10	20			
	(ppm)	Mi	crotubers	weight/pl	lant	Ν	Microtubers number					
Tempera	ture (°C)	-	()	g)								
	25	0.42a	0.13bc	0.00d	0.27ab	1.00a	1.00a	0.00b	0.67a			
	35	0.06c	0.047c	0.08c	0.16bc	1.33a	0.67a	1.67a	1.33a			
	45	0.11bc	0.00d	0.00d	0.00d	1.67a	0.00b	0.00b	0.00b			
			Microtub	ers length	l	Microtubers diameter						
			(CI	m)			(cr	n)				
	25	0.30a	0.13ab	0.00b	0.23ab	0.23a	0.07ab	0.00b	0.27a			
	35	0.10ab	0.10ab	0.20ab	0.17ab	0.10ab	0.07ab	0.27a	0.10ab			
	45	0.23ab	0.00b	0.00b	0.00b	0.26a	0.00b	0.00b	0.00b			

Table (4). Effect of SiO₂ NPs under different levels of heat stress on microtubers weight, number, length and diameter of Cara potato cultivar after three months *in vitro* under complete darkness.

1.1.3. Diamond cultivar

Results in table (5) and fig. (3) show the effect of SiO_2 NPs under different levels of heat stress on vegetative characteristics of Diamond potato cultivar after four weeks.

Regarding the vegetative characteristics, table (5) shows that the maximum mean shoot length (15 cm) was achieved with both 10 and 20 ppm SiO_2 NPs at 25°C and 20 ppm SiO_2 NPs at 45°C without significant differences with the control treatment at 25°C (13.67 cm). About shoot number, the highest shoot number/ explant (5.0) was recorded with 5ppm of SiO_2 NPs at 35°C, 10 ppm of SiO_2 NPs at 25°C and 20 ppm of SiO_2 NPs at 35°C. While, 10 ppm of SiO_2 NPs at 45°C gave the lowest shoot number among all treatments (0.67). The highest mean root length was ranged between 6.67 cm and 4.67 cm with control treatment at 35°C and 35°C with significant differences among the rest of the treatments. Referring to root number, 5 ppm SiO_2 NPs at 25°C was recorded the highest mean value (5.67), followed by 10 and 20 ppm SiO_2 NPs at 45°C without significant differences among the x45°C without x45°C without x45°C without x45°C ppm SiO_2 NPs at 25°C and 20 ppm SiO_2 NPs at x45°C without x45°C without x45°C without x45°C ppm SiO_2 NPs at 45°C without x45°C w

Results in table (6) and fig. (3) show the effect of SiO_2 NPs under different levels of heat stress on microtubers of the characterization of harvested Diamond potato cultivar *in vitro* under complete darkness after 90 days.

	after fou	ir weeks.									
SiO ₂ NPs	s conc.	0	5	10	20	0	5	10	20		
(pp	n)		Shoot le	ength		Shoot number/ explant					
Temperature (°C)	<u> </u>		(cm	I)							
25		13.67a	9.33bcd	15.00a	15.00a	3.67abc	4.33ab	5.00a	5.00a		
35		10.00bc	11.33b	8.00cd	7.00de	3.00bcd	5.00a	3.67abc	2.00cde		
45		5.00e	7.33de	7.00de	15.00a	2.00cde	1.33de	0.67e	5.00a		
			Root le	ngth		Root number/ explant					
			(cm	I)							
25		3.00b	5.17a	6.67a	5.33a	3.67ab	5.67a	4.00ab	4.00ab		
35		5.00a	5.00a	6.33a	4.67ab	3.33abc	3.33abc	3.00bc	3.33abc		
45		0.33c	0.33c	0.33c	0.33c	0.67d	0.55d	1.00cd	4.00ab		

Table (5). Effect of SiO₂ NPs under different levels of heat stress on shoot and root length shoot number /explant of Diamond potato cultivar

