

Egyptian Journal of Chemistry

http://ejchem.journals.ekb.eg/

CrossMark

A facile and efficient synthesis of new Heterocyclic Compounds derived from Bis-chalcones of 3-acetylcumarine

^{a,*}Tharee Ghanim Hassan, ^bAdnan Othman Omar

^aDepartment of Chemistry, College of Science, Mosul University, Mosul, Iraq ^bDepartment of Chemistry, College of Science, Mosul University, Mosul, Iraq

Abstract

The present work involves the new bis-chalcones of 3-acetylcoumarin are synthesized by reaction with (terephthaldehyde and isophthalaldehyde) followed by condensation of these chalcones with some compounds (hydroxylamine, aminophenol, phenylenediamine, hydrazine, semicarbazide, thiosemicarbazide, urea, thiourea and quanidine) as precursor to form Isoxazole, oxazepane, diazepine, pyrazoles and pyrimidine derivatives (1-3k) in basic medium using classical and ultrasonic technique. The comparison of the classical methods with ultrasonic methods was achieved. The structures of synthesized compounds were confirmed by FT-IR and 1H NMR spectroscopy

Keywords: Pyrazoles, Isoxazoles, Chalcones, 3-Acetylcoumarin, ultrasonic technique.

1. Introduction

Coumarin and its derivatives represent one of the most active classes of compounds possessing a wide spectrum of biological activity. A review article dealing with the varied physiological activities of coumarin derivatives have been published describing their anticoagulant properties [1], antimicrobial [2], analgesic [3], antibacterial [4], antifungal [5], antiinflammatory [6], and antitumor activities [7]. Chalcones are considered as flavonoid compounds which have therapeutic effects in a range of biological activities as anti-cancer, anti-oxidant, and anti-inflammatory [8]. Pyrazole, isoxazole and pyrimidines are also interesting classes of heterocyclic compounds because of their application in pharmaceutical and biological fields including; antifungal [9], antiviral [10], anti-inflammatory [11], anticancer [12], analgesic [13], antibacterial [14], and antipyretic [15], In this presentation, a series of new five and six heterocyclic membered ring compounds, pyrazoles, isoxazoles and pyrimidine compounds were prepared from bis-chalcone derived from 3acetylcoumarin (terephthaldehyde and and isophthalaldehyde), they reacted with ammonia

derivatives. Green chemistry has been employed as a new approach in the field of organic chemistry that requires chemical synthesis that results in less waste, less energy, and more safety for workers and the environment [16-17]. Ultrasonic irradiation of liquids locally leads to rapid changes of pressure. When the liquid is locally subjected to depression, the pressure becomes lower than the vapor pressure of the sonicated liquid, thus generating a cavitation bubble composed of gas and vapors of liquid. Once formed, these cavitation bubbles absorb energy from the sound waves, grow and then collapse, locally resulting in the formation of shock waves, high speed jets or radicals.[18] The effect of the cavitation bubble collapse on a liquid is depending on the applied frequency [19].

*Corresponding author e-mail: <u>tharee.scp70@student.uomosul.edu.iq</u> Receive Date: 01 May 2022, Revise Date: 13 May 2022, Accept Date: 17 May 2022 DOI: 10.21608/EJCHEM.2022.136726.6021 ©2023 National Information and Documentation Center (NIDOC)

2. Experimental

Melting points were measured on Electrothermal Gallen Kamp melting points and were uncorrected. Infrared (FT.IR.) spectra was recorded as (KBr) disk using a Brucker FT.IR. spectrophotometer. 1HNMR spectra was recorded using Inova 500 MHz by using DMSO – d6 as solvent, and using TMS as internal standard in University of Khashan, Iran.

Preparation of 3-Acetyl Coumarin (1) [1]

A mixture of Salicylaldehyde (0.01 moles, 1.22gm) ethylacetoacetate (0.01moles, 1.30gm) dissolved in ethanol (15ml) and piperidine (0.732ml) was stirred at room temperature for 25 min. The mixture was filtered and the precipitated product was recrystallized from ethanol. to give a light-yellow precipitate, melting point (120-122°C) with a yield of 90% as fixed in table (1).

Preparation of 3,3'-(1,4-phenylene) bis(acryloyl)bisCoumarin) (2), and 3,3'-(1,3phenylene) bis(acryloyl)bis Coumarin) (3) [20]

A mixture of 3-Acetyl Coumarin (0.002 moles, 0.367gm) dissolved in ethanol (25mL), (0.73ml) piperidine and (0.001 moles, 0.134gm) aldehyde (Terephthaldehyde, isophthalaldehyde). The reaction mixture refluxed for (6 hrs.), cooled and poured into crushed- ice water, the solid product was filtered then dried and recrystallized from hot methanol. Table (1) shows the physical properties of the compound.

