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              Bacterial resistance to heavy metals and antibiotics is a global 

concern to public health, animals, and ecosystems. This study was conducted 

to determine bacteria with multiple heavy metals and antibiotic resistance 

from the effluent of a wastewater treatment plant. Heavy metal 

concentrations in the effluents were analyzed using Atomic Absorption 

Spectrophotometer (AAS). Selective isolation of heavy metal-resistant 

bacteria, metal tolerance concentration, Minimum Inhibitory Concentration 

(MIC), and Minimum Bactericidal Concentration (MBC) was done using 

heavy metals salts at different concentrations (25-750 ppm) incorporated in 

broth and Mueller Hinton agar (MHA). The isolates were identified based on 

their phenotypic and 16 rRNA analysis. The antibiotic resistance was 

determined by the disk diffusion method. The plasmid DNA of the bacterial 

isolates was analyzed on agarose gel electrophoresis. Four bacteria exhibited 

resistance to heavy metal concentrations between 200 -750 ppm. The isolates 

were identified as Alcaligenes, Paenalcaligenes, Providencia and Klebsiella 

species. The bacteria were resistant to 2 or more antibiotics with Multiple 

Antibiotic Resistance (MAR) index between 0.25 - 0.75. All the isolates 

possessed plasmids, and the resistance in the bacteria was either chromosome 

or plasmid-borne. The bacterial isolates obtained could serve as potential 

candidates for the bioremediation of heavy metal contaminated effluents. 

However, the multiple antibiotic resistance could result in bacteria 

proliferation, contributing to the maintenance and spread of antibiotic-

resistant disease-causing bacteria.  

INTRODUCTION 
              Wastewater is a term that encompasses effluent from domestic, commercial, 

industrial, agricultural, and faecal sludge (UN-Water, 2017). Effluent flowing into wastewater 

treatment plants contains antibiotics, heavy metals, antibiotic-resistant bacteria, and antibiotic 

resistance genes (ARGs) (Charlesworth et al., 2011; Chen et al., 2019; Osińska et al., 2020; 

Hubeny et al., 2021). In highly industrialized areas, wastewater is composed of municipal, 

industrial, and hospital wastewater. In contrast, industrial wastewater has a smaller share of the 

sewage mix in less industrialized regions that reaches wastewater treatment plants (Hubeny et 

al., 2021).  

https://eajbsg.journals.ekb.eg/
mailto:aomotayo@unilag.edu.ng
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               As a result, wastewater from 

industrialized areas is characterized by 

higher concentrations of pollutants than 

sewage generated in less industrialized 

regions (Cheng et al., 2014; Di Cesare et 

al., 2016a; Hubeny et al., 2021). Some of 

the heavy metals from wastewater effluents 

are essential micronutrients for several 

cellular functions and components of 

biological macromolecules (Seiler and 

Berendonk, 2012) but can also be toxic 

when accumulated to a particular 

concentration (Fosmire, 1990; Chen et al., 

2019).  

             Heavy metals are generally more 

persistent and stable than organic 

contaminants such as pesticides or 

petroleum byproducts and are non-

biodegradable in the environment 

(Zieliński et al., 2021). Unlike many other 

pollutants, heavy metals are difficult to 

remove from the environment (Ren et al., 

2009). They may impose selection 

pressures on microorganisms present 

(Berendonk et al., 2015) and even change 

the diversity of microbial communities 

(Epelde et al., 2015). Heavy metal pollution 

causes environmental diseases, which often 

manifest as cancer, chronic lung disease, 

kidney disease, liver disease, and 

neurodegeneration (Gupta et al., 2015). 

Heavy metal toxicity can result in high 

morbidity, and mortality rates 

inappropriately treated cases (Adal and 

Wiener, 2020). For instance, in 2010, 

Nigerian health officials reported the death 

of more than 100 children from lead 

poisoning due to illegal mining of gold in 

Zamfara state, North West Nigeria (WHO, 

2010; Dooyema et al., 2012). 

               Wastewater treatment plants are 

hotspots of antibiotic resistance (Che et al., 

2019, Mukherjee et al., 2021). They are 

regarded as direct sources of the spread of 

antibiotic resistance in the environment (Di 

Cesare et al., 2016b). Antibiotic resistance 

has become one of the most significant 

problems threatening populations globally. 