Table (6). Effect of SiO₂ NPs under different levels of heat stress on microtubers weight, number, length and diameter of Diamond potato cultivar after three months *in vitro* under complete darkness

uarkite	<i>.</i>									
SiO ₂ -NPs conc.	0	5	10	20	0	5	10	20		
(ppm)	Mic	rotubers	weight/p	olant	Microtubers number					
Temperature (°C)		(g)								
25	0.11a	0.50a	0.00b	0.29a	0.67a	1.33a	0.00b	1.00a		
35	0.00b	0.27a	0.43a	0.37a	0.00b	1.00a	0.67a	1.33a		
45	0.00b	0.23a	0.00b	0.29a	0.00b	1.00a	0.00b	1.00a		
	N	Microtubers diameter								
		(c)	m)			(CI	m)			
25	0.10a	0.50a	0.00b	0.33a	0.07a	0.27a	0.00b	0.20a		
35	0.00b	0.27a	0.27a	0.43a	0.00b	0.23a	0.23a	0.33a		
45	0.00b	0.30a	0.00b	0.33a	0.00b	0.17a	0.00b	0.20a		

Concerning the harvested characteristics, represented in table (6), there were no significant differences of the treatments of SiO₂ NPs under different levels of heat stress with a low mean value for all parameters (microtubers weight, number, length and diameter), and absence of microtubers formation was observed in the control treatment without SiO₂ NPs under 35°C and 45°C and the treatment of 10 SiO₂ NPs under 25°C and 45°C.

1.1.4. Hermes cultivar

Results in table (7) and fig. (4) show the effect of SiO_2 NPs under different levels of heat on vegetative characteristics of Hermes potato cultivar after four weeks *in vitro*.

	and foot length of fieldines polato early af arter four weeks.										
Si	O2-NPs conc.	0	5	10	20	0	5	10	20		
	(ppm)		Shoot	length		c	haat num	how/ownl			
Temperature	e (°C)		(0	em)	3	Shoot number/ explant					
2	5	5.00bc	12.33bc	10.00bc	23.00a	3.00bc	4.33ab	4.33ab	6.00a		
3	5	13.67b	9.00bc	8.00bc	10.00bc	4.33ab	2.67bc	2.33bc	3.00bc		
4	5	5.00bc	4.33c	5.00bc	7.00bc	2.00c	3.00bc	3.00bc	3.00bc		
			Root	length		Root number/ explant					
			(0	em)							
2	5	3.00bc	0.00e	2.33c	5.00a	5.00d	0.00g	11.67b	15.33a		
3	5	5.00a	3.00bc	4.00ab	5.00a	8.33c	4.67d	4.33de	3.00def		
4	5	0.33d	4.67a	0.67d	0.50d	8.33c	4.67d	4.33de	3.00def		

Table (7). Effect of SiO₂ NPs under different levels of heat stress on shoot and root length of Hermes potato cultivar after four weeks.

Concerning the shoot parameters, as shown in table (7), the significantly highest length of shoots (23.0 cm) was recorded when 20 ppm SiO₂ NPs was used at 25°C comparing to other treatments. Also, the same treatment of 20 ppm SiO₂ NPs gave the highest shoot number (6.0), followed by the control treatment (without SiO₂ NPs) at 35°C, 5 and 10 ppm SiO₂ NPs at 25°C (4.33) without significant differences among them. However, root length recorded the highest mean value (5.00 cm) with 20 ppm SiO₂ NPs at 25 and 35°C and the control (0.00 ppm SiO₂ NPs) at 35°C. The root length recorded 4.67 cm with 5 ppm SiO₂ NPs at 45°C, followed by root length of 4.0 cm when 10 ppm SiO₂ NPs was used at 35°C without significant differences among them. Whereas the significantly highest root number (15.33) was recorded with 20 ppm SiO₂ NPs at 25°C. This treatment followed by 10 ppm SiO₂ NPs at same heat level (11.67) with significant differences between them. While, the treatment of 5 ppm SiO₂ NPs at 25°C did not from any roots.

Results in table (8) and fig. (4) show the effect of SiO₂ NPs under different levels of heat stress on the characteristics of harvested microtubers of Hermes potato cultivar *in vitro* under complete darkness after 90 days. Results in table (8) reveal that the highest microtubers weight/plant was 0.76 g with 5 ppm SiO₂ NPs at 25°C, followed by 0.60 g with 20 ppm SiO₂ NPs at the same temperature without significant differences between them. Concerning of microtubers number, 20 ppm SiO₂ NPs gave the highest mean value (2.67) at 25°C, followed by microtubers number of 2.00 with 5 and 10 ppm SiO₂ NPs at the same temperature (25°C) without significant differences among them. Meanwhile, treatments of 10and 20 ppm SiO₂ NPs at 35°C and all treatments at 45°C were not able to form any microtubers. About microtubers length, the significantly highest mean value was 1.13 cm when 5 ppm SiO₂ NPs was used at 25°C with significant differences among all treatments. Also, microtubers diameter was recorded the significantly

highest mean value (0.50 cm) with the treatment of 20 ppm SiO_2 NPs at 25°C with significant differences among all treatment.