Preparation of 3,3'-(1,4-phenylenebis(4,5dihydroisoxazole-5,3-diyl))bis(2H-chromen-2-one) (2a) and 3,3'-(1,3-phenylenebis(4,5dihydroisoxazole-5,3-diyl))bis(2H-chromen-2-one) (3a) [21]

To a mixture of the bis-chalcone (2,3) (0.001 moles, 0.474gm), dissolved in (10 mL) of DMF, and (0.002moles, 0.139gm) hydroxylamine hydrochloride dissolved in DMF (10 mL), 10mL of (10 % NaOH) were added dropwise. The reaction mixture was refluxed for (8 hrs.). the mixture was then poured into ice-cold water, the product filtrate and was recrystallized from (DMF/EtOH), Table (1) shows the physical properties of the compound.

Preparation of 3,3'-(1,4-phenylenebis(2,3dihydrobenzo[b][1,4]oxazepine-2,4-diyl)bis Coumarin (2b) and 3,3'-(1,3-phenylenebis(2,3dihydrobenzo[b][1,4]oxazepine-2,4-diyl)bis Coumarin (3b) [20]

A mixture of the bis-chalcone (2,3) (0.001 moles, 0.474gm) and (0.002moles, .0218 gm) 2aminophenol dissolved in DMF (25 mL) and few drops of glacial acetic acid. The mixture was refluxed for (10 hrs.). The mixture was then poured into crushed-ice to give the solid product, filtered, recrystallized from (ethanol/water), Table (1) shows the physical properties of the compound.

Preparation of 3,3'-(1,4-phenylenebis(2,3dihydrobenzo[b][1,4]diazepine-2,4-diyl)bis Coumarin (2c) and 3,3'-(1,3-phenylenebis(2,3dihydrobenzo[b][1,4]diazepine-2,4-diyl)bis Coumarin (3c)[19]

A mixture of the bis-chalcone (2,3) (0.001 moles, 0.474gm) and (0.002moles, .0216 gm) ortho phenylenediamine dissolved in DMF (25 mL) and few drops of glacial acetic acid was added. the reaction mixture was refluxed for (10 hrs.). then poured into an ice-cold water, filtered and recrystallized from (ethanol/water), Table (1) shows the physical properties of the compound.

Preparation of 3,3'- (1,4-phenylenebis(4,5dihydro-1H-pyrazole-5,3-diyl) bis Coumarin (2d) and 3,3'-(1,3-phenylenebis(4,5-dihydro-1Hpyrazole-5,3-diyl) bis Coumarin (3d) [22]

A mixture of the bis-chalcone (2,3) (0.001 moles, 0.474gm) in DMF (25mL), (0.004moles) hydrazine hydrate (80%). the reaction mixture was refluxed for (12 hrs.). Then cooled and poured into ice water, the solid product was filtered, dried and recrystallized from (DMF/EtOH), Table (1) shows the physical properties of the compound.

Preparation of 3,3' (1,4-phenylenebis(1-phenyl-4,5-dihydro-1H-pyrazole-5,3-diyl) bis Coumarin (2e) and 3,3'(1,3-phenylenebis(1-phenyl-4,5dihydro-1H-pyrazole-5,3-diyl) bis Coumarin (3e) [23]

A mixture of the bis-chalcone (2,3) (0.001 moles, 0.474gm) in DMF (25mL), (0.002moles, 0.216gm) phenyl hydrazine hydrate. the reaction mixture was refluxed for (12 hrs.). Then cooled and poured into ice water, the solid product was filtered, dried and recrystallized from DMSO, Table (1) shows the physical properties of the compound.

Preparation of 3,3'-(1,4-phenylenebis(1-acetyl-4,5-dihydro-1H-pyrazole-5,3-diyl) bis Coumarin (2f) and 3,3'-(1,3-phenylenebis(1-acetyl-4,5dihydro-1H-pyrazole-5,3-diyl) bis Coumarin (3f) [20]

A mixture of the bis-chalcone (2,3) (0.001 moles, 0.474gm) in glacial acetic acid (25mL), (0.004moles) hydrazine hydrate (80%). The reaction mixture was refluxed for (12 hrs.). The cooled and poured into ice water, the solid product was filtered then dried and recrystallized from DMSO, Table (1) shows the physical properties of the compound.

