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System Identification Using Intelligent Algorithms 
 

Zaki B. Nossair*, A. A. Madkour**, M. A. Awadalla*** , M. M. Abdulhady† 
 
Abstract: This research presents an investigation into the development of system 
identification using intelligent algorithms. A simulation platform of a flexible beam vibration 
using finite difference (FD) method is used to demonstrate the capabilities of the 
identification algorithms. A number of approaches and algorithms for system identifications 
are explored and evaluated. These identification approaches using (a) traditional Recursive 
Least Square (RLS) filter, (b) Genetic Algorithms (GAs) (c) Adaptive Neuro_Fuzzy Inference 
System (ANFIS) model (d) General Regression Neural Network (GRNN) and (e)Bees 
Algorithm (BA). The above algorithms are used to estimate a linear discrete second order 
model for the flexible beam vibration. The model is   implemented, tested and validated to 
evaluate and demonstrate the merits of the algorithms for system identification. Finally, a 
comparative performance of error convergence of the algorithms is presented and discussed. 
 
Keywords: System identification, adaptive control, intelligent identification, recursive least 
squares algorithm, Genetic algorithm, ANFIS,  Bees Algorithm.  
 
 
1 Introduction 
This paper presents an investigation into the development of a discrete time model based on 
the observation of the input and output signals. Such models can be used for control system 
design, adaptive guidance or fault detection [1]. Parameter estimation, in turn system 
identification is a common criterion for control system, in particular for sensitive or adaptive 
control system design. In fact, a closed loop control system may be unstable or exhibit 
unacceptable transient response characteristics if the estimated parameters used in the system 
model for controller design do not coincide with the actual process parameters. Therefore, 
accurate and reliable parameters estimation technique is critical for the design and 
development of high-performance control systems in which the estimated parameters are 
often used in the field orientation, motion control, self-sensing, and other advanced 
algorithms. 
 
The main objective of this paper is to identify a linear discrete second order model using RLS 
filter, GAs ANFIS, GRNN and BA. A simulation platform of a flexible beam system in 
transverse vibration using FD method [4] is considered to demonstrate the capabilities of the 
algorithms for system identification. The proposed second order model is implemented using 
the RLS, GAs, ANFIS, GRNN, and BA. It is then tested and validated for system 
identification within the simulation framework of a flexible beam system.  Finally, a
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comparative performance of the fore algorithms are presented and discussed to demonstrate 
the capabilities of the algorithm in implementing system identification.  
 
 
2 Traditional RLS Algorithms 
This is a traditional adaptive filter algorithm. It estimates the current parameter vector )(ˆ k  

based on the previous estimated vector )1(ˆ k , as follows [2], [3]: 
 

)),(),1(ˆ()(ˆ kkDkfk    (1) 

 
where, )(kD  denotes data available at time )(k , and f(.,.,.) denotes an algebraic function, the 
form of which determines the specific algorithm. In the case of dynamic system, data )(kD  
normally consider the form of present and past observation of the system outputs and inputs. 
For multi-parameter system, this form can be represented as follows: 
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The estimation of the parameters vector   is performed in a way such that the estimated r̂  
minimizes the cost index )(rJ , where r  denotes the number of sets of measurement, 
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Equation (5) can be written in a recursive form as: 
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3 Intelligent Identification Algorithms   
The conventional system identification schemes are in essence local search techniques. These 
techniques often fail in the search for the global optimum if the search apace is not 
differentiable or linear in the parameters. On the other hand, these techniques do not iterate 
more than once on each datum received. An alternative strategies using artificial intelligence 
algorithm could provide better solution. To achieve this goal four most commonly used 
intelligence algorithms are used to demonstrate the capabilities. These are described below. 
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3.1 Genetic Algorithm 
Over the last decade, genetic algorithms (GAs) have been extensively used as search and 
optimization tools in various problem domains.  GA simultaneously evaluates many points in 
the parameter space and converges towards the global solution. The genetic algorithm differs 
from other search techniques by the use of concepts taken from natural genetics and evolution 
theory [5], [6]. According to Goldberg [7] GAs are different from more normal optimization 
and search procedures in four ways: 

 
 GAs work with a coding of the parameter set, not the parameters themselves. 
 GAs search from a population of points, not a single point. 
 GAs use payoff (objective function) information, not derivatives or other auxiliary 

knowledge. 
 GAs use probabilistic transition rules, not deterministic rules. 