Table (8). Effect of SiO₂ NPs under different levels of heat stress on microtubers weight/plant, number, length and diameter of Hermes potato cultivar after three months *in vitro* under complete darkness

SiO2-NPs conc.	0	5	10	20	0	5	10	20		
(ppm)	Mic	crotubers	weight/pl	ant	Microtubers number					
Temperature (°C)		(g	g)							
25	0.40bc	0.76a	0.47bc	0.60ab	1.00bcd	2.00ab	2.00ab	2.67a		
35	0.43bc	0.20cd	0.00e	0.00e	1.33bc	0.67d	0.00e	0.00e		
45	0.00e	0.00e	0.00e	0.00e	0.00e	0.00e	0.00e	0.00e		
]	Microtub	ers length		Microtubers diameter (cm)					
		(cı	n)							
25	0.30bc	1.13a	0.33bc	0.47b	0.23b	0.23b	0.23b	0.50a		
35	0.40b	0.17bc	0.00d	0.00d	0.21b	0.10bc	0.00d	0.00d		
45	0.00d	0.00d	0.00d	0.00d	0.00d	0.00d	0.00d	0.00d		

Generally, potato is highly sensitive to high temperature (Levy and Veilleux, 2007), presenting an obstacle to cultivation in tropical and subtropical areas. Potato plants that are exposed to high temperature from the beginning of the growing period have a risk of a high reduction in tuber yield compared to those with later exposure to high temperature, due to a delay in tuber initiation and shorter bulking duration, as well as a lower net assimilation rate (Aien et al., 2016). Climate change has been predicted to decrease the global potato yield from 18% to 32% without adaptation or from 9% to 18% with adaptation (Hijmans, 2003). In this context, adaptation is considered in the narrow sense of the "autonomous" adaptations made to the farmer field, such as adjusting the planting time or using adaptive cultivars (Hijmans, 2003).

At 45°C, Agria cv. produced the highest value of microtubers weight and length when SiO_2 NPs were used, followed by Diamond cultivar. In the contrast, Mohamed et al. (2016) indicated that Diamond cultivar could mark as moderately tolerant, while the Agria was ranked among the sensitive genotypes to heat stress at 30°C compared to the control (12°C and 24°C) through *in vitro* screening under normal conditions.

In the other studies on heat stress, Soundararajan et al. (2014) treated *Salvia splendens* with Si under high temperature (35° C), and found that the activities of superoxide dismutase (SOD), Ascorbate peroxidase (APX) and Glutathione peroxidase (GPX) were increased while catalase (CAT) was decreased. Shalaby et al. (2021) found that foliar application of Si (200 mg L⁻¹) was more effective in alleviating salinity and heat stress of cucumber, recording the highest fruit yields under net-house conditions compared to

other treatments (nano-selinum and H_2O_2) and the control. Also, spraying the plant leaves by Si and Se together protect garlic plants from the high temperature stress during germination and growth initiations, which reflects on germination percentage, germination speed, vegetative growth and bulb characters as well as total green, marketable yield and its quality (El-Zohiri and Farag, 2015).

The results of the present study agree with Kafi et al. (2019), who concluded that silicon application may be an effective strategy in reducing salinity effects and more efficiency will be achieved by using this element as nanoparticles in potato. Also, Gowayed et al. (2017) cleared that the application of SiO₂ NPs at the appropriate dose rate significantly enhances growth traits in salt-stressed potato plants and potato plantlets adapted to salt stress to some extent through increasing the activities of antioxidant enzymes, such as Glutathione peroxidase (GPX) and superoxide dismutase (SOD) and recommend using SiO₂ NPs at 50 mg L⁻¹ as an optimized dose to improve plant growth under salinity stress.

2. Biochemical Analysis Results

2.1. Glutathione content

In plant cells, glutathione is a tripeptide that interacts chemically with other free radicals. GSH preserves the membrane structure by preventing acyl peroxide-induced lipid peroxidation (maintains membrane integrity). It assists in the detoxification of xenobiotics as a substrate for glutathione-S-transferase enzyme and a precursor of phytochelatin as a substrate for glutathione-S-transferase enzyme and a precursor of phytochelatine that function as heavy metals that bind peptides in plants. GSH is the most common non-protein thiol molecule found in plants and animals (Foyer et al., 1994).