The World Health Organization (2014) 

reported antibiotic-resistant genes (ARGs) 

as a new pollutant because of their 

emerging prevalence and wide distribution 

(Chen et al., 2019). The increasing 

antibiotic-resistant genes have been 

recognized as a consequence of the massive 

use of antibiotics in therapeutics and 

agriculture (Huerta et al., 2013). This has 

resulted in the loss of efficacy of newly 

developed antibiotics against many 

bacterial infections within a few years after 

their introduction (Davies and Davies 

2010). 

               Heavy metal resistance and 

antibiotic resistance can be selected 

simultaneously in a heavy metal 

contaminated ecosystem (Timoney et al., 

1978). These phenomena can be interpreted 

as co-selection (selecting two or more 

genetically linked resistance genes when 

one of the genes is selected) (Seiler and 

Berendonk, 2012). These co-selection 

mechanisms include co-resistance 

(different resistance determinants present 

on the same genetic element) and cross-

resistance (the same genetic factor 

responsible for resistance to antibiotics and 

metals) (Baker-Austin et al., 

2006).  Several studies have revealed 

positive correlations between antibiotic-

resistant genes and heavy metal levels in 

environments exposed to anthropogenic 

pressure (Pal et al., 2015) and free of 

antimicrobials (Barancheshme and Munir, 

2018).  

              Selective pressure promotes the 

exchange of antibiotic resistance genes 

through horizontal gene transfer between 

commensals and environmental species to 

pathogenic species (Qian et al., 2016; von 

Wintersdorff et al., 2016; Zieliński et al., 

2021). The dissemination of antibiotic 

resistance genes via horizontal gene 

transfer is most often linked with the 

presence of mobile genetic elements such 

as plasmids which play an essential role in 

the transfer of antibiotic-resistant genes 

through conjugation (Hall et al., 2017; 

Lerminiaux and Cameron, 2019; Osińska et 
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al., 2020). According to many authors, 

integrons are also significantly implicated 

in the spread of antibiotic resistance (Deng 

et al., 2015; Osińska et al., 2020). 

             The development of antibiotic-

resistant bacteria is often linked with the 

type of antibiotic and the bacterial species 

(Kolár et al., 2001; Barancheshme and 

Munir, 2018). Similarly, several 

bacterial species belonging to the 

Proteobacteria have been shown to tolerate 

heavy metal stress, including toxic salts of 

noble metals (Johnson et al., 2019). As a 

result, identifying bacteria with multiple 

resistance to heavy metals and antibiotics in 

wastewater treatment plant effluent and 

assessing the heavy metal tolerance of 

bacteria strains for potential use as 

bioremediation agents is essential. 

MATERIALS AND METHODS 

Sample Source: 

              Wastewater was collected from a 

university community central sewage 

treatment plant located at the precinct of the 

Lagos lagoon (06o25'N 03o27'E). Effluent 

samples from the septic tank and raw 

sewage sludge were collected in sterilized 

glass bottles aseptically within 8-9 am and 

transported to the laboratory in an ice 

bucket for analysis within 6 h of collection. 

Physicochemical Analysis: 

             The physicochemical parameters 

of the effluent from the wastewater and 

sludge were assayed using the American 

Public Health Association (APHA) (1998) 

procedures. These parameters include 

Biological Oxygen Demand (BOD), 

Chemical Oxygen Demand (COD), Total 

Hardness (TH), phosphate, nitrate, 

sulphate, Dissolved Oxygen (DO), pH, 

conductivity, Total Dissolved Solids 

(TDS), Total Suspended Solids (TSS), 

Total Solids (TS), oil grease and heavy 

metal analysis. 

Media Preparation: 

             The media used include Nutrient 

Agar (NA) (Oxoid), Muller- Hinton Agar 

(MHA) (Rapid labs), Luria Bertani medium 

(LB), Muller- Hinton Broth (MHB) (Rapid 

labs), and Nutrient Broth (NB) (Oxoid). 

These were prepared according to the 

manufacturer's specifications. 

Preparation of Metal Stock Solution:  

            The stock solutions of chromium 

(Cr), copper (Cu), cadmium (Cd), and lead 

(Pb) were prepared in deionized water and 

stored at 4°C. The salts used were 

chromium (III) trioxonitrate (V) (Cr 

(NO3)3.9H20), copper (II) sulfate 

pentahydrate (CuSO4.5H2O), Cadmium 

tetraoxosulphate (VI) octahydrate 

(3CdSO4.8H20) and lead nitrate (PbNO3)2 

(Table 1). All working concentrations were 

obtained by diluting the stock solution with 

sterile deionized water, and the pH was 

adjusted to the desired values using 1M 

HCl and 1M NaOH solutions (Bahig et al., 

2008). 

