Screening of the potentiality of four green microalgae to be used as feedstock for biodiesel and nutraceutical production | ||||
Egyptian Journal of Phycology | ||||
Article 1, Volume 23, Issue 1, 2022, Page 1-33 PDF (749.3 K) | ||||
Document Type: Original Article | ||||
DOI: 10.21608/egyjs.2022.132130.1011 | ||||
View on SCiNiTO | ||||
Authors | ||||
Soha Mohamed1; Hamed Mohamed Eladel 2; MOhamed Battah1; Yasmine Ibrahim3 | ||||
1Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt | ||||
2Botany and Microbiology Department, Faculty of Science, Benha University | ||||
3Botany and Microbiology Department, Faculty of Science, Benha University, Benha07626744, Egypt | ||||
Abstract | ||||
Detection of oleaginous microalgae with high lipid productivity is a crucial feature for biofuel and nutraceutical production. Therefore, screening of microalgae from different habitats has become highly significant to face the request on these bioresources. Accordingly, the present study aimed to screen the efficiency of biodiesel feedstock and the ability to accumulate essential fatty acids of four green microalgae (Chlorolobion braunii, Tetradesmus obliquus, Monoraphidium minutum, and Asterarcys quadricellulare), isolated from soil samples of Benha, Egypt. Although T.obliquus was the highest biomass productive species (114.86 mgL-1d-1), but M. minutum was recorded as the highest species of lipid productivity (29 mg L-1d-1). Fatty acid profiles of the four microalgae confirmed their suitability for biodiesel production as mentioned by the biodiesel properties within the limits of international standards. Species selection through PROMETHEE and GAIA analysis revealed that C. braunii is the best promising as a potential source for biodiesel production because it has a high saturated fatty acids proportion (39.75%) and shows cetane number (54.99) and low iodine value (100.57) and many other biodiesel properties within the standards limit. In addition, the screened microalgae showed a high percentage of omega fractions in their total fatty acids, whereas Asterarcys quadricellulare and M. minutum have high omega-3 fatty acids content of 34.4% and 28.9%, respectively. | ||||
Keywords | ||||
Green microalgae; Biodiesel; Lipid; Essential Fatty Acids; Nutraceuticals | ||||
References | ||||
Abomohra, A. E. F., Eladel, H., and Mohammed, S. (2022). Dual use of a local Protosiphon isolate BENHA2020 for biodiesel production and antioxidant activity of lipid-free biomass: A novel biorefinery approach for biomass valorization. Renewable Energy.
Abomohra, A. E. F., Eladel, H., El-Esawi, M., Wang, S., Wang, Q., He, Z., ... and Hanelt, D. (2018). Effect of lipid-free microalgal biomass and waste glycerol on growth and lipid production of Scenedesmus obliquus: Innovative waste recycling for extraordinary lipid production. Bioresource technology, 249, 992-999.
Adarme-Vega, T. C., Lim, D. K., Timmins, M., Vernen, F., Li, Y., and Schenk, P. M. (2012). Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microbial cell factories, 11(1), 1-10.
Almarashi, J. Q., El-Zohary, S. E., Ellabban, M. A., and Abomohra, A. E. F. (2020). Enhancement of lipid production and energy recovery from the green microalga Asterarcys quadricellulare by inoculum pretreatment with low-dose cold atmospheric pressure plasma (CAPP). Energy Conversion and Management, 204, 112314.
Aluko, R. (2012). Bioactive peptides. In Functional foods and nutraceuticals (pp. 37-61). Springer, New York, NY.
Anderson, R. A. (Ed.). (2005). Algal culturing techniques. Elsevier.
Antolin, G., Tinaut, F. V., Briceno, Y., Castano, V., Perez, C., and Ramırez, A. I. (2002). Optimisation of biodiesel production by sunflower oil transesterification. Bioresource technology, 83(2), 111-114.
Ashour, M., Elshobary, M. E., El-Shenody, R., Kamil, A. W., and Abomohra, A. E. F. (2019). Evaluation of a native oleaginous marine microalga Nannochloropsis oceanica for dual use in biodiesel production and aquaculture feed. Biomass and Bioenergy, 120, 439-447.
ASTM (2008). Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels, ASTM D6751- 08. ASTM International, West Conshohocken
Babalola, T. O. O., and Apata, D. F. (2011). Chemical and quality evaluation of some alternative lipid sources for aqua feed production. Agriculture and Biology Journal of North America, 2(6), 935-943.
Bazinet, R. P., and Layé, S. (2014). Polyunsaturated fatty acids and their metabolites in brain function and disease. Nature Reviews Neuroscience, 15(12), 771-785.