Table (9) shows the effect of SiO₂ NPs on potato shoots subjected to different regimes of temperature. Glutathione is determined in shoots for determining the resistance of plants to heat stress. In Agria cv., the highest mean record was detected by 20 ppm at 25°C, but GSH level declined at 35°C and 45°C. In Cara cv., the levels of SiO₂ NPs at 25 and 35°C caused a decline in the level of GSH in samples when compared to the control. In Diamond cv., an increase in GSH level was noticed with 20 ppm SiO₂ NPs at 25°C, but decreased at 35°C. In Hermes cv., at 25°C with 5 ppm SiO₂ NPs application, the highest value was recorded but at 35°C, GSH was declined. These results go in the same line with Hassan et al. (2018) on heat stressed wheat treated with NPs, Mahdi et al. (2020) on saline stressed wheat. A fluctuation in the level of GSH under the treatment with NPs due to the effect of NPs differs from plant to other, stage of application of NPs and dose of NPs treatment.

	0	_	10	20	0	_	10	20	
\sim SIO ₂ -NPs conc.	0	5	10	20	U	5	10	20	
(ppm) Temperature (°C)		Agri	a cv.		Cara cv.				
25	5.40	8.17	9.98	39.39	37.42	16.02	6.75	8.39	
35	9.45	8.95	3.42	1.56	18.52	13.48	15.00	8.46	
45	4.19	6.04			L	L	L	L	
		Diamo	ond cv.		Hermes cv.				
25	15.90	8.96	9.14	40.92	18.45	35.42	8.66	3.01	
35	90.69	1.13	3.88	8.18	31.18	17.10	3.37	1.56	
45	L	L	L	L	L	L	L	L	

Table (9). Effect of SiO_2 NPs on glutathione tripeptide μ mol/g fresh weight of four potato cultivars *in vitro* under different heat stress levels.

L: lethal, ---: no shoots.

1.2. Lipid peroxidation level

Data in table (10) clear that, in Agria cv., the lowest level of the toxic product MDA was detected with the control, but increased in other treatments at 25°C. However, at 35°C, the minimum level of MDA was recorded with 20 ppm SiO₂ NPs. The highest temperature of 45°C increased the accumulation of MDA. In Cara cv., the treatment of 5 ppm SiO₂ NPs recorded the lowest level of MDA in both 25°C and 35°C. In Diamond cv., at 25°C, the lowest record of MDA was determined with 20 ppm SiO₂ NPs application, but at 35°C, the level of MDA decreased in all other treatments. In Hermes cv., the level of MDA recorded slight increase in MDA at 25°C, compared to the control. However, at 35°C, 20 ppm SiO₂ NPs recorded the lowest level of MDA. Results are agreed with Fouda et al. (2021), on *Salvadora persica* and Hassan et al. (2018) on wheat. Heat stress increases level of peroxidation and releasing MDA, which caused releasing in reactive oxygen species (Mahdi, 2011).

Table (10). Effect of SiO₂ NPs on lipid peroxidation level (MDA) in nmol/gm fresh weight of four potato cultivars *in vitro* under different heat stress levels.

SiO ₂ -NPs conc.	0	5	10	20	0	5	10	20		
(ppm) Temperature (°C)		Agri	a cv.		Cara cv.					
25	3.10	4.11	4.56	11.24	9.36	5.48	26.30	23.21		
35	16.09	11.96	8.49	5.16	11.76	2.13	33.64	18.66		
45	4.15	5.77			L	L	L	L		
		Diamo	nd cv.		Hermes cv.					
25	11.70	10.25	20.83	4.59	3.16	3.51	6.07	14.10		
35	7.13	9.39	11.48	17.99	12.38	4.31	9.50	-0.46		
45	L	L	L	L	L	L	L	L		

L: lethal, ---: no shoots.

Fig. (1). The effect of SiO₂-NPs at (1) 0.00, (2) 5, (3) 10 and (3) 20 ppm under different levels of heat at (A) 25, (B) 35 and (C) 45C° on vegetative and harvested parameters, of "Agria" cv. *in vitro*.