 
The basic GA evolution can be summarized as follows: create a population of individuals 
(solutions), evaluate their fitness, generate a new population by applying genetic operators, 
and repeat this process for a number of times [6-8]. The GA iteratively uses selection, 
crossover and mutation operators for the population evolution. Selection operator selects 
solutions to be parents based on their fitness. Crossover operator is used on these parent 
strings to obtain the new solutions that inherit the good and bad properties of their parent 
solutions. There are many traditional crossover operators such as uniform, single point and 
multipoint crossovers. Mutation operator is then applied to produce new characteristics, 
which are not present in the parent solutions. The newly created solutions form new 
population for the next generation. 
 
The GAs consider the same multi parameter system given by equation (2). Binary strings are 
used to represents a solution (individual). The fitness function for the system can be defined 
as [2], 

 
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where, )(ky  is measured output, )(ˆ ky  is estimated model output, and r  is the number of sets 
of measurement  considered. Equation (8) may be written in vector form as: 
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3.2 Adaptive Neuro-Fuzzy Inference System  

The ANFIS techniques provide a method for the fuzzy modeling procedure to learn 
information about a data set, in order to compute the membership function parameters that 
best allow the associated fuzzy inference system to track the given input-output data. This 
learning method works in a similar form of the neural networks. There is a MATLAB© 
function in the Fuzzy Logic Toolbox that accomplishes this membership function parameter 
adjustment called ANFIS. This hybrid adaptive Neuro-fuzzy function ANFIS is used for 
system identification which is the major training routine for Sugeno-type fuzzy inference 
systems (FIS). ANFIS has been reported to produce good results as a function approximation 
tool [9-11] . 
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Figure 1 shows the basic structure of the ANFIS algorithm for a first order Sugeno-style fuzzy 
system. It is worth noting that the Layer-1 consists of membership functions described by 
generalized bell function: 

 
  12 ))/)((1()(  bacXX        (10) 

where ba,  and c  are adaptable parameters. Layer-2 implemented the fuzzy AND operator, 
while Layer-3 acts to scale the firing strengths. The output of the Layer-4 is comprised of a 
linear combination of the inputs multiplied by the normalized firing strength w . 

 

 

Fig. 1   Basic ANFIS structure. 
 
 

 )( rpXwY                                                (11) 

 
where, p and r  are adaptable parameters. Layer-5 is simple summation of the outputs of 
layer-4. The adjustment of modifiable parameters is a two step process. First, information is 
propagated forward in the network until Layer-4, where the parameters are identified by a 
least-squares estimator. Then the parameters in Layer-2 are modified using gradient descent. 
The only user specified information is the number of membership functions in the universe of 
discourse for each input and the input-output is considered as training data. 
 
 

3.3 The General Regression Neural Network 
Use of neural network (NN) techniques to solve problems in guidance began in the late 1990s 
by E. J. Song, and L. H.  Tahk [12]. The basic idea of neural network midcourse guidance is 
to train neural networks to learn the functional form of the optimal guidance command in 
terms of the current states and terminal conditions, and use them for real-time guidance [13]. 
 The GRNN is the NN architecture that can solve any function approximation problems in the 
sense of estimating a probability distribution function [14]. It is a powerful memory based 
network that could estimates continuous variables and converges to the underlying regression 
surface [15]. 
 
The main advantage of the GRNN approach is simplicity. It is noted that the adjustment of 
only one parameter is sufficient for determining the network. GRNN approximates any 
arbitrary function between input and output vectors, drawing the function estimate directly 
from the training data. Furthermore, as the training set size becomes large, the estimation 
error approaches zero, with only mild restrictions on the function [16].  
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GRNN was firstly developed by Specht (1991), who claims that the algorithm in GRNN is 
able to provide a smooth transition from one observed value to another, even with sparse data 
in a multidimensional measurement space [17]. 
 

 

Fig. 2   Basic GRNN structure. 
 
GRNN is a feed-forward NN established on the theory of non-linear regression. It is a three-
layer network with one hidden layer [14]. Each layer has entirely different roles. 
 
The input layer: where the inputs are applied.  
 
The hidden layer:  where a nonlinear transformation is applied on the data from the input 
space to the hidden space, in most applications the hidden space is of high dimensionality.  
 