 

Table 1: Heavy metal salts and properties 
Heavy Metal Salts The molecular 

weight of salts 

The atomic weight 

of the metal 

The concentration of 

stock solution (ppm) 

Chromium (Cr) Cr(NO3)3.9H20 400.15 51.996 1000 

Cadmium (Cd) 3CdSO4.8H20 769.56 112.41 1000 

Copper (Cu) Cu2SO4.5H20 249.68 63.546 1000 

Lead (Pb) Pb(NO3)2 331.20 207.20 1000 

 

Isolation Of Heavy Metal-Resistant 

Bacteria: 

             Bacterial strains were isolated from 

the effluent samples using the serial 

dilution and pour plate method. The 

selective isolation of heavy metal-resistant 

bacteria was done using heavy metals 

incorporated media. An aliquot of 1 ml 

from different dilutions was aseptically 

transferred into sterile Mueller Hinton agar 

plates incorporated with 25 ppm 

concentrations of various heavy metals of 

Cr3+, Cu2+. Pb2+ and Cd3+ by standard pour 

plate method. Plates were incubated at 37oC 

for 24 - 48 h. The developed colonies were 

sub-cultured on sterile Mueller Hinton agar 
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incorporated with 25 ppm of the heavy 

metals to obtain pure cultures.  

            All the strains were maintained on 

slants of Mueller Hinton agar medium 

containing 25 ppm of heavy metal stored in 

the refrigerator at approximately 4°C. 

These were sub-cultured at about 45-60 

days intervals. 

Screening Of Heavy Metal Resistant 

Bacteria: 

           Pure cultures of the bacteria were 

directly streaked on sterile Mueller Hinton 

agar incorporated with different 

concentrations of heavy metals ranging 

from 25 ppm to 750 ppm to determine the 

heavy metals Maximum Tolerance 

Concentrations (MTC) of the organisms. 

The pure cultures of colonies that survived 

at high concentrations were identified 

based on their morphology and biochemical 

characteristics according to Bergey's 

manual of Systematic bacteriology, 

Microbact GNB 24E kit, and 16 rRNA 

analysis. 

Determination of Minimal Inhibitory 

Concentration (Mic):  

           Resistance of the bacterial isolates to 

varying concentrations of heavy metals (Pb, 

Cu, Cr, Cd) was determined by the broth 

dilution method (Luli et al. 1983). 

Sterilized Mueller Hinton broth medium 

was spiked with different concentrations of 

heavy metal salts. Colonies of overnight 

bacterial culture were used to prepare 0.5 

MacFarland standard, and 0.1 ml was 

inoculated into the test tubes containing 

heavy metal salts and broth (5 ml). Positive 

controls consisted of metal-deficient 

medium inoculated with bacterial cultures, 

and negative ones consisted of metal-

supplemented medium without bacterial 

cultures. The tubes were incubated 

aerobically at 37ºC for 24 h. The minimum 

concentrations of heavy metals that 

completely inhibited growth when 

compared with the controls and optical 

density measurement was considered the 

MIC. The optical density (OD) was 

measured at 620 nm using a colorimeter 

(AE-11D Digital photoelectric 

colorimeter).  

              The cultures were streaked onto 

Mueller Hinton agar containing metal salts 

using sterile loops and then incubated at 

37oC for 24 - 48 h. The plates were checked 

for bacterial growth.  

Determination of Minimum Bactericidal 

Concentration (Mbc):  

              Minimum bactericidal 

concentration is the lowest heavy metal 

concentration that kills at least 99.9% of the 

test organism. This was determined by 

streaking Mueller Hinton agar plates with 

the content from the MIC test tubes 

consisting of different concentrations of 

heavy metal salts. After 24 h incubation at 

37ºC, plates without growth were 

considered Minimum Bactericidal 

Concentration.  

Antibiotic Susceptibility Test: 

             Antibiotic susceptibility of the 

heavy metal resistant bacteria was 

determined by the Kirby-Bauer disc 

diffusion method (Bauer et al., 1966). The 

antibiotics discs (Rapid labs) were placed 

on Mueller Hinton agar plates uniformly 

swabbed with cell suspension with a 

turbidity of 0.5 McFarland standards. The 

plates were incubated at 37º C for 24 h and 

observed for inhibition zones. The diameter 

of the inhibition zones around the discs was 

measured in mm. Antibiotic resistance or 

sensitivity was determined by comparing 

the diameter of the inhibition zone around 

each antibiotic disc with the zone size 

interpretive chart supplied by the clinical 

laboratory standard institute (CLSI, 2013). 

