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Abstract: It has been argued in [10] that due to the lack of sweeping of small scales by large 
scales in kinematic simulation, the validity of the Richardson's power law might be affected.  
Here, we argue that the discrepancies between the authors on the ability of kinematic 
simulation, KS, to predict Richardson power law may be linked to the inertial subrange they 
have used.  For small inertial subrange, KS is efficient and the significance of the sweeping 
can be ignored, as a result we limit the KS agreement with the Richardson scaling law t3 for 
inertial subrange kN/k1 ≤ 10000.  Above this value, the sweeping effect of the small scales by 
the large scales must be taken in considerations where KS failed to reproduces this power law 
in that range as obtained in [13]. 
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1. Introduction 
Two-particle separation is defined as: 
 
(t) = X2(t)-X1(t)            (1) 
 
where X1(t) is the position of the first particle and X2(t) the position of the second particle at 
time t. 
 
Two-particle relative separation is defined as: 
 
r(t) = |(X2(t) - X2(t0)) - (X1(t) - X1(t0)) |         (2) 
 
where t0 is the time of release of the particles or initial time.  Two-particle separation and 
relative separation have received much research attention since the pioneering work of [1].  
This separation depends on the concentration covariance and not on the average 
concentration.  Consequently, this concentration covariance is governed by some features of 
two-particle statistics [2].  To characterize these statistics of two-particle separation, the 
mean-square separation between the two particles X1(t) and X2(t),  2(t)  has been used, 
where (t) = X2(t) – X1(t). This is the first quantity to understand in the study of the two-
particle separation in turbulent flow.   
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Richardson [1] studied the diffusivity d/dt 2(t) as a function of the mean-square 
separation, 2(t), between two particles in the inertial subrange of turbulence. That is when 
 < (t) < L, where L is the upper limit length scale of the inertial range, Richardson 
introduced the locality assumption and derived his four-third law of diffusion: 
 
 d/dt 2(t)  4/3(t)                         (3) 
 
His locality assumption states that the mean square separation reaches a limit as the averaging 
time is increased because only eddies comparable in size with the separation are effective.  
Neglecting the initial separations 0,  is the rate of dissipation energy per unit mass and 
applying Kolmogorov's similarity theory to the relative diffusion of particles, Obukhov [3] 
and Batchelor [4] obtained the famous t3 law for diffusion in isotropic turbulence. 
 
2(t) = G  t3                               (4) 
 
where G is the Richardson universal dimensionless constant in an intermediate inertial range 
of times and of order of 0.1. This latter equation implies Richardson's diffusivity law (3) and 
therefore suggests that his locality assumption applies to the two-particle diffusion in the 
inertial range. 
 
From that time, many researches have been carried out both to validate this power scaling and 
to validate numerical methods on that power law.  Validation of the power law (4) have been 
attempted either experimentally as in [5] in a two-dimensional turbulent flow but to a limiting 
Reynolds number or numerically as in [6].  They have been faced with a limiting Reynolds 
number not large enough to get clear inertial subrange statistics. 
 
Here we study the case of Kinematic Simulation which allows one to reach a high enough 
Reynolds number to get a reasonable inertial subrange statistics to validate the Richardson's 
power law.  Many studies have been done using KS to study the turbulent diffusion of particle 
pairs.  This has been done either to validate the power law in different ranges of Reynolds 
numbers or to find a specified value for the Richardson's constant, G, which still has 
uncertainties in its value.  There has been some contradictory conclusion as to the ability of 
KS to predict a t3 law.  According to [2, 7-9] KS predict (3), according to [10] they do not. 
 
To clarify the situation, we analyze, in each study, the inertial subrange which is used to study 
the particle diffusion.  Fung and Vassilicos [2] investigated two-particle diffusion in a two-
dimensional turbulent flow using KS and study the locality assumption, the fractal-eddy 
structure and the straining regions' role in separating the particle pairs.  They validated the 
locality scaling for power spectrum exponent ≤ 3 spanning more than one decade, with an 
inertial subrange kN/k1 = 4000.  Moreover, in [7], Malik and Vassilicos made the first direct 
comparison between the results obtained from Yeung's direct numerical simulation [6] and 
those obtained from KS.  This reflects the first validation test for KS as a serious Lagrangian 
modeling tool for fluid particle pair diffusion in an isotropic, three dimensional turbulent 
flows.  The simulated inertial subrange was in the range kN/k1 = 400.  They concluded that 
their results were in agreement with those obtained by DNS.  They also showed that the 
unsteadiness parameter that is used as an input in KS has no significant effect on the 
Lagrangian statistics. 
 