The linear output layer:  where the outputs are produced. 
 
 

3.4 Bees Algorithm  
The Bees Algorithm is an optimization algorithm inspired by the natural foraging behaviour 
of honey bees to find the optimal solution. It belongs to the category of “intelligent” 
optimization tools as it also simultaneously evaluates many points in the parameter space and 
converges towards the global solution and is also based on the method of minimization of the 
prediction error. Bees Algorithm requires a number of parameters to be set, namely: number 
of scout bees (n), number of sites selected out of n visited sites (m), number of best sites out 
of m selected sites (e), number of bees recruited for best e sites (nep), number of bees 
recruited for the other (m-e) selected sites (nsp), initial size of patches (ngh) which includes 
site and its neighborhood and stopping criterion. The algorithm starts with the n scout bees 
being placed randomly in the search space. The fitnesses of the sites visited by the scout bees 
are evaluated in step 2 by equation (8) also like The GA In step 4, bees that have the highest 
fitnesses are chosen as “selected bees” and sites visited by them are chosen for neighborhood 
search. Then, in steps 5 and 6, the algorithm conducts searches in the neighborhood of the 
selected sites, assigning more bees to search near to the best e sites. The bees can be chosen 
directly according to the fitnesses associated with the sites they are visiting. Alternatively, the 
fitness values are used to determine the probability of the bees being selected. Searches in the 
neighborhood of the best e sites which represent more promising solutions are made more 
detailed by recruiting more bees to follow them than the other selected bees. Together with 
scouting, this differential recruitment is a key operation of the Bees Algorithm. However, in 
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step 6, for each patch only the bee with the highest fitness will be selected to form the next 
bee population. In nature, there is no such a restriction. This restriction is introduced here to 
reduce the number of points to be explored. In step 7, the remaining bees in the population are 
assigned randomly around the search space scouting for new potential solutions. These steps 
are repeated until a stopping criterion is met. At the end of each iteration, the colony will have 
two parts to its new population – representatives from each selected patch and other scout 
bees assigned to conduct random searches.[18] 
 

1. Initialize population with random solutions. 
2. Evaluate fitness of the population. 
3. While (stopping criterion not met) - format new population. 
4. Select sites for neighbourhood search. 
5. Recruit bees for selected sites (more bees for best e sites) and evaluate fitnesses.  
6. Select the fittest bee from each patch. 
7. Assign remaining bees to search randomly and evaluate their fitnesses. 
8. End While 

 
 
4 The flexible beam system 
 
Consider a cantilever beam as a plant model of length L , fixed at one end and free at another, 
with a force  txU ,  applied at a distance x  from its fixed (clamped) end at time t , resulting a 

deflection  txy ,  of the beam from its stationary (fixed) position at the point where the force 
has been applied. The motion of the beam in transverse vibration is, thus, governed by the 
well known fourth-order partial differential equation (PDE) [19]. 
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where   is a beam constant given by 
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density, cross-sectional area, moment of inertia of the beam and the Young modulus 
respectively, and m  is the mass of the beam. The corresponding boundary conditions at the 
fixed and free ends of the beam are given by 
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Note that the model thus utilised incorporates no damping. To construct a suitable platform 
for test, a method of obtaining numerical solution of the PDE in equation (12) is required. 
This can be achieved by using the finite difference (FD) method. This involves a 
discrimination of the beam into a finite number of equal-length sections (segments), each of 
length n , and considering the beam motion (deflection) for the end of each section at 
equally-spaced time steps of duration t. Thus, first-order central FD methods is used to 
approximate the partial derivative terms in equations (12) and (13) yields. 
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Fig. 3   Schematic diagram of the cantilever beam system. 
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where, 

kY  ( 1 , ,1  jjjk ) is an 1n  matrix representing the deflection of grid-points 1 to 

n  of the beam at time step k , S is a matrix, given in terms of characteristics of the beam and 
the discrimination steps t  and x , and     2422   xt . Equation (14) is the required 
relation for the simulation algorithm, characterising the behaviour of the cantilever beam 
system, which can be implemented on a digital computer easily. It has been shown that a 
necessary and sufficient condition for stability satisfying this convergence requirement is 
given by 25.00 2    [20]. 
 