Fig. (2). The effect of SiO2-NPs at (1) 0.00, (2) 5, (3) 10 and (3) 20 ppm under different levels of heat at (A) 25, (B) 35 and (C)45C°on vegetative and harvested parameters, of "Cara" cv. *in vitro*.

Fig. (3). The effect of SiO₂-NPs at (1) 0.00, (2) 5, (3) 10 and (3) 20 ppm under different levels of heat at (A) 25, (B) 35 and (C) 45C°on vegetative and harvested parameters, of "Dimond" cv. *in vitro*.

Fig. (4). The effect of SiO₂-NPs at (1) 0.00, (2) 5, (3) 10 and (3) 20 ppm under different levels of heat at (A) 25, (B) 35 and (C) 45C°on vegetative and harvested parameters, of "Hermes" cv. *in vitro*.

CONCLUSIONS

This is the first study on the effect of SiO₂ NPs on microtuberization of potato under heat stress condition. The obtained results show that all microtubers parameters in Agria cultivar are positively and significantly affected by SiO₂ NPs treatments followed by Hermes, and Cara. On the other hand, there was no significant effect of SiO2 NPs on Diamond cv, under different heat levels. At 45°C, Agria cv. produced the highest value of microtubers weight and length, followed by diamond. While both Herms and Cara did not form any microtubers at the same heat level. According to the results, the four potato cultivars were ranked for heat tolerance based on vegetative, harvested and biochemical parameters with SiO₂ NPs. Agria ranked first, followed by Diamond, then Hermes, and the last cultivar was Cara. The agri-nanotechnology is considered one of the most important and promising issues in this context. It is found that, nanomaterials can alleviate the damage resulting from different abiotic stresses through activating process of plant defense system. Nanomaterial also could improve the productivity, positive morphological effects like improvement germination rate and percentage; shoot and root length.

This finding is very important for the commercial production of potato under combined stresses in arid and semi-arid countries. The biotechnology techniques as agricultural practices are promising tools in ameliorating the adverse impact of heat stress particularly for the potato production during summer months from May to August in arid and semi-arid regions. In future investigations, combination of nanoparticle elements should be performed to evaluate the synergism of these beneficial elements to increase tolerance of potato plants to drought, salinity and heat stress.

REFERENCES

- Adisa, I.O., V.L.R. Pullagurala, J.R. Peralta-Videa, C.O. Dimkpa, W.H. Elmer, J.L. Gardea-Torresdey and J.C. White (2019). Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environ. Sci. Nano., 6: 2002–2030.
- Aien,A., A.K.Chaturvedi, R.N.Bahuguna and M.Pal (2016). Phenological sensitivity to high temperature stress determines dry matter partitioning and yield in potato. Indian J. Plant Physiol., 22: 63-69.
- Sallam, A.R. (2014). *In vitro* propagation, cryopreservation and drought resistance of potato *Solanum tuberosum* L. seeds. Ph.D. Theses., Fac. Agric. (Saba Basha), Alexandria Univ., Egypt.
- Duncan, D.B. (1955). Multiple range and multiple F tests. Biometrics, 11: 1-42.
- El-Saber, M.M., A. Mahdi, A.H. Hassan, K.Y. Farroh and A. Osman A. (2021). Effects of magnetite nanoparticles on physiological

processes to alleviate salinity induced oxidative damage in wheat. J. Sci. Food Agric., 81.