            The MAR index was calculated as 

the ratio (a/b) between the number of 

antibiotics to which the isolate was resistant 

(a) and the total number of antibiotics 

tested (b). A MAR index value >0.2 is 

observed when the isolates are exposed to 

high-risk human or animal contamination 

sources, where antibiotics use is common; 

in contrast, a MAR index value ≤0.2 is 

observed when antibiotics are seldom or 

never used (Krumperman, 1983). 
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Identification of Bacterial Strains: 

            The pure cultures were identified 

using the Microbact GNB 24E and 16 

rDNA analysis based on their morphology 

and biochemical characters. The Gram 

stain, catalase test, oxidase test, and 

motility test were done as described by 

Bisen et al. (2012). 

Molecular Characterization: 

           A modified Moore et al. (2004) 

protocol was used to extract the total 

genomic DNA. The 16S rDNA genes were 

amplified with bacterial universal primers 

27F (5'- AGAGTTTGATCMTGGCTCAG 

-3') and reverse primer 1525r (5'- 

AAGGAGGTGWTCCARCCGCA -3'). 

The PCR amplification of the DNA started 

with an initial denaturation at 94 °C for 

5 min, followed by 36 cycles of 

denaturation at 94 °C for 30 s, annealing at 

56 °C for 30 s, extension at 72 °C for 45 s. 

and final extension step was at 72 °C for 

7 min. The PCR products were analyzed by 

1.5% agarose gel electrophoresis stained 

with ethidium bromide and visualized 

under a UV transilluminator. The PCR 

product was sequenced by ABI3730xl 

Genetic Analyzer. Sequences were 

matched with previously published 

bacterial 16S rRNA sequence in the NCBI 

database using Standard Nucleotide 

BLAST (www.ncbi.nlm.nih.gov/BLAST) 

(Altschul et al., 1997). 

Isolation of Plasmid: 

             Plasmid DNA extraction from the 

bacterial cells was done by an amended 

version of the procedure of Birnboim and 

Doly (1979). These were 

electrophoretically separated on 0.8% (w/v) 

agarose gels at 60 V/cm using 0.5X 

concentration of Tris-Borate-EDTA (TBE) 

buffer (Adeyemo and Onilude, 2015). 

Plasmid Curing: 

             The plasmids were cured by 

treatment with acridine orange according to 

the method of Brown (2000) and as 

described by Adeyemo and Onilude (2015). 

The nutrient broth was prepared and 

supplemented with 0.1 mg/ml acridine 

orange. An aliquot of 20 µl of an overnight 

culture of the bacteria was sub-cultured into 

5 ml of the nutrient broth containing 

acridine orange. The samples were 

incubated at 37°C for 72 h. After 72 hours 

of incubation, the isolates were sub-

cultured onto Mueller Hinton agar, and 

plasmid extraction was repeated for the 

organisms to verify if the plasmid was 

successfully cured. Growth of isolates on 

heavy metals and Antibiotic susceptibility 

was carried out again. 

PCR Amplification of Chromium and 

Cadmium Resistant Genes: 

             The metal tolerance ability of the 

isolates to chromium and cadmium was 

determined by amplification of the ChrB 

(Kamika and Momba, 2013) and czc 

(Chiboub et al., 2016) genes, which encode 

for chromium and cobalt-zinc-cadmium 

resistance, respectively. The specific 

primers used for chrB were 5'- 

GTCGTTAGCTTGCCAACATC -3' 

(forward primer) and 5'- 

CGGAAAGCAAGATGTCGATCG -3' 

(reverse primer) (Kamika and Momba, 

2013). That of czc was 5'- AACCAG 

ATCTCGCGCGAGAAC -3' (forward 

primer) and 5'- CGGCAACACCAGT 

AGGGTCAG -3' (reverse primer) 

(Chiboub et al., 2016). The conditions of 

PCR amplification were, denaturation of 

template DNA at 94°C for 2 min, followed 

by 30 cycles of denaturation at 94°C for 1 

min, annealing of template DNA for 30 s at 

57oC (ChrB) and 55oC (czc) and an 

extension time of 1 min at 72°C for the 

primers. After the last cycle, the samples 

were kept at 72°C for 10 min to complete 

the synthesis of all the strands, and a 

cooling temperature of 4°C was applied. 