Preparation of 5,5'-(1,4-phenylene)bis(3-(Coumarin3-yl)-4,5-dihydro-1H-pyrazole-1carboxamide) (2g) and 5,5'- (1,3-phenylene) bis (3-

(Coumarin3-yl)-4,5-dihydro-1H-pyrazole-1carboxamide) (2g) [24]

A mixture of the bis-chalcone (2,3) (0.001 moles, 0.474gm) in (10 mL) DMF, and (0.002moles, 0.182gm) semicarbazide dissolved in DMF (10 mL), 10 mL of 10 % KOH were added drop wise. The contents were reflux temperature for 9 hrs. The reaction mixture was then poured into ice coldwater, to give the solid product, filtered then recrystallized from (ethanol/water), Table (1) shows the physical properties of the compound.

Preparation of 5,5'-(1,4-phenylene) bis(coumarin-3-yl)-4,5-dihydro-1H-pyrazole-1carbothioamide) (2h) and 5,5'-(1,3-phenylene) bis(coumarin-3-yl)-4,5-dihydro-1H-pyrazole-1carbothioamide) (3h) [17]

A mixture of the bis-chalcone (2,3) (0.001 moles, 0.474gm) in (10 mL) DMF, and (0.002moesl, 0.182gm) thiosemicarbazide dissolved in DMF (10 mL), 10 mL of (10 % KOH) were added dropwise. The contents were reflux temperature for 9 hrs. The reaction mixture was then poured into crushed- ice, to obtained the solid product, recrystallized from (ethanol/water), Table (1) shows the physical properties of the compound.

Preparation of 6,6'-(1,4-phenylene)bis(4-(Coumarin-3-yl)pyrimidin-2(1H)-one) (2i) and 6,6'-(1,3-phenylene)bis(4-(Coumarin-3-yl) pyrimidin-2(1H)-one) (3i) [25]

A mixture of the bis-chalcone (2,3) (0.001 moles, 0.474gm), and urea (0.0022 moles, 0.12gm) were dissolved in DMF (0.004mole) piperidine were refluxed for (12 hrs.), cool and poured into an ice-cold water, The formed product was recrystallized from (ethanol/water), Table (1) shows the physical properties of the compound.

Preparation of 3,3`-(1,4-phenylenebis(2-thioxo-1,2-dihydropyrimidine-6,4-diyl) bis Coumarin (2j) and 3,3`-(1,3-phenylenebis(2-thioxo-1,2 dihydropyrimidine-6,4-diyl)bisCoumarin (3j) [20] A mixture of the bis-Chalcone (2,3) (0.001 moles, 0.474gm), and thiourea (0.002 moles, 0.152gm) were dissolved in DMF (0.004moles) piperidine were refluxed for (12 hrs.). Cooled then poured into ice-cold water, filtrated and recrystallized from (ethanol/water), Table (1) shows the physical properties of the compound.

Preparation of 3,3'-(1,4-phenylenebis(2-amino-5,6-dihydropyrimidine-6,4-diyl)) bis coumarin (2k) and 3,3'-(1,4-phenylenebis(2-amino-5,6dihydropyrimidine-6,4-diyl))biscoumarin (2k) [18]

A mixture of the bis-Chalcone (2,3) (0.001 moles, 0.474gm), and guanidine nitrate (0.002 moles, 0.48gm) were dissolved in DMF (0.002moles) sodium ethoxide were added. then refluxed for (12 hrs.). Cooled then poured into ice-cold water, filtrated and recrystallized from ethanol, table (1) shows the physical properties of the compound

Greener methods (ultrasonic technique)

All the above-mentioned compounds were prepared using ultrasonic technique with zirconium chloride Lewis's acids are important and interesting catalysts in most organic transformations. Among different Lewis's acids, Zr (IV) species such as ZrCl4 and ZrOCl2.8H2O are allocated special attention because of their low toxicity, availability and handling, moisture stability, and low cost in comparison to some of their corresponding compounds. During recent decades, Lewis's acids have been used to promote different types of organic reactions because they naturally possess mild acidity properties and, as such, can catalyze reactions selectively. This means that in the presence of various functional groups, they can operate on a specific group to produce the objective product. In this review we have focused on the reactions which have been progressed in the presence of ZrCl4 and ZrOCl2·8H2O. The study has been ordered based on the number of the reaction components and their solvent media. octahydrate as a catalyst at (50-60°C) and yields were given at the times indicated in Table (1) [26] [27].

