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ABSTRACT 
 
This paper deals with the study of the turbulent boundary layer development on two 
dimensional flows subjected to steady incompressible oncoming stream. In the 
turbulent flow, the boundary layer is divided into two layers, a wall layer and an outer 
layer. It is well known that the wall layer is universal but the outer layer depends on 
the pressure gradient. The outer layer is modeled as a nonlinear turbulent wake and 
consequently a constant eddy viscosity model for Clauser is adopted. The outer 
layer problem is shown to be governed by the classical Falkner – Skan equation for 
the laminar wake, the difference being in a turbulent condition which requires a finite 
stress at its inner boundary instead of zero stress in laminar flows. For the 
computations it was convenient to convert the above direct problem (for a given 
stress, find the slip velocity at the wall) to an inverse problem (given the slip velocity 
at the wall find the stress). Riley & Weidman (1989) dealt with the solution of the 
above inverse problem, but had not however covered the entire range of solutions. In 
the present work a much wider range solution to the inverse problem using a finite 
domain transformation is obtained by Runge-Kutta method. The results are 
displayed graphically and discussed critically. The solution of the inner and outer 
layers put together describes the turbulent boundary layer subjected to arbitrary 
pressure gradients.  
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 INTRODUCTION 
 
Turbulence can be defined as a chaotic vorticity field with the statistical mean being 
deterministic. Osborne Reynold was the first to recognize that turbulence is a 
problem in statistical dynamics. He separated the mean and fluctuating quantities by 
defining a probability average such that the mean stream is interacting with the 
fluctuating irregular edding indeterministic motion. His approach has lead to 
Reynolds’s equations which involve additional unknowns called Reynold's stresses. 
 
Much of what is known about turbulent shear flows stems from experiments 
supplemented by dimensional and similarity arguments. 
 
2D Turbulent boundary layer equations 
 
The turbulent boundary layer equations for a steady homogeneous isotropic 
Newtonian incompressible two dimensional flows in rectangular Cartesian 
coordinates are 
 
Continuity equations 
 

0=∂∂+∂∂ yvxu                                                                                                         (1) 
 
Momentum equation 
 

22 yudyddxdUUyuvxuu ee ∂∂+=−∂∂+∂∂ ντ                                                       (2) 
 
The boundary conditions are 
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The analysis of turbulent boundary layer equations in the two layers is described 
below [2]; 
 
Inner layer 
 
Introducing these inner variables 
  

( )
( )+

+

=
=

yg
yfuu

wττ
τ                                                                                                                 (4) 

νyuy =+  
 
into the boundary layer equations (1) and (2) the lowest order terms give after 
integration; 
 

122 =+∂∂ + gyf                                                                                                           (5) 
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i.e., the total stress in the inner layer is constant. 
 
Outer Layer 
 
The outer variables are 
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In the outer variables the boundary layer equations reduce to 
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subjected to the boundary conditions 
 

0,1, →→′∞→ TFY                                                                                                (8) 
 
The expansions in the outer layer are 
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where γ is a gauge function. The equation satisfied by the lowest order terms is 
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subjected to the boundary conditions 
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The Matching 
 
The matching for the tangential velocity component leads to the functional equation 
[3]; 

( ) ( ) ( ) YYXFYYXFyfu o ∂→∂+∂→∂≈∞→+ 0,0, 1γτ                                             (12) 
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( ) ( )XGYXF oo =∂∂ 0, is the slip velocity due to the outer inviscid solution at the wall, 
expected of order unity except for very strong pressure gradients. The term 
( )+yf must diverge; say as ( )+yg at large y to balance the slip velocity term. Also the 

term YF ∂∂ 1 should diverge as 0→Y , say as ( )YXG ,1 = . 
Equation (12) then becomes; 
 

( ) ( ) ( )YXGXGygu o ,1γτ +≈+                                                                                      (13) 
 
Differentiation w.r.t. Y gives 
 

YGYYGYygyu oo ∂∂+∂∂≈∂∂ ++ 1γτ                                                                       (14) 
 
The matching to the lowest order gives 
 

00 ==∂∂ YatYGY o                                                                                     (15) 
 
Assuming τγ u= the next order terms are 
 

YGYygy ∂∂≈∂∂ ++ 1                                                                                                (16) 
 
This shows that both sides approaches a constant, say like k1 independent of 

+y andY . From  
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( ) YYXFG

yfg
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∞→= +
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                                                                                              (17) 

 
we get 
 
( ) ( ) Aykuuyf +== ++ ln1τ                                                                                     (18) 

 
( ) BYkYF −=∂∂ ln11                                                                                                (19) 

 
The matching of the tangential velocity gives 
 

( ) ( ) BAkuXFo ++=′ +δτ ln10,                                                                                  (20) 
 
which is the skin friction law. Subtracting (20) from (18) we get 
 

( ) ( ) BYkuuXFo +−=−′ ln1)0,( τ                                                                                (21) 
 
From 
 

( ) ( )0,0,1 XFXU o′=                                                                                                     (22) 
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we write 
 

( ) ( ) BAkuXU ++= +δτ ln10,1                                                                                  (23) 
 
Equation (18) is the well known law of wall. Equation (21) is more general than the 
classical defect law and may be called the local defect law. To proceed further in the 
solutions of inner and outer layers we need some kind of Clauser hypothesis or 
certain evidences from experiments.  
 