The PCR products were analyzed by 

electrophoresis using 1% (m v-1) agarose 

gel stained with ethidium bromide and 

visualized under a UV transilluminator. 

Statistical Analysis: 

              Plotting of graphs was done by 

Microsoft Excel 2019.  
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RESULTS  

Physicochemical Analysis of Samples: 

              The physicochemical properties of 

the freshly collected water samples are 

shown in Table 2. The pH of the sampling 

points was within an acceptable limit. The 

conductivity reduced down the treatment 

line, with raw sewage sludge having a value 

of 1460 s/cm and a septic tank of 1058 

s/cm. The total dissolved solids, total 

solids, and total suspended solids were 

more significant than the acceptable limits 

of NESREA (2009). The values for the 

Biochemical oxygen demand, 83.95ppm 

and 69.70 ppm for both samples, were 

higher than the permissible limit (Table 2). 

In comparison, the values for chemical 

oxygen demand (38.10 ppm 25.80 ppm) 

were within the acceptable limit (Table 2). 

The concentrations of nickel, manganese, 

cadmium, chromium, copper, zinc, and iron 

were all within acceptable limits for both 

samples except for lead. 

 

Table 2: Physicochemical analysis of the septic tank and raw sewage sludge from         

a wastewater treatment plant 
Parameters Sampling Points Limits 

Raw sewage sludge Septic tank NESREA 

pH 6.99 6.90 6-9 

Conductivity 1460 1058 NS 

TDS (ppm) 700 520 500 

TSS (ppm) 256 110 25 

TS (ppm) 970 630 NS 

Nitrate (ppm) 97.70 91.50 10 

Phosphate (ppm) 209.8 150.54 NS 

BOD (ppm) 83.95 69.70 30; 50 

COD (ppm) 38.10 25.80 60; 90 

DO (ppm) ND ND NS 

TH (ppm) 7.5 8.5 NS 

Sulphate 3.10 ND 250 

Appearance  Not Clear Not Clear Clear 

Odour  Objectionable Objectionable Odourless 

Temperature (oC) 27.2 26.9 40 

Pb (ppm) 0.082 0.056 0.05 

Ni (ppm) 0.019 0.012 0.05 

Mn (ppm) 0.044 0.057 0.2 

Cd (ppm) ND 0.980 1.0 

Cr (ppm) 0.011 0.208 1.0 

Cu (ppm) 0.060 0.043 0.5 

Zn (ppm) 0.019 0.100 2.0 

Fe (ppm) 0.974 0.755 2.0 

Oil/Grease (m g-1) 3.40 3.75 0.5 

TDS, Total Dissolved Solids; TSS, Total Suspended Solids; TS, Total Solids; BOD, Biochemical Oxygen Demand; COD, 

Chemical Oxygen Demand; TH, Total Hardness; Pb, Lead; Ni, Nickel; Mn, Manganese; Cd, Cadmium; Cr, Chromium; Cu, 

Copper; Zn, Zinc; Fe, Iron; ND, Not Detected; NS, Not Stated; NESREA, National Environmental Standards and Regulations 

Enforcement Agency (2009). 

 

Isolation and Identification of Heavy 

Metal Resistant Bacteria: 

              After screening the isolates from 

the wastewater treatment plant, four 

bacteria that tolerated over 200 ppm 

concentration of the four heavy metals were 

selected for further studies (Table 3). The 

isolates were molecularly and 

phenotypically identified as Alcaligenes 

faecaclis (Burkholderia. pseudomallei), 
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Klebsiella ornithinolytica, Paenalcaligenes 

hominis (Enterobacter cloacae) and 

Providencia vermicola (E. cloacae). 

Alcaligenes faecaclis tolerated > 400 ppm 

concentrations of the metals on agar. All the 

isolates tolerated 700 ppm concentrations 

of chromium. The isolates were less 

tolerant to copper (300-400 ppm).   