Compound No.	M.P. (°C)	Color	Ultrasonic (min.)	Classic method yield%	Ultrasonic yield%
2	280-282	Brown	30	70	75
2a	290-292	Yellow	50	55	57
2b	Dec. 320<	Orange	60	62	65
2c	Dec. 322>	Orange	60	66	70
2d	248-250	Red	65	72	70
2e	252-255	Deep red	65	70	70

Table (1) shows the physical properties of synthesized compounds

Egypt. J. Chem. 66, No. 2 (2023)

2f	257-260	Yellow	60	50	55
2g	322-324	Green	50	70	75
2h	317-319	Deep green	50	65	65
2i	265-268	Deep yellow	65	79	80
2j	266-270	Yellow	65	74	75
2k	295-297	Deep brown	65	60	55
3	240-242	Brown	35	70	75
3a	250-252	Yellow	50	50	55
3b	280-282	Deep orange	60	65	65
3c	300-302	Orange	60	65	65
3d	255-257	Light orange	65	68	72
3e	235-237	White	65	75	70
3f	225-227	Brown	60	70	75
3g	287-289	Deep orange	55	70	72
3h	292-293	Green	55	66	69
3i	259-262	Yellow	65	65	66
3j	273-275	Orange	65	71	73
3k	277-280	Brown	65	55	60

3- Results and Discussion

The Key of this work is the bis-chalcone intermediate was obtained by Clasian –Schmidt condensation of corresponding 3-Acetylcoumarin (1) with aldehyde (terephthaldehyde and isophthalaldehyde). in basic condition by addition of piperidine, the structural formula of this compound (2,3) was established by physical and spectral data of FT.IR. which show two position of carbonyl groups at (1690 Cm⁻¹ and at 1720 cm⁻¹), and the ¹HNMR, shows an identical FT-IR of bis-chalcone as discussed before and show in the chart (1), as shown in scheme 1.

Scheme(1): The synthetic route of compound (2,3)

Figure (1) FT-IR spectrum of bis-Chalcone compound (2)

Egypt. J. Chem. 66, No. 2 (2023)

The reaction of bis-chalcone (2,3) with two equivalent moles of hydroxylamine hydrochloride and under basic condition gave oxazole compound (2a,3a) respectively, the scheme 2 showed these reactions.

The reaction of bis-chalcone compound (2,3) with oamino phenol and o-phenylene diamine respectively which indicated in the scheme 3. The reaction of bis-chalcone (2,3) with hydrazine hydrate and phenyl hydrazine respectively gave (2d,3d, 2e, 3e) compounds which indicated in the scheme 4.

The reaction of bis-chalcone (2,3) with hydrazine hydrate in the presence glacial acetic acid respectively gave (2f, 3f) compounds which indicated in the scheme 5.

Figure (2) 1H NMR spectrum of compound (2a)

Egypt. J. Chem. 66, No. 2 (2023)

Scheme (4): The synthetic route of compound (2d,3d, 2e,3e)

Scheme (5): The synthetic route of compound (2f,3f)

Egypt. J. Chem. 66, No. 2 (2023)

Scheme (7): The synthetic route of compound (2i,3i,2j,3j,2k,3k)

and thioamido respectively gave (2g,3g, 2h,3h) compounds which indicated in the scheme 6.

The reaction of bis–chalcone (2,3) with two equivalent moles of thiosemicarbazide and semicarbazide and under basic condition gave amido

Figure (4) 1H NMR spectrum of compound (2j)

(5) FT-IR spectrum of bis-Chalcone compound (3i)

	IR υ(cm-1), KBr							
Comp. No.	N-H	C-H (Ar.)	C-H (Aliph.) Sym. Asym	C=O Cyclic Ester	C=0	C=N	C=C CC (Ar.)	C-O-C Ether Sym. Asym
1		3040	2944 2864	1745	1690		1547 1448	1200 1145
2		3043	2941 2825	1725	1680		1501 1413	1190 1140
2a		3032	2962 2810	1748		1643	1565 1479	1263 1180
2b		3054	2915 2840	1750		1680	1550 1415	1200 1185
2c	3350	3070	2914 2825	1726		1640	1500 1450	1171 1160
2d	3370	3078	2919 2900	1723		1620	1498 1415	1200 1150
2e		3060	2940 2878	1740		1600	1500 1410	1215 1197
2f		3059	2930 2810	1725		1620	1520 1425	1210 1178
2g	3250 3410	3040	2922 2869	1730		1630	1510 1440	1210 1168
2h	3240 3450	3090	2915 2845	1720		1625	1510 1430	1190 1164
2i	3400	3095	2940 2890	1750	1650	1590	1530 1425	1180 1140
2j	3410	3080	2910 2820	1710	1660	1599	1520 1450	1220 1192