- El-Zohiri, S.S.M. and A.A. Farag (2015). Reduce the adverse impact of high temperature on the green garlic production for export. Fayoum J. Agric. Res. Dev., 29 (2): 17-35.
- Emara, H.A., E.M. Hamza and W.A. Fekry (2017). *In vitro* propagation and microtuber formation of potato in relation to different concentrations of some growth regulators and sucrose. Middle East J. Agric. Res., 6 (4): 1029-1037.
- FAOSTAT [Internet]. Food and Agriculture Organization of the United Nations 2019. Available from: http://www.fao.org/faostat/en/#data/QC.
- Farroh, K.Y., A.A. Mahdi, A. Osman, A. Hassan and A.M. El-saber (2020). Impact of chemically synthesized zinc oxide nanoparticles on saline stressed wheat. Plant Cell Biotechnol. Mol. Biol., 21: 117-136.
- Fouda, M.S., M.H. Hendawey, Gh.A. Hegazi, H.M. Sharada, N.I. El-Arabi, M.E. Attia and E.R. Soliman (2021). Nanoparticles induce genetic, biochemical, and ultrastructure variations in *Salvadora persica* callus. J. Genet. Eng. Biotechnol., 19: 27.
- Foyer, C.H., M. Lelandais and K.J. Kunert (1994). Photooxidative stress in plants. Physiol. Plant., 92: 696-717.
- Gowayed, S.M.H., H.S.M. Al-Zahrani and E.M.R. Metwali (2017). Improving the salinity tolerance in potato (*Solanum tuberosum*) by exogenous application of silicon dioxide nanoparticles. Int. J. Agric. Biol., 19: 183–194.
- Hancock R, Morris W, Ducreux L, Morris J, Usman M, Verrall S, (2014). Physiological, biochemical and molecular responses of the potato (Solanum tuberosum L.) plant to moderately elevated temperature. Plant Cell Environ; 37(2):439-50.
- Hasanuzzaman, M., M.H.M. Bhuyan, F. Zulfiqar, A. Raza, S.M. Mohsin, J. Al Mahmud, M. Fujita and V. Fotopoulos (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9: 681.
- Hassan, N.S, T.A. Salah El Din, M.H. Hendawey, I.H. Borai and A.A. Mahdi (2018). Magnetite and zinc oxide nanoparticles alleviated heat stress in wheat plants. Current Nanomaterials, 3: 32-43.
- Heath R.L. and L. Packer (1968). Photoperoxidation in isolated chloroplasts.I. Kinetics and stoichiometry of fatty acid peroxidation. Archives in Biochemistry and Biophysics, 125: 189-198.
- Hijmans, R.J. (2003). The effect of climate change on global potato production. Am. J. Potato Res., 80: 271-280.
- Hossain, M.S., M.M. Hossain, T. Hossain, M.M. Haque, M. Zakaria and M.D. Sarkar (2017). Varietal performance of potato on induction

and development of microtuber in response to sucrose. Ann. Agric. Sci., 62: 75-81.

- Islam, M.S., M.Z.K. Roni, A.F.M. Jamal Uddin and K. Shimasaki (2017). Tracing the role of sucrose in potato microtuber formation. Plant Omics J.,10 (1): 15-19.
- Khalil, M.M., A.M.H. Abd El Aal and M.M. Samy (2017). Studies on microtuberization of five potato genotypes. Egypt. J. Hort., 44 (1): 91-97.
- Levy, D., and R.E. Veilleux. (2007). Adaptation of potato to high temperature and salinity a review. American Journal of Potato Research 84: 487–506.
- Luyckx, M., J.F. Hausman, S. Lutts and G. Guerriero (2017). Silicon and plants: current knowledge and technological perspectives. Front. Plant Sci., 8: 411.
- Mahdi, A. (2011). Biochemical changes in heat stressed wheat grown at El Wadi El Gedeed. M.Sc. Thesis, Fac. Sci., Ain Shams Univ., Cairo, Egypt.
- Mahdi, A. (2017). Biochemical role of some nanoparticles to counteract heat stress in wheat. Ph.D thesis. Ain Shams University, Cairo, Egypt.
- Mahdi, A.A, M.M. El Saber, A. Osman, A.H. Hassan and K.Y. Farroh (2020). Toxicological and significant execute of biocompatible CuO nanoparticles and their influences on biochemical and molecular markers of wheat genotypes under saline conditions. IOSR Journal of Biotechnology and Biochemistry, 6 (5): 58-74.
- Minhas, J. S., (2012). "Potato: production strategies under abiotic stress," in Improving Crop Resistance to Abiotic Stress. N. Tuteja, S. S. Gill, A. F. Tiburcio, and R. Tuteja (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA), 1155–1167. doi: 10.1002/9783527632930.ch45.
- Moeinil, M. J., M. Armin, M. R. Asgharipour and S. K., Yazdi, (2011). Effects of different plant growth regulators and potting mixes on micro-propagation and minituberization of potato plantlets. Adv. Environ. Bio., 5 (4): 631-638.
- Kafi, M., J. Nabati, B. Saadatian, A. Oskoueian, J. Shabahang and R. Choudhary (2019). Potato response to silicone compounds (micro and nanoparticles) and potassium as affected by salinity stress. Italian Journal of Agronomy, 14: 1182.
- Mohamed, F.H., K.E. Abd El-Hamed, M.W.M. Elwan, N.A. El-Magawry, and M.M. Abd El-Salam (2016). *In vitro* screening of different potato genotypes for heat stress tolerance. Catrina, 15 (1): 77-93.
- Mohapatra, P.P. and V.K. Batra (2017). Tissue culture of potato (*Solanum tuberosum* L.): A review. Int. J. Current Microbiol. Appl. Sci., 4: 489-495.