 

Table 3: Screening and identification of heavy metal resistant bacteria in wastewater on solid 

media 
Phenotypic identification Blast result (molecular 

identification) 

Heavy metals (ppm) 

Copper Lead Chromium Cadmium 

Burkholderia pseudomallei Alcaligenes faecalis 400 750 700 600 

Klebsiella ornithinolytica Unidentified 300 600 700 300 

Enterobacter cloacae Paenalcaligenes hominis 200 700 700 350 

Enterobacter cloacae Providencia vermicola 300 600 700 250 

 

Minimum Inhibitory Concentration 

(Mic): 

             The minimum inhibitory 

concentration (MIC) of the metals in Figure 

1 revealed, that the bacterial isolates had a 

high level of resistance to lead (>500 ppm) 

except for Providencia vermicola (150 

ppm). Among the isolates, Providencia 

vermicola had the least resistance to the 

heavy metals used (copper 60 ppm, lead 

150 ppm cadmium 20 ppm).  

 

 
Fig. 1. Minimum Inhibitory Concentrations (ppm) of heavy metals on bacterial strains from 

wastewater.  

 

Minimum Bactericidal Concentration 

(Mbc): 

             The minimum bactericidal 

concentrations of the heavy metal in Figure 

2 showed that cultures of Alcaligenes 

faecalis, Paenalcaligenes hominis, and 

Klebsiella ornithinolytica were no longer 

viable at concentrations of 750 ppm,700 

ppm, and 600 ppm of lead, respectively. 

The bacteria also had a high tolerance level 

to chromium before losing their viability 

between 320 – 450 ppm concentrations. 

Cadmium and copper were more toxic to 

the bacteria strains. However, Alcaligenes 

faecalis tolerated the metals more than the 

other strains before losing their viability at 

concentrations of 380 ppm and 400 ppm to 

cadmium and copper respectively. 

Providencia vermicola was the most 

sensitive to heavy metals. 
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Fig. 2. Minimum Bactericidal Concentrations (ppm) of heavy metals on bacterial strains from 

wastewater.  

 

Antibiotic Sensitivity of Heavy Metals 

Resistant Isolates: 

             The bacteria all exhibited 

multidrug resistance to 2 or more 

antibiotics, which include ampicillin (10 

µg), ceftazidime (30 µg), and augmentin 

(30 µg) (Table 4). However, they were all 

susceptible to ciprofloxacin (5 µg). The 

highest incidence of multiple drug 

resistance to six antibiotics was observed in 

Klebsiella ornithinolytica. Multiple 

antibiotic resistance indices ranged from 

0.25 to 0.75. 

 

Table 4: Antibiotic sensitivity of heavy metals resistant bacteria 
Organism GEN 

10 µg 

AMP 

10 µg 

CAZ 

30 µg 

OFX 

5 µg 

AUG 

30 µg 

CXM 

30 µg 

CIP 

5 µg 

NIT 

300 µg 

MAR 

Index 

Zone of inhibition (mm)  

Alcaligenes faecalis S (22) R (0) R (0) S (28) R (0) R (0) S (28) S (17) 0.5 

Klebsiella ornithinolytica R (10) R (0) R (0) R (14) R (0) S (26) S (26) R (0) 0.75 

Paenalcaligenes hominis S (20) R (0) R (0) S (19) R (0) R (0) S (24) S (17) 0.5 

Providencia vermicola S (19) R (0) R (14) S (28) I (14) I (18) S (28) S (17) 0.25 

GEN, gentamycin (10 µg); AMP, ampicillin (10 µg); CAZ, ceftazidime (30 µg); OFX, ofloxacin (5 µg); AUG, 

augmentin; CXM, cefuroxime (30 µg); CIP, ciprofloxacin (5 µg); NIT, nitrofurantoin (300 µg); S, Sensitivity; R, 

Resistant; I, Intermediate; MAR, Multiple Antibiotic Resistance. 

 

Plasmid Curing Activity on Heavy 

Metals and Antibiotics: 

             All the bacteria had a single 

plasmid >10 Kbp in size (Table 5). After 

curing the bacteria plasmids, the metal 

tolerance test revealed that all the bacteria 

were able to grow (resistant) in the presence 

of Cu and Pb at 300 ppm concentrations. 