Later in [11], Nicolleau and Vassilicos used the kinematic simulation technique to model 
particle pair separations in a two-dimensional turbulent flow.  Their results were obtained for 
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an inertial subrange up to kN/k1 = 250000.  They succeeded to reproduce the laboratory results 
of [5].  However, they could not observe the Richardson regime at high inertial subrange, 
kN/k1 = 38748, except at certain initial separations, 0 =  and 0 = 0.1.  Their deviation 
from the Richardson's law without the dependency of the initial separations was left as an 
open question.  In [8], Davila and Vassilicos used KS to determine the relation between 
Richardson's power law exponent for the pair separation, , and the fractal dimension of the 
stagnation points, Ds, in isotropic turbulent flow.  They found this relation to be  = 6/Ds for 
the inertial subrange kN/k1 = 1000 for different values of the energy spectrum exponent 1 ≤ p 
≤ 2.  Moreover, they found that the Richardson constant is an increasing function of Ds.  In 
[9], Nicolleau and Yu studied two-particle diffusion in a three-dimensional statistically 
isotropic turbulent flow using KS for different power law exponent of the energy spectrum 
from 1.2 to 3 and its effect on two-particle diffusion.  But they limit this study to kN/k1 = 
2000.  They validated this range over a range of scales and also studied two-particle mean 
diffusivity when the two-particle separation is larger than Kolmogorov length scale. 
 
Recently in [10], Thomson and Devenish have investigated the particle pair separation using 
KS with a particular attention paid to the problems caused by the lack of sweeping of small 
scales by the larger scales in KS.  As a consequence, they expected that the mean-square 
separation would grow in a different way from Richardson scaling because the large scales 
can influence the rate of separation.  In the case of flows with a large mean velocity, the 
scaling grows as t6 and in the case where there is no mean velocity the scaling grows as t9/2.  
This was confirmed by KS numerical simulations for an inertial subrange range kN/k1 = 106 
and 108 which conflicts with Richardson's power law in real flows.  Finally they raised a 
question about the applicability of KS to produce the particle pair statistics as in real flow. 
 
As a reply, in [12], Osborne et al have investigated the separation of particle pairs using 
kinematic simulation with attention to the argument that has been raised by [10] for the 
problem caused by the lack of sweeping of the small scales by the large scales found in KS.  
They simulated the inertial subrange in the range kN/k1 = 104.   They have argued that the 
main difference between their results and those obtained in [10] is due to the integration time 
step where they used a constant time step lower than the lowest time scale while in [10].  
They have used an adaptive time step depending on the instantaneous separation of the 
particles.  They concluded that, for the results predicting the temporal scaling of fluid pair 
separation based on the lack of the KS to the sweeping of small scales by large scales, KS 
reproduces Richardson's power law over a wide range of scales and not as the one predicted in 
[10]. 
 
Consequently in [13], Devenish and Thomson changed the adapted time step used in their 
previous results [10] to small fixed time step.  They studied the particle pair separation using 
KS with the same attention paid to the resulting mean-square separation to obey Richardson' 
scaling t3 in turbulent flow with the same inertial subrange range kN/k1 = 106 and 108.  They 
confirmed that with the new time step used they got the same trend of the mean-square 
separation to grow as t6 in the case of large mean flow and as t9/2 in the case of no mean flow.  
They concluded with these numerical simulations that KS is unable to represent the separation 
scaling as in real flow.  This was consistent with their previous results in [10] because of the 
lack of sweeping of small scales by the larger scales in KS. 
 
In the present work, we study particle pair separations in an isotropic turbulent flow using KS 
and investigate the ability of this method to reproduce the well known Richardson's law.  The 
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numerical approach used to generate turbulent flow field is introduced in section 2, the results 
obtained are presented in section 3. 
 
 
2. Kinematic simulation technique 
Kinematic Simulation is a Lagrangian model for turbulent diffusion based on a simplified 
incompressible velocity field which kinematically simulates the Eulerian velocity field and is 
generated as a sum of random incompressible Fourier modes with a proper wave number 
energy spectrum and only modeled the inertial subrange of the energy spectrum.  The 
interactions between the random Fourier modes are not modeled hence KS miss their 
dynamics which is called the lack of sweeping between different modes, this fact has been 
argued in [12] for one-particle statistics and argued for two-particle statistics as in [10] and 
recently in [13]. 
 