- Momčilović, I. (2019). Effects of heat stress on potato productivity and nutritive Quality. HRANA I ISHRANA (BEOGRAD), VOL 60(2):43-48.
- Moron, M.S., J.W. Depierre and B. Mannervik (1979). Levels of GSH, GR and GST activities in rat lungs and liver. Biochem. Biophysi. Acta, 582: 67-78.
- Murashige, T. and F. Skoog (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiology, 15: 473-497.
- Othman, M. H. A., A. I. A. Abido, A. A. A. jabal, (2016). *In vitro* Propagation and Ex vitro Acclimatization of Potato (Solanum tuberosum L.) Using Nodal Cutting Explants. J. Adv. Agric. Res. (Fac. Agric. Saba Basha) Vol. 21(108-135).
- Paradiso, A., G. Domingo, E. Blanco, A. Buscaglia, S. Fortunato, M. Marsoni, P. Scarcia, S. Caretto, C. Vannini and M.C. de Pinto (2020). Cyclic AMP mediates heat stress response by the control of redox homeostasis and ubiquitin-proteasome system. Plant Cell Environ., 43: 2727–2742.
- Rajput, V.D., T. Minkina, A. Kumari, V.K. Singh, K.K. Verma, S. Mandzhieva, S. Sushkova, S. Srivastava and C. Keswani (2021). Coping with the challenges of abiotic stress in plants: New dimensions in the field application of nanoparticles. Plants, 10: 1221.
- Rastogi, A., Tripathi, D.K., Yadav, S., Chauhan, D.K., Živčák, M., Ghorbanpour, M., El-Sheery, N.I., Brestic, M., (2019). Application of silicon nanoparticles in agriculture. 3 Biotech, 9, 90.
- Rio, D.D., Stewart, A.J., Pellegrini, N. A., (2005). review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr. Metab. Cardiovasc. Dis. 15, 316–328.
- Rykaczewska K. (2015). The Effect of High Temperature Occurring in Subsequent Stages of Plant Development on Potato Yield and Tuber Physiological Defects. Am. J. Potato Res. 92:339–349.
- Shalaby, T.A., E. Abd-Alkarim, F. El-Aidy, E. Hamed, M. Sharaf-Eldin, N. Taha, H. El-Ramady, Y. Bayoumi and A.R. dos Reis (2021). Nanoselenium, silicon and H₂O₂ boost growth and productivity of cucumber under combined salinity and heat
- Sharada, H., M. Hendawey, Gh. Hegazi, M. Fouda and M. Attia (2018). Biochemical behavior of *Salvadora persica* callus towards TiO and CuO nanoparticles. J. Biol. Chem. Environ. Sci., 12: 435–459.
- Soundararajan, P., I. Sivanesan, S. Jana and B.R. Jeong (2014). Influence of silicon supplementation on the growth and tolerance to high temperature in Salvia splendens. Hort. Environ. Biotechnol., 55: 271–279.

- Steel, R. J. H. Torrie and D.A. Dickey (1997). In: "Principles and Procedure of Statistics: A biometrical Approach". 3rd Ed., McGraw-Hill, New York.
- Tang R, Niu S, Zhang G, Chen G, Haroon M, Yang Q., (2018). Physiological and growth responses of potato cultivars to heat stress. Botany, 96 (12):897-912.
- Uranbey, S. (2017). The effects of salt stress on expression of Asg1gene related stomatal resistance in potato. Mediterranean Agricultural Sciences, 30 (3): 235-238.
- Verma, K.K., X.P. Song, B. Lin, D.J. Guo, M. Singh, V.D. Rajput, R.K. Singh, P. Singh, A. Sharma and M.K. Malviya (2021). Silicon induced drought tolerance in crop plants: physiological adaptation strategies. Silicon, DOI: 10.1007/s12633-021-01071-x
- Wang-Pruski, G. and A. Schofield (2012). Potato: Improving Crop Productivity and Abiotic Stress Tolerance. In: "Improving Crop Resistance to Abiotic Stress", (Tuteja, N., S.S. Gill, A.F. Tiburcio and and R. Tuteja eds.). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, pp. 1121–1153.
- Wang, X., X. Yang, S. Chen, Q. Li, W. Wang and C. Hou (2016). Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in *Arabidopsis*. Front. Plant Sci., 6: 1243.
- Xu, Q., X. Xu, Y. Zhao, K. Jiao, S.J. Herbert and L. Hao (2008). Salicylic acid, hydrogen peroxide and calcium-induced saline tolerance associated with endogenous hydrogen peroxide homeostasis in naked oat seedlings. Plant Growth Regul., 54: 249-259.
- Yamauchi, Y., A. Furutera, and Y. Sugimoto, (2008). Malondialdehyde generated from peroxidized linolenic acid causes protein modification in heat-stressed plants. Plant Physiol. Biochem., 46: 786–793.