However, they were sensitive to the 

presence of Cr and Cd in the growth 

medium. The resistance of the bacteria to 

antibiotics was not affected by plasmid 

curing (Table 6). The PCR amplification of 

ChrB (Chromium) and czc (cobalt-zinc-

cadmium) resistant genes in the bacterial 

strains produced no bands for all the strains 

(Fig. 3).  
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Table 5: Plasmid curing effect on heavy metal resistance in bacteria 
Isolates Plasmid 

(kbp) 

Heavy metals (300 ppm) 

Cr Cu Cd Pb 

Before After Before After Before After Before After 

Alcaligenes faecalis 12.5 700 - 400 + 600 - 750 + 

Klebsiella ornithinolytica 10.0 700 - 300 + 300 - 600 + 

Paenalcaligenes hominis 10 700 - 200 + 350 - 700 + 

Providencia vermicola 11.1 700 - 300 + 250 - 600 + 

 

Table 6: Plasmid curing effect on antibiotic resistance in bacteria 
Antibiotics Bacterial Strain and Curing Activity 

Alcaligenes faecalis Klebsiella 

ornithinolytica 

Paenalcaligenes 

hominis 

Providencia 

vermicola 

Before After Before After Before After Before After 

CAZ (30µg) R R R S R R R I 

CXM (30µg) R R S S R R I S 

GEN (10µg) S S R I S S S S 

CIP (5µg) S S S I S S S S 

OFX (5µg) S S R R S S S I 

AUG (30µg) R R R I R R I I 

NIT (300µg) S I R R S S S I 

AMP (10µg) R R R R R R R R 

GEN, gentamycin (10 µg); AMP, ampicillin (10 µg); CAZ, ceftazidime (30 µg); OFX, ofloxacin (5 µg); AUG, 

augmentin; CXM, cefuroxime (30 µg); CIP, ciprofloxacin (5 µg); NIT, nitrofurantoin (300 µg); S, Sensitivity; R, 

Resistant; I, Intermediate. 

 

 
(A) czc 

 
(B) chrB 

Fig. 3.  Agarose gel electrophoresis of PCR products of total genomic DNAs with cobalt-zinc-

cadmium (czc) and chromium (chrB) resistance genes. Lanes: M, DNA ladder (Marker); +ve, 

Negative (Non-template DNA); 1 to 4, amplified PCR products of Providencia vermicola (1), 

Alcaligenes faecalis (2), Klebsiella ornithinolytic (3) and Paenalcaligenes hominis (4). 
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DISCUSSION 

            The bacteria isolated demonstrated 

multiple tolerance to the Cd, Cr, Pb and Cu 

evaluated in this investigation. Multiple 

metal tolerance occurs because metals do 

not occur singly in the environment. For 

instance, Cd is often accompanied by Zn 

(Ugwuja et al., 2015), while Cr is 

accompanied by Co and Ni (Poznanović 

Spahić et al., 2018). Apart from the 

multiple heavy metal resistance observed in 

the bacteria from the wastewater treatment 

plant, multiple antibiotic resistance was 

also exhibited. This reinforces the fact that 

wastewater is a hotspot for developing 

pollutants such as antibiotics, heavy metals, 

antibiotic resistance genes, and heavy metal 

resistant genes (Barancheshme and Munir, 

2019).  

            Numerous studies have looked at 

the isolation and characterization of heavy 

metal, and antibiotic-resistant bacteria in 

wastewater from places like the dumpsites 

(Sanuth and Adekanmbi, 2016), printeries 

(Adekanmbi et al., 2019), bight sediments 

(Timoney et al., 1978), lakes and rivers 

(Matyar et al., 2014), and many genera of 

bacteria have been discovered, including 

those isolated in this study. Multiple heavy 

metal and antibiotic resistance in 

Alcaligenes faecalis and Paenalcaligenes 

hominis from wastewater was reported by 

Abo-Amer et al. (2015), Sanuth and 

Adekanmbi (2016), Adekanmbi et al. 

(2019); Ayyal Al-Gburi (2020), Olowo-

okere et al. (2020) and Ibrahim et al. 

(2021). According to a comparative 

analysis of Paenalcaligenes hominis 16S 

rRNA gene sequences, this bacterium 

shares <95 % similarity with all reported 

species of the Alcaligenaceae genera 

(Kämpfer et al., 2010). Alcaligenes faecalis 

usually cause opportunistic infections in 

humans and are often difficult to treat due 

to their increased resistance to several 

antibiotics (Huang, 2020). The bacterium 

Providencia vermicola in particular 

displayed a 100% resistance to amoxicillin, 

clavulanic acid, and ampicillin\sulbactam. 

The heavy metal resistance gene (ChrB) is 

present in this bacterium by Adekanmbi et 

al. (2019). Resistance to antibiotics, heavy 

metals, and genes resistant to both are of 

ecological importance because bacteria 

may transfer their resistance to previously 

non-resistant bacteria by horizontal gene 

transfer.   