Bhalamurugan, G. L., Valerie, O., & Mark, L. (2018). Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environmental Engineering Research, 23(3), 229–241. https://doi.org/10.4491/eer.2017.220
Brans, J. P., Mareschal, B., (2005). PROMETHEE methods, multiple criteria decision analysis: state of the art surveys, 163–186.
CEN (2008). (European Committee for Standardization) Automotive fuels: fatty acid methyl esters (FAME) for diesel engines: requirements and test methods, EN14214. European Committee for Standardization, Austrian Standards Institute, Vienna, Austria
Chackalamannil, S., Rotella, D., and Ward, S. (2017). Comprehensive medicinal chemistry III. Elsevier.
Chen, B., McClements, D. J., and Decker, E. A. (2013). Design of foods with bioactive lipids for improved health. Annual review of food science and technology, 4, 35-56.
Christie, W. W. (1993). Preparation of ester derivatives of fatty acids for chromatographic analysis. Advances in lipid methodology, 2(69), e111.
Clifton, P. M., and Keogh, J. B. (2017). A systematic review of the effect of dietary saturated and polyunsaturated fat on heart disease. Nutrition, Metabolism and Cardiovascular Diseases, 27(12), 1060-1080.
Díaz, G. C., Cruz, Y. R., Fortes, M. M., Viegas, C. V., Carliz, R. G., Furtado, N. C., and Aranda, D. A. G. (2014). Primary Separation of Antioxidants (Unsaponifiables) the Wet Biomass Microalgae Chlamydomonas sp. and Production of the Biodiesel. Natural Science, 6(15), 1210.
Dorni, C., Sharma, P., Saikia, G., and Longvah, T. (2018). Fatty acid profile of edible oils and fats consumed in India. Food chemistry, 238, 9-15.
Eladel, H., Abomohra, A. E. F., Battah, M., Mohmmed, S., Radwan, A., and Abdelrahim, H. (2019). Evaluation of Chlorella sorokiniana isolated from local municipal wastewater for dual application in nutrient removal and biodiesel production. Bioprocess and biosystems engineering, 42(3), 425-433.
Enamala, M. K., Enamala, S., Chavali, M., Donepudi, J., Yadavalli, R., Kolapalli, B., ... and Kuppam, C. (2018). Production of biofuels from microalgae-A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renewable and Sustainable Energy Reviews, 94, 49-68.
Folayan, A. J., Anawe, P. A. L., Aladejare, A. E., and Ayeni, A. O. (2019). Experimental investigation of the effect of fatty acids configuration, chain length, branching and degree of unsaturation on biodiesel fuel properties obtained from lauric oils, high-oleic and high-linoleic vegetable oil biomass. Energy Reports, 5, 793-806.
Folch, J., Lees, M., and Stanley, G. S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of biological chemistry, 226(1), 497-509.
Fraeye, I., Bruneel, C., Lemahieu, C., Buyse, J., Muylaert, K., and Foubert, I. (2012). Dietary enrichment of eggs with omega-3 fatty acids: A review. Food Research International, 48(2), 961-969.
Guihéneuf, F., and Stengel, D. B. (2013). LC-PUFA-enriched oil production by microalgae: accumulation of lipid and triacylglycerols containing n-3 LC-PUFA is triggered by nitrogen limitation and inorganic carbon availability in the marine haptophyte Pavlova lutheri. Marine drugs, 11(11), 4246-4266.
Hegewald, E., & Schmidt, A. (1992). Asterarcys Comas, eine weit verbreitete tropische Grünalgengattung. Algological Studies/Archiv für Hydrobiologie, Supplement Volumes, 25-30.
Held, P. (2011). Monitoring of algal growth using their intrinsic properties: Use of a Multi-Mode Monochromator-based Microplate Reader for Biofuel Research.Inc., Vermont.
Hishikawa, D., Valentine, W. J., Iizuka‐Hishikawa, Y., Shindou, H., and Shimizu, T. (2017). Metabolism and functions of docosahexaenoic acid‐containing membrane glycerophospholipids. FEBS letters, 591(18), 2730-2744.
Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., and Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and sustainable energy reviews, 16(1), 143-169.
Islam, M. A., Magnusson, M., Brown, R. J., Ayoko, G. A., Nabi, M., and Heimann, K. (2013). Microalgal species selection for biodiesel production based on fuel properties derived from fatty acid profiles. Energies, 6(11), 5676-5702.
Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories. https://doi.org/10.1186/s12934-018-0879-x
Komárek, J., & Fott, B. (1983). Die Binnengewässer, Band 16 Teil 7 Hälfte 1. Das Phytoplankton des Süßwassers. Systematik und Biologie Teil 7, 1. Hälfte: Chlorophyceae (Grünalgen), Ordnung Chlorococcales. Schweizerbart’sche Verlagsbuchhandlung: Stuttgart, Germany.