The computational simplicity of KS allows one to consider large inertial sub-ranges and 
Reynolds numbers, Re.  With this method, the computational task reduces to the calculation 
of the trajectory of each particle placed in the turbulent field; each trajectory is, for a given 
initial condition, solution of the differential equation: 
 
dx/dt = uE(x,t)             (5) 
 
where uE is the Eulerian velocity supposed to be given by KS.  This is done by integrating 
Equation (5) using the 4th order predictor corrector method (Adams-Bashforth-Moulton) in 
which Runge-Kutta-4 is used to compute the first three points in the Adams-Bashforth's 
method. For each realization of the velocity field, the trajectories for each particle have been 
computed simultaneously.  This kind of computation does not require the storage of a lot of 
data with very big tables as with direct numerical simulation.  As in [2, 14], the 3-D KS 
turbulent velocity field in this paper is kinematically presented by a truncated Fourier series, 
sum of N random Fourier modes: 
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where N is the total number of Fourier modes, the wave vector kn is randomly oriented.  The 
vectors an and bn are chosen independently and randomly in a plane normal to kn to ensure 
that the velocity field is incompressible .u = 0.  Their amplitudes have been chosen to be 
consentient with the prescribed energy spectrum. 
 
The wave number distribution is chosen as follows: 
 
kn = k1 (kN/k1) 

((n-1)/(N-1))             (7) 
 
The Kolmogorov length scale is defined as  = 2/kN.  The ratio between the integral and 
Kolmogorov length scales is L/ = kN/ k1 which is used to determine the inertial range and the 
associated Reynolds number: Re = (L/)4/3 = (kN/k1)

4/3.  In this study, we will use an energy 
spectrum characterized by a power law with an exponent, p, varying from 1.27 to 1.97: 
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where Ck is the Kolmogorov constant (Ck=1.5) [15] and  is the dissipation rate of energy per 
unit mass ( = u’3 / L).  The rms of the turbulent velocity fluctuation is: 
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The integral length scale of the isotropic turbulence is defined as follows: 
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The unsteadiness frequency, n, determines the unsteadiness associated with the nth wave 
mode and is proportional to the eddy turnover frequency of that mode as: 
 
ωn = λ (kn

3 E(kn))  
½           (11) 

 
where  is the unsteadiness parameter, this parameter enables one to create three-dimensional 
effects in the case of a two-dimensional simulation. 
 
The value of the first wave number, k1, has been set to 2 for all simulations and the number 
of modes used has been set to Nk = 200 for different inertial subranges.  It has been shown [7] 
that in three-dimensional isotropic KS for two-particle diffusion, most of the statistical 
properties are insensitive to the unsteadiness parameter's value, provided that it rests in the 
range 0 ≤  ≤ 1. In accordance with these results we have not added any unsteadiness term 
(=0) in most of our KS simulations except to explain its effect on the validity of 
Richardson’s regime. The turnover time is defined as td = L/u' and the Kolmogorov time scale 
is t (defined as t = td (/L)2/3). 
 
 
3. KS and Richardson Regime Validation 
The equation of motion, Equation (5), was integrated over 4000 realizations of the flow field.  
Runs have been made for 103 ≤ kN/k1 ≤ 108; in order to study the effect of the Reynolds 
number.  We fix the initial separation to be 0/ = 10 to make a direct comparison with the 
results obtained in [13].  All the runs parameters are tabulated in Table 1 for initial separation 
0/ = 10, r.m.s. velocity u’ =1 ms-1 and turnover time of the largest scale td = 1 s. 
 
Figure 1 shows the results obtained from KS compared with the results obtained from [13] at 
a high inertial subrange kN/k1 = 108.  It can be noticed that our KS model is able to reproduce 
approximately the same results that obtained by [13] with small deviations.  Consequently, we 
will use this model to show that the validation of the Richardson regime using KS dependents 
on the length of the inertial subrange. 
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Table 1   Different cases studied for two-particle separations 
 