             The minimal bactericidal 

concentration and tolerance of the bacteria 

to heavy metals were generally higher on 

Mueller Hinton agar than in broth. For 

example, Alcaligenes faecalis had MIC 

value of 620 ppm and MTC value of 750 

ppm in lead. Hassen et al. (1998) had 

similar observations. They explained that 

toxicity testing in a liquid medium allows a 

good evaluation of metal toxicity in 

polluted environments, such as industrial 

effluents and sewage sludge leachates. 

They attributed this difference between 

liquid and a solid medium to the differences 

in the conditions of diffusion, 

complexation, and availability of metals in 

the media. The MIC values for this study 

are consistent with that observed by other 

studies where the concentrations of heavy 

metals (Cu2+, Cr6+, Cd2+, Hg2+, Zn2+, Pb2+, 

Cd2+, Al3+, Cu2+, Ag2+, and Sn2+) in bacteria 

from wastewater ranged from 100 to 

1400 mg/L (Shakoori and Muneer, 2002; 

Abo-Amer et al., 2015; Adekanmbi et al., 

2019). 

             The resistance of the bacteria from 

the wastewater to antibiotics confirms 

Bhattacherjee et al. (1988) observation that 

multiple antibiotic-resistant bacteria occur 

in polluted water. This was reinforced by 

the bacteria's multiple antibiotic resistance 

indices, which were>2, suggesting 

exposure of the isolates to antibiotic 

contamination (Matyar et al., 2014). 

Similarly, the bacteria resistance to both 

heavy metals and antibiotics in the 

wastewater confirms that resistance factors 

for heavy metals and antibiotics are co-

selected in heavy metal-contaminated 

systems or habitats exposed to 

anthropogenic pressure (Timoney et al., 
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1978; Bhattacherjee et al., 1988; Baker-

Austin et al., 2006; Heydari et al., 2022). 

             Plasmids greater than 10 kb were 

found in the bacterial isolates. The plasmid 

of this size was similarly reported in 

bacteria from printeries effluent by 

Adekanmbi et al. (2019).  On the genetic 

level, bacterial resistance to heavy metals 

or antibiotics can be chromosomal and/or in 

mobile elements (e.g transposons and 

plasmids) (Gupta et al.,1999; Legatzki et 

al., 2003; Gutiérrez-Barranquero et al., 

2013; Di Cesare et al., 2016b). Resistance 

to Cu and Pb remained active after plasmid 

curing, implying that the resistance genes 

are chromosome-mediated. However, after 

curing, the bacteria were sensitive to Cd 

and Cr, suggesting that the genes 

controlling resistance to these metals in the 

bacteria were mobile element genetic 

element mediated. The PCR amplification 

of the czc and chrB genes for Cd and Cr 

resistance tested negative. This suggests 

that the bacteria lacked the Cd resistance 

genes czcCBA. Cadmium resistance is 

coded for by the czcCBA genes located on a 

plasmid pMOL30, and the cadA and 

zntA genes located on the chromosome 

(Legatzki et al., 2003). Several works have 

reported plasmid pMOL30 mediating 

resistance to Co2+, Zn2+, and Cd2 in A. 

eutrophus (Grosse et al., 1999), Ralstonia 

metallidurans (Legatzki et al., 2003) and 

Cupriavidus metallidurans (Scherer and 

Nies, 2009). The Cr resistance genes ChrB 

and ChrA can be carried on transposable 

elements either on a plasmid or 

chromosomally integrated. For example, 

bacteria with mobile genetic elements in 

plasmids containing Cr resistance genes 

ChrB and ChrA were demonstrated in 

strains Acinetobacter spp. (Mindlin et al., 

2018) from the environment. A transposon 

carrying a chromate resistance determinant 

was reported in a plasmid pB4 from an 

uncultured bacterium (Tauch et al., 2003), 

and a chromosomally integrated chromate-

inducible chrBACF operon from the 

transposable element TnOtChr which 

confers resistance to Chromium (VI) and 

Superoxide was described in 

Ochrobactrum tritici 5bvl1 (Branco et al., 

2008). 

              To prevent the spread of 

antibiotic-resistant bacteria in the 

environment, wastewater must be 

adequately treated before being discharged 

into water bodies. In the case of heavy 

metals, wastewater effluents will be 

suitable sources of possible bacteria 

candidates with multiple metal resistance 

abilities for bioremediation of metal-

contaminated sites. 
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