Table (2) shows the I.R. spectrum of synthesized compounds

Egypt. J. Chem. **66**, No. 2 (2023)

2k	3200	3085	2920	1740		1620	1500	1210		
	3420		2835				1420	1190		
3				3055	2940	1720	1685		1555	1195
5		5655	2847	1720	1005		1414	1175		
			2976				1560	1240		
3a		3070	2863	1750		1650	1450	1200		
26		2051	2921	1746		1690	1552	1200		
30		3051	2859	1746		1080	1417	1147		
30	3356	3064	2912	1723		1640	1523	1175		
50	5550	5004	2850	1725		1040	1452	1169		
24	2270	2057	2938	1742		1594	1496	1219		
Su	5579	3379 3057	2874	1/42			1453	1180		
20		2057	2057 2932 1726	1616	1518	1208				
56		3037	2810	1720		1010	1419	1197		
Эf	2452	2028	2922	1726	1700	1625	1515	1216		
51	5452	3038	2820	1750	1709	1035	1443	1190		
2 α	3244	2097	2917	1710	1700	1627	1514	1185		
Зg	3452	5087	2835	1/10	1700	1027	1434	1150		
2 h	3395	2004	2945	1754	2945 1754 1504	1504	1536	1187		
311	3430	3094	2849	1754		1594	1428	1125		
31	31 3292 3057 3026	3026	16/3	1642 1606	1606 1502	1440	1257			
51	3292	3037	2918	1043	1000	1595	1400	1118		
2i	2461	3/61	3461	3085	2920	17/10		1620	1500	1210
3)	5401	3083	2830	1740		1020	1420	1156		
Зk	3244	3081	2918	1738		1616	1496	1205		
ЭК	3452	5081	2819	1130			1413	1154		

Table (3) shows the 1HNMR Spectrum of synthesized Compounds

Comp. No.	Structure	¹ HNMR, DMSO-d6, δ (ppm)
2	$2 H \qquad 0 \qquad 1 \qquad 0 \qquad 1 \qquad 0 \qquad H \qquad 2 \qquad 0 \qquad H \qquad 2 \qquad 0 \qquad H \qquad 2 \qquad 0 \qquad 0$	7.3 (2H, d-d, H1) 7.6 (2H, d-d, H2) 6.55 (2H, s, H3) 7.4-7.7 (8H, m, Ar-H) 7.80-7.82 (4H, d, Benzylic Ring)
2a		3.2-3.4 (4H, d, H1) 7.30 (2H, s, H2) 7.42 (4H, s, Benzylic ring) 7.4-7.7 (8H, m, Ar-H) 5.6 (2H, d, H3)
2b	N N 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1	3.00-3.09(4H, d-d, H1) 5.80(2H, t, H2) 6.5(1H, s, H3) 7.31(4H, s, Benzylic ring) 6.9-7.67 (16H, m, Ar-H)

Comp. No.	Structure	¹ HNMR, DMSO-d6, δ (ppm)
2c	$ \begin{array}{c} $	5.94(4H, d, 1H) 2.87-2.93(4H, d, H2) 5.28(1H, t, H3) 7.17(4H, s, Benzylic ring) 7.09-7.73 (16H, m, Ar- H4) 6.49(2H, s, H3)
2d	$\begin{array}{c} \mathbf{O} \mathbf{O} \\ \mathbf{O} \mathbf{O} \\ $	7.85(2H, d, H1) 3.17-3.26(4H, d-d, H2) 4.95(2H, t, H3) 8.37(2H, s, H4) 7.21(4H, s, Benzylic ring) 7.49-7.72 (8H, m, Ar-H)
2e	N-N N-N N-N 0 0 0 0 0 0 0 0	2.46-2.56 (4H, d-d, H1) 5.17 (2H, t, H2) 6.49(2H, s, H3) 6.97-7.23(12H, m, Benzylic ring) 7.48-7.73 (8H, m, Ar-H)
2f	$ \begin{array}{c} $	6.55 (4H, s, H1) 2.47-2.56 (4H, d-d, H2) 5.43 (2H, t, H3) 7.30 (2H, s, H4) 8.25(4H, s, Benzylic ring) 7.48-7.73 (8H, m, Ar-H)
2g	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ $	2.49-2.6 (4H, d, H1) 5.49 (2H, t, H2) 7.25 (2H, s, H3) 2.37(6H, s, H4) 8.25(4H, s, Benzylic ring) 7.48-7.73 (8H, m, Ar-H)
2h	$ \begin{array}{c} $	7.89 (4H, s, H1) 2.53- 2.53.64 (4H, d-d, H2) 5.89 (1H, t, H3) 6.5 (2H, s, H4) 7.25 (4H, s, benzylic ring) 7.48-7.73 (8H, m, Ar-H)
2i	$ \begin{array}{c} $	11.29 (2H, s, H1) 6.44 (2H, s, H2) 7.34(2H, s, H3) 8.34 (4H, s, benzylic ring) 7.48-7.72 (8H, m, Ar-H)