Method of solution –Inner layer 
 
It is known from experiments that the log law is observed and substantial log region 
exists. Throughout this work a fix set of boundary layer constants ( 41.0=k and A 5= ) 
has been used. Therefore, the law of the wall in the inner layer, Equation (18), is 
 

( ) 5ln41.1 += +yuu τ                  for large y                                                              (24) 
 
For small y the analysis of boundary layer equations shows that the velocity profile is 
linear such that; 
 

+= yuu τ                                                                                                                  (25) 
 
The domain of change of the region from Equation (25) to Equation (24) is not known 
in closed form. But if we use an expression due to Spalding [4] then the velocity 
distribution in the entire inner layer can be assumed known. This relation due to 
Spalding is an empirical implicit correlation with the following form; 
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Method of solution-Outer layer 
 
The equation in the outer layer is 
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With the boundary conditions at infinity 
 

0,1, →→′∞→ oo TFY                                                                                             (28) 
 
and the matching conditions with the inner layer  
 

1,0,0,0 →→′′== ooo TFYFY                                                                             (29) 
 
In order to solve the outer layer we assume an eddy viscosity hypothesis 
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yu ∂∂= τρντ                                                                                                            (30) 
 
Clauser [5] has assumed that the eddy Reynold's number se RU =∗

τνδ , remains 
constant in the outer layer. Thus 
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Equation (30) can also be written as 
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Therefore Equation (27) becomes 
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With the boundary conditions given as; 
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Let 
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Equation (33) can be written as 
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If  
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then Equation (36) is 
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subjected to the boundary conditions 
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For equilibrium pressure gradients β is constant and 0=∂∂ x . Equation (38) 
becomes 
 

( ) 01 2 =′−+′′+′′′ gggg β                                                                                             (40) 
 
with the boundary conditions 
 

0,0 == gς                                                                                                       (41a) 

( ) ( ) ςdgRCg sf ∫ −=′′
∞

0
120                                                                                      (41b) 

1, →∞→ gς                                                                                                        (41c) 
 
Here fC is the skin friction and is given by 
 

( ) ( ) ςdggRC sf ∫
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The condition β is constant implies that 
 

a
eU δα                                                                                                                     (43) 

 
where a is a constant equals ββ −1 . This in turn implies that similar solutions of the 
boundary layer equations are obtained when the velocity distribution of the potential 
flow is proportional to a power of the boundary layer thickness. Clauser [5] in his 
classical work on the outer layer of the turbulent boundary layer has also obtained 
Equation (40). He prescribed the boundary conditions (41a) and (41c) and 
determined a family of the profiles of ( )0f ′ when β  was held fixed. By actual joining 
of the experimental velocity profiles for the inner layer, he estimated the skin 
friction fC . 
 
The advantages of the present procedure are that we do not compute the family of 
the profiles and fix this arbitrariness by prescribing the boundary condition (41b). 
Equation (40) is the well known Falkner Skan laminar boundary layer equation. A 
finite stress arises from the fact that the outer layer has to match with the inner layer 
and as a consequent of matching a finite stress is imposed on the outer layer.  
 

The equations (40) & (41) form a two point boundary value problem governed by a 
third order ordinary differential equation. For a given pressure gradient β and skin 
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friction fC the equation can be numerically obtained to get the slip velocity ( )0g ′ . This 
is called the direct problem. In the turbulent flows, however, the slip velocity ( )0g ′  is 
prescribed by the inner layer and therefore fC is to be determined from the solution. 
This problem is referred here as the inverse problem which can be stated as  
 

( )
( ) ( ) ( ) 1,0,00

01 2

=∞′=′=
=′−+′′+′′′

gcgg
gggg β

 

 
For a given β and c , the equation can be integrated to obtain the profile and ( )0g ′′ ; 
consequently skin friction fC can be estimated from the Equation (42). 
 
However, Riley & Weidman [6], in their work on stretched boundaries, reported 
solutions for the ranges 11 +≤≤− β and 11 +≤≤− c . Their solutions correspond to the 
case when the free stream is dominant compared with the stretching of the wall 
( 1≈c ). Riley & Weidman had not covered the situation when stretching is dominant 
compared with the free stream ( 1>c or 1>>c ), i.e. the magnitude of the free stream 
velocity becomes smaller than the stretching velocity at the wall. However, the 
situation of 1>>c would lead to difficulties in the numerical solution, which was 
resolved in this work by a finite transformation  
 
( ) ( )

εης

εης

=

= /fg
                                                                                                        (44) 

( )∞∞ +=+= UUUc w11ε  
Substituting the finite transformations, the inverse problem takes the form 
 

( ) 022 =′−+′′+′′′ ffff εβ                                                                                          (45) 
 
( ) ( ) ( ) εε =∞′−=′= fff ,10,00                                                                         (46) 

 
In terms of present variables β andε , the solution presented by Riley & Weidman 
corresponds to 1≤β and 5.0≥ε . 
 