Kramadibrata, M. A. M., Nurjanah, S., Muhaemin, M., Mardawati, E., Herwanto, T., Rosalinda, S. N., ... and Putri, F. E. (2019). Selecting biofuel obtained from Sunan Pecan oil for diesel engine fuel. Journal of Agricultural Science and Technology A, 9, 323-328.
Liang, Y., Beardall, J., and Heraud, P. (2006). Effects of nitrogen source and UV radiation on the growth, chlorophyll fluorescence and fatty acid composition of Phaeodactylum tricornutum and Chaetoceros muelleri (Bacillariophyceae). Journal of Photochemistry and Photobiology B: Biology, 82(3), 161-172.
Ma, Y., Wang, Z., Yu, C., Yin, Y., & Zhou, G. (2014). Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production. Bioresource technology, 167, 503-509.
Maki, K. C., Eren, F., Cassens, M. E., Dicklin, M. R., and Davidson, M. H. (2018). ω-6 Polyunsaturated fatty acids and cardiometabolic health: current evidence, controversies, and research gaps. Advances in Nutrition, 9(6), 688-700.
Mandotra, S. K., Kumar, P., Suseela, M. R., and Ramteke, P. W. (2014). Fresh water green microalga Scenedesmus abundans: a potential feedstock for high quality biodiesel production. Bioresource Technology, 156, 42-47.
Mathimani, T., and Pugazhendhi, A. (2019). Utilization of algae for biofuel, bio-products and bio-remediation. Biocatalysis and agricultural biotechnology, 17, 326-330.
Mendis, E., and Kim, S. K. (2011). Present and future prospects of seaweeds in developing functional foods. Advances in food and nutrition research, 64, 1-15.
Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., & Xian, M. (2009). Biodiesel production from oleaginous microorganisms. Renewable energy, 34(1), 1-5.
Park, J. Y., Kim, D. K., Lee, J. P., Park, S. C., Kim, Y. J., and Lee, J. S. (2008). Blending effects of biodiesels on oxidation stability and low temperature flow properties. Bioresource technology, 99(5), 1196-1203.
Ramos, M. J., Fernández, C. M., Casas, A., Rodríguez, L., and Pérez, Á. (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource technology, 100(1), 261-268.
Santhakumaran, P., Kookal, S. K., Mathew, L., and Ray, J. G. (2019). Bioprospecting of three rapid-growing freshwater green algae, promising biomass for biodiesel production. BioEnergy Research, 12(3), 680-693.
Song, M., Pei, H., Hu, W., and Ma, G. (2013). Evaluation of the potential of 10 microalgal strains for biodiesel production. Bioresource technology, 141, 245-251.
Talebi, A. F., Mohtashami, S. K., Tabatabaei, M., Tohidfar, M., Bagheri, A., Zeinalabedini, M., ... and Bakhtiari, S. (2013). Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Research, 2(3), 258-267.
Tiwari, V., Das, A., Thakur, S., & Trivedi, R. K. (2021). Molecular characterization of blue-green algae (Anabaena constricta) and comparative studies of biodiesel production from other species.
Tsarenko, P. M., Wasser, S. P., & Nevo, E. (2011). Chlorophyta. Algae of Ukraine: diversity, nomenclature, taxonomy, ecology and geography. ARG Gantner, Ruggell, Liechtenstein.
Ward, O. P., and Singh, A. (2005). Omega-3/6 fatty acids: alternative sources of production. Process biochemistry, 40(12), 3627-3652.
Wehr, J. D., Sheath, R. G., and Kociolek, J. P. (Eds.). (2015). Freshwater algae of North America: ecology and classification. Elsevier.
Wu, H., Xu, L., & Ballantyne, C. M. (2020). Dietary and pharmacological fatty acids and cardiovascular health. The Journal of Clinical Endocrinology & Metabolism, 105(4), 1030-1045.
Wysoczański T, Sokoła-Wysoczańska E, Pękala J, Lochyński S, Czyż K, Bodkowski R, Herbinger G, Patkowska-Sokoła B, Librowski T (2016). Omega-3 fatty acids and their role in central nervous system a review. Current medicinal chemistry, 23(8), 816-831.
Yagi, S., Fukuda, D., Aihara, K. I., Akaike, M., Shimabukuro, M., and Sata, M. (2017). n-3 polyunsaturated fatty acids: promising nutrients for preventing cardiovascular disease. Journal of atherosclerosis and thrombosis, RV17013.
Yen, H. W., Hu, I. C., Chen, C. Y., Ho, S. H., Lee, D. J., and Chang, J. S. (2013). Microalgae-based biorefinery–from biofuels to natural products. Bioresource technology, 135, 166-174. | ||||
Statistics Article View: 390 PDF Download: 272 |
||||