Case kN / k1 p   Case kN / k1 p   

A 103 1.67 0 6.28 10-3 N 105 1.67 0 10-5 
B 104 1.27 0 6.28 10-4 O 106 1.27 0 10-6 
C 104 1.37 0 6.28 10-4 P 106 1.37 0 10-6 
D 104 1.47 0 6.28 10-4 Q 106 1.47 0 10-6 
E 104 1.57 0 6.28 10-4 R 106 1.57 0 10-6 
F 104 1.67 0 6.28 10-4 S 106 1.67 0 10-6 
G 104 1.67 0.25 6.28 10-4 T 106 1.67 0.5 10-6 
H 104 1.67 0.5 6.28 10-4 U 106 1.67 1 10-6 
I 104 1.67 0.75 6.28 10-4 V 106 1.77 0 10-6 
J 104 1.67 1 6.28 10-4 W 106 1.87 0 10-6 
K 104 1.77 0 6.28 10-4 X 106 1.97 0 10-6 
L 104 1.87 0 6.28 10-4 Y 107 1.67 0 10-7 
M 104 1.97 0 6.28 10-4 Z 108 1.67 0 10-8 
 
 

 
Fig. 1   Particle pair separation results obtained from KS; solid line from the current 

simulation, stars from the results obtained from [13], (case Z in Table 1) 
 
 

3.1 Particle pair diffusivity: 
In Figure 2, the particle pair separations <2>/L2 are plotted as a function of time for different 
inertial subranges, 103 ≤ kN/k1 ≤ 106. The slope of Richardson's scaling (t3) and the slope 
proposed in [13] (t9/2) are added to the figure. 
 
It can be noticed that for small inertial subranges, up to kN/k1 = 104, the curves seem to follow 
Richardson's scaling t3, but for higher inertial ranges they seem rather to follow the scaling 
t9/2.  As mentioned in \the introduction, for [1] the reference quantity was the two-particle 

13 
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diffusivity. The locality in scale assumption was made for the diffusivity.  Working directly 
on: 
 
(d/dt) <2(t)>  <2(t)> 2/3          (12) 
 
is keeping closer to this fundamental assumption. [9] argued that plots of pair separations as 
functions of time as in Figure 2 can be misleading and their analysis need to be complemented 
by an analysis in terms of diffusivity.   
 
In particular, conclusions are easier to draw from plots of (d/dt) <2(t)> as they remove part 
of the initial separation 0 effects.  Accordingly, in Figure 3 we plot (d/dt) <2(t)>/<2(t)>2/3 
as a function of <2>/L2 for the different cases of Figure 2. A horizontal trend will validate 
each law respectively. 
 
Whereas, for comparison, we plot (d/dt) <2(t)>/<2(t)>7/9 in Figure 4 as a function of 
<2>/L2 for the same cases. 
 
Comparing both figures we can conclude that 
 
(d/dt) <2>  <2> 2/3                     (13) 
 
for inertial ranges kN/k1 ≤ 104. For larger ranges, Equation (13) is verified only after large 
separations, i.e. when /L  10-2. Otherwise: 
 
(d/dt) <2>  <2> 7/9 for kN/k1 > 104 and /L < 10-2       (14) 
 
In other words KS seems to struggle with Richardson's locality-in-scales hypothesis at small 
scales, not at large scales, in contrast to what was first suggested by the results in [10]. 

 
Fig. 2   Two particle separation as a function of time for different inertial subranges  

(cases A, F, N and S in Table 1). 
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Fig. 3   (d/dt) <2(t)> / <2(t)> 2/3 as a function of <2>/ L2, p=5/3, 
 same cases as in Fig. 2. 

 
 

 
 

Fig. 4   (d/dt) <2(t)> / <2(t)> 7/9 as a function of 2 / L2, p=5/3, 
 same cases as in Fig. 2. 
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3.2 Sensitivity to the energy spectrum power law: 
Following [2, 16], Equation (12) can be written in a general form for a turbulence energy 
spectrum: 
 
E(k)  k-p            (15) 
 
as follows: 
 
(d/dt) <2(t)>  <2(t)> c          (16) 
 
which leads to 
 
<2(t)>   t (1/1-c)           (17) 
 
With the following relations: 
 
1/(1-c) = 4/(3-p)           (18) 
 
where p is the energy spectrum exponent and varies as 1 ≤ p ≤ 2.  When E(k)  k-5/3 we 
retrieve c = 2/3 and t3. Equation 16 is more general but still relies on Richardson's locality-in-
scale hypothesis. 
 
In order to see the consistency of KS with this hypothesis and to have a better idea of the 
effect of increasing the inertial subrange on KS prediction of Richardson's law, we repeat 
previous results for different spectral power laws. We vary p in Equation 15 from 1.27 to 1.97 
and also vary the inertial range kN/k1 (see the different cases reported in Table 1). 
 