In the present work the solutions are obtained for 2≤β and 10 ≤≤ ε . The equations 
(45) and (46) are integrated numerically by Runge Kutta method with a step 
size 05.0=∂η . The boundary conditions at infinity are satisfied by a shooting method 
which interpolates the two computed solutions so that the error in the boundary 
conditions at infinity becomes minimum in the least squares sense.  
 
Results & Discussion 
 
Velocity profiles for various values ε  and β  are displayed on figures (1), (2) and (3) 
and for values of 0,5.0,0.1=β respectively. It is observed that as pressure gradient 
increases the velocity profiles converge quickly to the outer value ε−1 . This means 
that boundary layer thickness decreases as pressure gradient increases. Fig. 1 
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shows that for very large values of slip velocity ( )0=ε , the non-dimensional 
tangential velocity component ( )ηf ′ starts from unity and decreases to zero 
asymptotically far enough from the wall where it matches smoothly with the outer 
valueε . Fig. 1 shows that in the region 5.00 ≤≤ ε , ( )ηf ′  reaches its maximum at the 
wall and then decreases to the outer value. For various values ofε , at a certain 
distance from the wall, the velocity profiles fall together. This means that the 
tangential velocities are nearly the same regardless the slip velocity value.  
 
Stream function distributions, ( )ηf  across the layer for various values of β  are 
shown in figures (1), (2) and (3). Fig. 1 shows that for 0.1,8.0,6.0,4.0=ε , distribution 
of ( )ηf  is almost linear while for 0=ε  it increases from zero at the wall to a certain 
value and then becomes constant through the remaining part of the layer. All figures 
are qualitatively same and so no additional commences are required except that for 

0=β , stream function near the wall is higher for 0=ε  with the lowest being 
for 0.1=ε . 
 
Displacement thickness against ε  is displayed on Fig. 4 for positive β  and on Fig. 5 
for negativeβ . It is observed that as β increases, displacement thickness 
decreases, and that as the slip velocity decreases, displacement thickness 
increases. Displacement thickness is zero for ( 5.0=ε ), negative for 5.0<ε  and 
positive for 5.0>ε . Fig. 5 shows that at and beyond separation, displacement 
thickness increases faster and turns up at some value ofε . 
 
Skin friction against ε is displayed on Fig. 6 for positive pressure gradients ( 0>β ) 
and on Fig. 7 for negative pressure gradients ( 0<β ). In these figures, it is observed 
that skin friction is zero when the wall slip velocity is same as the free stream velocity 
( 5.0=ε ), negative for 5.0<ε  and positive for 5.0>ε . For a fixed β , skin friction 
increases as wall slip velocity decreases. It is also observed that as the pressure 
gradient increases, skin friction increases. It is clear that flows with high pressure 
gradients and small or zero slip velocity values, will suffer high skin friction. Fig. 7 
shows that at separation ( 19883.0−=β ), skin friction is maximum at about 

82.0=ε and then decreases to zero at 0.1=ε .  
 
Conclusions 
 
The present paper dealt with the analysis of two dimensional turbulent boundary 
layers with moderately high pressure gradients. For the computation, an inverse 
approach has been followed. The inverse problem can be stated as; given the slip 
velocity at the wall find the stress.  
 
The present work succeeded to obtain solution for a wider range of pressure 
gradients and slip velocities using a finite domain transformation. The results showed 
that skin friction is zero when wall slip velocity is same as the free stream velocity, 
negative for 5.0<ε  and positive for 5.0>ε . For a fixed pressure gradient value, skin 
friction increases as wall slip velocity decreases. Flows with high pressure gradients 
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and small or zero slip velocity values, will suffer high skin friction. At and beyond 
separation, displacement thickness increases faster and turns up at some value ofε .  
However, more work is required to assess and validate the above results. This is 
being conducted by the author presently. 
 
However, the present work is still in the beginning. Validation of results needs to be 
conducted. Also, experimental work seems to be required, at least to measure the 
pressure distribution over a real surface – e.g., an airfoil surface-, from which the 
external velocity distribution could be evaluated, and substituted for to obtain the 
pressure gradient parameter. The interesting issue of the present work is that it deals 
with the solution of the problem of incompressible turbulent boundary layer with 
pressure gradients which is vital in the skin friction drag calculations for an airplane 
wings. These issues will be addressed later by the author.  
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Fig. 1: Velocity ( )ηf ′  & Stream Function ( )ηf  Distributions for 1=β  

 

 
 
 

Fig. 2: Velocity ( )ηf ′  & Stream Function ( )ηf  Distributions for 5.0=β  
 

 
 

 
Fig. 3: Velocity ( )ηf ′  & stream Function ( )ηf  Distributions for 0=β  
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Fig. 4: Displacement thickness ∗δ  distribution against ε  for positive β  
 

 
 

Fig. 5: Displacement thickness ∗δ  distribution against ε  for negative β  
 

 
 

Fig. 6: Skin friction ( )0f ′′  distribution against ε  for positive β  
 

 
 

Fig. 7: Skin friction ( )0f ′′  distribution against ε  for negative β  
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