 
5 Implementation and results 
A cantilever beam in transverse vibration of length L = 0.635 meter, mass m = 0.037 kg, was 
considered as plant for investigation. The beam was discretised into 19 small segments. To 
allow dominant modes of vibration of the beam to be excited, a step disturbance force (0.1N) 
of finite duration was applied to a suitable node of the beam. The input and output samples of 
the plant was collected from two suitable nodes of the beam. Moreover, sample period was 
selected as 3.0t ms which is sufficient to cover all the resonance modes of vibration of the 
beam [21]. 
 
A linear discrete second order model was estimated using the RLS, GA, RCGA, ANFIS, 
GRNN and BA. 
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Investigations were carried out using MATLAB© Genetic Algorithm Toolbox Version 2.0.2 
for TCGA, Neural Network Toolbox Version 5.0.1 for GRNN, and MATLAB© Fuzzy Logic 
Toolbox Version 2.2.4 for ANFIS. 
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The system identification algorithms were carried out for about 5 s (16,700 iterations) using 
the linear discrete second order model (15) with grid points 16 and 20 as an input and output 
samples of the plant respectively with a set of input output data simulated using (14) .  
RLS, GA, and BA are used to estimate the parameters of the model of (15). On the other 
hand, the GRNN and ANFIS are used to estimate the equivalent model using plant input and 
corresponding output.  
 
It is observed that 100 generations, 8- bit representation, 10% mutation rate, and 10 
population sizes are the most suitable parameters of the GA for best convergence [22]. 
 
Table 1 shows the summary of the error convergence performances of the algorithms. The 
error has been calculated based on the differences between absolute value of the original and 
the estimated signal. On the other hand, the execution time of the algorithms was measured 
for 16,700 iterations. It is noted that error convergences for all the algorithms are in similar 
level. It is also noted that the GAs perform better as compared to the RLS and the BA offers 
the best performance among the five algorithms, although the overall performance variation 
are not very significant. 
 

Table 1: Performance in implementing the five algorithms 
 

Algorithm Error 

RLS 0.7856 
GA 0.6530 

ANFIS 0.6559 
GRNN 0.6388 

BA 0.6079 
 

A comparative performance for system identification using the RLS and GAs has been 
reported earlier [2]. Figure 4 shows the time domain performance of the (a) RLS, (b) GA, (c) 
ANFIS, (d) GRNN, and (e) BA, where the solid signal represents actual output and doted one 
represents the estimated output of the model. It is observed that a significant error 
convergence leads almost overlapping of the two signals in each case. It is also noted that the 
BA offers similar level of performance for error convergence as compared to the other four 
algorithms.  Corresponding auto-power spectral density is shown in Fig. 5, which further 
demonstrated the similarity and level of error convergence. As shown in Fig. 4, the solid 
signal in Fig. 5 represents actual output and doted one represents the estimated output of the 
model. 
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Fig. 3.a   Performance of the RLS algorithm. 

Fig. 3.b   Performance of the GA. 
 

 
Fig. 3.c   Performance of the GRNN algorithm. 

 
 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 10

-3

Time (s)

D
ef

le
ct

io
n 

(m
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 10

-3

Time (s)

D
ef

le
ct

io
n 

(m
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 10

-3

Time (s)

D
ef

le
ct

io
n 

(m
)



Paper: ASAT-13-GU-05
 
 

 10/13

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 10

-3

Time (s)

D
ef

le
ct

io
n 

(m
)

 
Fig. 3.d   Performance of the ANFIS algorithm. 
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Fig. 3.e   Performance of the BA algorithm. 
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Fig. 4.a   Performance of the RLS algorithm in auto-power spectral density  
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Fig. 4.b   Performance of the GA in auto-power spectral density. 

 

Fig. 4.c   Performance of the ANFIS algorithm in auto-power spectral density. 
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Fig. 4.d   Performance of the GRNN algorithm in auto-power spectral density. 
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Fig. 4.e   Performance of the BA auto-power spectral density. 
 

 
 
6 Conclusion 
This paper has presented the intelligent system identification of a flexible beam system for 
adaptive active vibration control. A plant model for a flexible beam system was considered to 
demonstrate the merits of the algorithms. A comparative performance of the algorithms has 
been presented and discussed through a set of experiments. BA shows relatively better error 
convergence for the same number of iterations.  
 
Finally, a comparative performance has been provided to demonstrate the capability of the 
algorithms for further work on adaptive active control system design. 
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