 
 
Fig. 5   (d/dt) ) <2(t)> / <2(t)> c as a function of <2> / L2 for different energy spectrum 

power laws and kN/k1=104,  (cases B, C, D, E, F, K, L and M in Table 1). 
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Fig.   6 (d/dt) ) <2(t)> / <2(t)> 7/9 as a function of <2> / L2 for different energy 

spectrum power laws and kN/k1=104 same cases as in Fig. 5. 
 
Figure 5 shows that all the curves collapse showing a remarkable consistency of KS with 
Richardson's locality-in-scale hypothesis and [2, 16] 's prediction (16). 
 
For comparison we plot <2(t)> / <2(t)> 7/9 as a function of <2> / L2 for the same cases in 
Figures 6.  We can conclude that Equation (16) is verified, that is the locality-in-scale 
hypothesis is verified for inertial ranges kN/k1 < 104 and spectral powers 1.27 ≤ p ≤ 1.97.  We 
repeat the computations for a larger inertial range kN/k1=106 in Figures 7 and 8 respectively. 
 

 
Fig. 7. (d/dt) ) <2(t)> / <2(t)> c as a function of <2> / L2, kN/k1 = 106,  

(cases O, P, Q, R, S, V, W and X in Table 1). 
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Fig. 8   (d/dt) ) <2(t)> / <2(t)> 7/9 as a function of <2> / L2 for different energy 

spectrum power laws and kN/k1=106, same cases as in Fig. 7. 
 
Figure 7 generalizes the conclusions made for p=5/3 that is KS is remarkably consistent with 
the locality assumption as all the curves collapse for the different values of p.  When 
comparing Figures 7 and 8, we can also conclude that the locality-in-scale hypothesis and 
Equation 16 are verified for 1.27 ≤ p ≤ 1.97 and /L  100.  Therefore KS difficulty to match 
Richardson's prediction is again localized to small scales (/L ≤ 10-2) and there is no effect of 
the spectral power law p on this range. 
 
This questions the statement that KS cannot reproduce well Richardson's t3 because it does 
not accurately model the sweeping of small eddies by large eddies. The sweeping problem 
should be different with different spectral laws but we cannot see any effect of p in Figure 7.  
Furthermore for all values of p the problem is with small separations not with large 
separations which reproduce well [2, 16] 's prediction. 
 
 

3.3 Effect of varying the unsteadiness parameter on the Validity of Richardson 
      Regime 

It is worth remembering that sweeping mechanisms have been proposed for KS, the most 
popular is the term n defined in Equation (11).  In all the cases we studied before, the 
unsteadiness parameter  was fixed to 0 as there is no conclusive results from previous 
researches showing it has any significant effect in three-dimensional KS.   
 
In order to show if this parameter can have an effect on KS prediction of Richardson law, we 
repeat our results for p=5/3 for 0 ≤  ≤ 1. Figure 9 corresponds to kN/k1 =104 and Figure 10 to 
kN/k1=106. 
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From Figures 9 and 10, it can be noticed that  has no effect on the prediction of the 
diffusivity scaling. Even if the unsteadiness modeling, Equation (11), can be improved and if 
the sweeping was the main reason, why our KS cannot match Richardson's predictions at 
small separations we should see some alteration in the diffusivity when varying . However, 
the curves in Figures 9 and 10 collapse irrespective of the value of . 
 
 

 
Fig. 9   Effect of the unsteadiness parameter on the normalized diffusivity with respect 

to Richardson's law as a function of the two-particle separations, p=5/3 and 
kN/k1 =104, (cases F, G, H, I and J in Table 1). 

 
 

 
Fig. 10   Same as Fig. 9 but for kN/k1 =106. 
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4. Conclusion 
The problem remains our KS prediction departs from [16]'s prediction at small scales for large 
inertial ranges. However, our results are still close to the theoretical prediction and it would be 
fairer to conclude that KS predictions are not as good at small separation as at large 
separation.  For small inertial subrange, KS is efficient and the significance of the sweeping 
can be ignored, as a result we limit the KS agreement with the Richardson scaling law t3 for 
inertial subranges kN/k1 ≤ 104.   Above this value, the sweeping effect of the small scales by 
the large scales must be taken in considerations where KS failed to reproduces this power law 
in that range as obtained in [13]. 
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