Egypt. J. Chem. 66, No. 2 (2023)

Comp. No.	Structure	¹ HNMR, DMSO-d6, δ (ppm)
2j	$ \begin{array}{c} $	12.85(2H, s, H1) 6.44(2H, s, H2) 7.34(2H, s, H3) 8.31(2H, s, benzylic ring) 7.48-7.72 (8H, m, Ar-H)
2k	$ \begin{array}{c} $	7.09(4H, s, H1) 2.90-3.06(4H. m, H2) 5.28(2H, t, H3) 6.55(2H, s, H4) 7.33(2H, s, benzylic ring) 7.48-7.77 (8H, m, Ar-H)
3	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.6(2, s, H1) 7.35(2H, d, H2) 7.62(2H, d, H2) 7.38-7.93(4H, m, benzylic ring) 7.48-7.71(8H, m, Ar-H)
3a	$\mathbf{N}_{\mathbf{O}}$	3.25-3.5 (4H, d, H1) 5.73 (2H, t, H2) 7.01 (2H, s, H3) 7.35-7.41 (4H, m, Benzylic ring) 7.48-7.74 (8H, m, Ar-H)
3b	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	3.04-3.13(4H, d-d, H1) 5.73(2H, t, H3) 6.39(2H, s, H2) 7.30-7.49(4H, m, Benzylic ring) 6.95-7.43 (16H, m, Ar-H)
Зс	A N A N A N A N A	4.17(4H, d, 1H) 2.91-2.98(4H, d, H2) 5.25(1H, t, H3) 6.40(1H, s, H4) 7.27(4H, s, Benzylic ring) 7.08-7.73 (16H, m, Ar-H)

Comp. No.	Structure	¹ HNMR, DMSO-d6, δ (ppm)
3d	$ \begin{array}{c} $	8.16(2H, d, H1) 3.22-3.34(4H, d-d, H2) 4.92(2H, t, H3) 6.44(1H, s, H4) 7.31-736(4H, m, Benzylic ring) 7.48-7.71 (8H, m, Ar-H)
3e	$ \begin{array}{c} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & $	2.47-2.58 (4H, d-d, H1) 5.11 (2H, t, H2) 6.35(2H, s, H3) 6.99-7.36(12H, m, Benzylic ring) 7.48-7.73 (8H, m, Ar-H)
3f	$ \begin{array}{c} $	2.37 (6H, s, H1) 2.50-2.61 (4H, d-d, H2) 5.43 (2H, t, H3) 6.34 (2H, s, H4) 7.35(4H, s, Benzylic ring) 7.48-7.73 (8H, m, Ar-H)
3g	$O O NH_2 $ $A O O NH_2 $ $A O O NH_2 $ $A O O O NH_2 $ $A O O O O O O O O O O O O O O O O O O O$	6.55 (4H, s, H1) 2.49-2.59 (4H, d-d, H2) 5.45 (2H, t, H3) 6.39 (2H, s, H4) 7.33-7.36(4H, m, Benzylic ring) 7.48-7.73 (8H, m, Ar-H)
3h	$O O NH_2 3 2$ $A N N N N N N N N N N N N N N N N N N N$	7.89 (4H, s, H1) 2.54-2.65 (4H, d-d, H2) 5.87 (1H, t, H3) 6.38 (2H, s, H4) 7.35 (4H, s, benzylic ring) 7.48-7.73 (8H, m, Ar-H)