تحسين القدرة على تحمل الحرارة في البطاطس

أميرة رشيد سلام^۱*، أسماء عبد القادر المهدي وأحمد عبد الوهاب محمد الحمصاني^٣ وحدة زراعة الأنسجة، قسم الأصول الوراثية، مركز بحوث الصحراء، القاهرة، مصر وحدة الكيمياء الحيوية، قسم الأصول الوراثية، مركز بحوث الصحراء، القاهرة، مصر معمل الحفظ بزراعة الانسجة النباتية، البنك القومي للجينات، مركز البحوث الزراعية، مصر

تعتبر درجة الحرارة أحد الضغوط غير الحيوية الرئيسية التي تؤثر على نمو البطاطس وإنتاجيتها في المناطق شبه القاحلة ومناطق النمو. يمكن أن يؤدي استخدام مناهج التكنولوجيا الحيوية الجديدة وتطبيق المواد النانوية إلى تحسين إنتاجية وجودة البطاطس. أثبت استخدام بعض العناصر في صورة النانو مثال نانو السيليكون (SiO2 NPs) إلى تعزيز النمو والإنتاجية في ظل الضىغوط المختلفة مثل الملوحة والجفاف والمعادن الثقيلة. في هذه الدراسة، تم اختبار فاعلية النانو سيلكون عند ٥، ١٠ و٢٠ جزء في المليون، تحت مستويات مختلفة من الحرارة عند ٢٥، ٣٥ و٤٥ درجة مئوية. ودراسة تأثيرها على النمو والقياسات البيوكيميائية لأربعة أصناف من البطاطس في المعمل. أشارت النتائج إلى تفوق الصنف أجريا والذي أعطى تأثير إيجابي معنوي مع تركيزات السيليكون، يليه الصنف هيرمس وكارا. من ناحية أخرى لم يكن هناك تأثير معنوي لـلسيليكون على الصنف دايمونت تحت مستويات الحرارة المختلفة. عند ٤٥ درجة مئوية، أنتج الصنف أجريا أعلى قيمة لوزن وطول الدرنات الدقيقة، يليه الصنف دايمونت مع التركيز ات ٥ و٢٠ جزء في المليون من النانو سيلكون. كانت أعلى قيم للصفات الخضرية لصنف أجريا عند استخدام ١٠ جزء في المليون من النانو سيلكون عند ٣٥ درجة مئوية. بالنسبة لصفات الحصاد لنفس الصنف كانت أعلى قيمة لوزن الدرنات الدقيقة عند ٤٥ درجة مئوية دون تأثير معنوي بين تركيزات السيليكون في الصورة النانو. أعلى طول للدرنات الدقيقة كان عند ٥ و ١٠ جزء في المليون من تركيزات السيلكون عند حرارة ٤٥ درجة مئوية. وبالنسبة لقطر الدرينة فإنه لا يوجد أي تأثير معنوي لتركيزات السيلكون تحت كل مستويات الحرارة. أيضًا، كانت قيمة الجلوتاثيون GSH الأعلى بمقدار ٥ جزء في المليون عند ٤٥ درجة مئوية. فيما يتعلق بمستوى المالون داي الدهايد MDA، فإن أدنى مستوى من المادة السامة MDA كان في عدم وجود النانو سيليكون، وزاد في المعاملات الأخرى عند درجة حرارة ٢٥ مئوية وعند ٣٥ درجة مئوية. تم تسجيل الحد الأدنى من MDA عند التركيز ٢٠ جزء في المليون. وبشكل عام، أدت أعلى درجة حرارة (٤٥ درجة مئوية) إلى زيادة تراكم MDA.