Comp. No.	Structure	¹ HNMR, DMSO-d6, δ (ppm)
3i	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	11.26 (2H, s, H1) 6.5 (2H, s, H2) 7.40(2H, s, H3) 7.50-8.95 (4H, s, m benzylic ring) 7.48-7.72 (8H, m, Ar-H)
3j	$ \begin{array}{c} $	12.77(2H, s, H1) 6.65(2H, s, H2) 7.50-8.89(2H, s, benzylic ring) 7.48-7.72 (8H, m, Ar-H)
3k	$\begin{array}{ c c c c } & & & & & & & \\ & & & & & \\ & & & & & $	7.09(4H, s, H1) 2.90-3.06(4H. m, H2) 5.15(2H, t, H3) 8.43(2H, s, H4) 7.55(2H, s, benzylic ring) 7.48-7.778H, m, Ar-H)

3- Conclusions

A series of reactions for bis-chlcone which prepared from reaction of two moles 3acetylcoumarin with one mole terephthaldehyde and isophthalaldehyde were achieved with different chemical reagent to synthesize Isoxazole, oxazepane, diazepine, pyrazoles and pyrimidine derivatives. The results obtained from this investigation indicated that the strategy adapted for the synthesis of the designed derivatives was successful.

6. References

- Al-shahwany, A. G., & Omer, A. OSynthesis and study some new Schiff Bases Derived from Pyrazolo-Coumarin. Rafidain Journal of Science, 30(1), 78-90 (2021).
- [2] Massari, S., Bertagnin, C., Pismataro, M. C., Donnadio, A., Nannetti, G., Felicetti, T., ... & Tabarrini, O. Synthesis and characterization of 1, 2, 4-triazolo [1, 5-a] pyrimidine-2carboxamide-based compounds targeting the PA-PB1 interface of influenza A virus polymerase. European journal of medicinal chemistry, 209, 112944 (2021).
- [3] Yang, F., Nickols, N. G., Li, B. C., Marinov, G. K., Said, J. W., & Dervan, P. B. Antitumor activity of a pyrrole-imidazole polyamide. Proceedings of the.
- [4] Abbassi, M. S., Othman, A. A., Briki, K., & Lahrech, M. B. Synthesis of diazole-thiols derivatives from L-cysteine: Characterization, complex formation with Ni (II), Cu (II) and evaluation of their antibacterial activity.

Egypt. J. Chem. **66**, No. 2 (2023)

Journal of Saudi Chemical Society, 25(5), 101230(2021).

- [5] Sarg, M. T., Koraa, M. M., Bayoumi, A. H., & Abd El Gilil, S. M. Synthesis of pyrroles and condensed pyrroles as anti-inflammatory agents with multiple activities and their molecular docking study. Open Journal of Medicinal Chemistry, 5(04), 49(2015).
- [6] Joshi, S. D., Dixit, S. R., Kirankumar, M. N., Aminabhavi, T. M., Raju, K. V. S. N., Narayan, R., ... & Yang, K. S. Synthesis, antimycobacterial screening and ligand-based molecular docking studies on novel pyrrole derivatives bearing pyrazoline, isoxazole and phenyl thiourea moieties. European journal of medicinal chemistry, 107, 133-152. (2016).
- [7] Massa, S., Santo, R. D., & Artico, M. Nikoofar, K., & Khademi, Z. (2016). A review on green Lewis acids: zirconium (IV) oxydichloride octahydrate (ZrOCl2· 8H2O) and zirconium (IV) tetrachloride (ZrCl4) in organic chemistry. Research on Chemical Intermediates, 42(5), 3929-3977.Potential antitumor agents. IV. Pyrrole analogues of oncodazole. Journal of heterocyclic chemistry, 27(4), 1131-1133(1990).
- [8] Salehi, B., Quispe, C., Chamkhi, I., El Omari, N., Balahbib, A., Sharifi-Rad, J., ... & Les, F. Pharmacological properties of chalcones: a review of preclinical including molecular mechanisms and clinical evidence. Frontiers in Pharmacology, 11, 2068. (2021).
- [9] Alam, S., Sarkar, Z., & Islam, A. Synthesis and studies of antibacterial activity of

pongaglabol. Journal of Chemical Sciences, 116(1), 29-32(2004).

- [10] George, R. F., Fouad, M. A., & Gomaa, I. E. Synthesis and cytotoxic activities of some pyrazoline derivatives bearing phenyl pyridazine core as new apoptosis inducers. European journal of medicinal chemistry, 112, 48-59(2016).
- [11] Emmanuel- Giota, A. A., Fylaktakidou, K. C., Litinas, K. E., Nicolaides, D. N., & Hadjipavlou- Litina, D. J. Synthesis and biological evaluation several of 3-(coumarin- 4- yl) tetrahydroisoxazole and 3-(coumarin- 4- yl) dihydropyrazole derivatives. Journal of Heterocyclic Chemistry, 38(3), 717-722(2001).
- [12] Nofal, Z. M., El-Zahar, M. I., & El-Karim, A. Novel coumarin derivatives with expected biological activity. Molecules, 5(2), 99-113(2000).
- [13] Yu, Z. Q., Song, J. K., Zhang, H. J., Liu, T. L., Fan, X. C., & Zhao, G. H. Molecular characterization of Theileria spp. in goats from Shaanxi Province, Northwestern China. Journal of Parasitology, 104(6), 726-731(2018)..
- [14] Abd Allah, O. A. Synthesis and biological studies of some benzopyrano [2, 3-c] pyrazole derivatives. Il Farmaco, 55(9-10), 641-649 (2000).
- [15] Gibson, S. E., & Ibrahim, H. Asymmetric catalysis using planar chiral arene chromium complexes. Chemical communications, (21), 2465-2473(2002).
- [16] Zuin, V. G., Eilks, I., Elschami, M., & Kümmerer, K. (2021). Education in green chemistry and in sustainable chemistry: perspectives towards sustainability. Green Chemistry, 23(4), 1594-1608.
- [17] sdeek, G., Mauf, R., Saleh, M. (2021). Synthesis and Identification of some new Derivatives Oxazole, Thiazole and Imidazol from Acetyl Cysteine. *Egyptian Journal of Chemistry*, 64(12), 7565-7571. doi: 10.21608/ejchem.2021.88755.4267
- [18] Al-Thakafy, N., Al-Enizzi, M., Saleh, M. (2022). Synthesis of new Organic reagent by Vilsmeier – Haack reaction and estimation of pharmaceutical compounds (Mesalazine) containing aromatic amine groups. *Egyptian Journal of Chemistry*, 65(6), 685-697. doi: 10.21608/ejchem.2021.101851.4729
- [19] Amaniampong, Prince Nana, and François Jérôme. "Catalysis under ultrasonic irradiation: a sound synergy." *Current opinion*

Egypt. J. Chem. **66**, No. 2 (2023)

in green and sustainable chemistry 22 (2020): 7-12.

- [20] Saeed, Z., Saleh, M., sadeek, G. (2022). Synthesis and Biological Evolution of Novel Substituted 1,2,4-triazine from Sulfanilic Acid. *Egyptian Journal of Chemistry*, (), -. doi: 10.21608/ejchem.2022.132916.5870
- [21] Abbas, A., Mohammed Taib, A., Saeed, N. (2020). Synthesis and Characterization of Linear Thermally Stable polyester contain Schiff Bases. *Egyptian Journal of Chemistry*, 63(8), 2999-3013. doi: 10.21608/ejchem.2020.25217.2526
- [22] Ayoob, A., Sadeek, G., Saleh, M. (2022). Synthesis and Biologically Activity of Novel 2- Chloro -3-Formyl -1,5-Naphthyridine Chalcone Derivatives. *Journal of Chemical Health Risks*, 12(1), 73-79. doi: 10.22034/jchr.2022.688560
- [23] Saied, S., Mohammed, S., Khaleel, B., Saleh, M. (2021). Comparative Studies between Conventional Techniques and Green Chemistry to Synthesis of Novel Piperidinium Salts Ionic Liquids (PBSILs). *Journal of Chemical Health Risks*, 11(4), 451-456. doi: 10.22034/jchr.2021.686640
- [24] Saeed, N. H. M., & Abbas, A. M. (2020). Kinetics and mechanism of tetrahydrofuran oxidation by chloraminet in acidic media., Periodico Tche Quimica, 2020, 17(35), pp. 449–461
- [25] Hamdoon, A., Saleh, M., Saied, S. (2022). Synthesis & Biological Evaluation of Novel Series of Benzo[f]indazole Derivatives. *Egyptian Journal of Chemistry*, (), -. doi: 10.21608/ejchem.2022.120818.5418
- [26] Abdel-Latif, N. A. (2005). Synthesis and antidepressant activity of some new coumarin derivatives. Scientia Pharmaceutica, 73(4), 193-216.
- [27] Safaei-Ghomi, J., & Ghasemzadeh, A. M. Ultrasound-assisted synthesis of dihydropyrimidine-2-thiones. Journal of the Serbian Chemical Society, 76(5), 679-684 (2011).