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ABSTRACT 
 
One of the most critical processes of a free-flying autonomous robot is investigated 
in this paper using artificial potential fields. Close navigation round The International 
Space Station could not be established with the potential functions without 
representing the station using a superquadric model. The final configuration is 
defined as the global minimum of a function which includes the goal parameters and 
the station structure. An error quaternion representation is used to define both 
attractive and repulsive potentials to enable the formulation of a position-orientation 
dependent controller. Coupling between translational and rotational motions leads to 
better controller performance. Its elegancy and simplicity minimize the computational 
power needed for the free-flyer on-board computer. 
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NOMENCLATURE 
 
A  =  repulsive potential amplitude 
Ao  =  maximum repulsive amplitude 
a, b, c = superquadratic shape parameters in x, y, and z directions 
a  =  parameter vector  ⎡ ⎤Tcba 21 εε
d  = distance between superquadric objects 
F  = superquadric inside-outside function 
n  = contour parameter 
q   =  part of error quaternion vector  ⎡ ⎤Tqqq 321

r  =  object position vector  
rG  =  goal point position vector 
r&   = velocity vector 
s(t)  = local (orbital) frame state vector 
t  = time 
V  = global potential field 
Vatt  =  total attractive potential 
Vobs  =  obstacle potential 
vmax  = maximum controlled velocity 
x  =  element state vector  ⎡ ⎤Tqqqqzyx 4321

xB, yB, zB =  Cartesian coordinates in a body frame of reference 
xL, yL, zL =  Cartesian coordinates in a local orbiting frame of reference 
α  =  superquadric obstacle potential shape parameter 
β  =  braking length-scale 
Φ  = state transition matrix 
ε1, ε2      =   superquadric roundness parameters 
ρ  = beam radius 
σ  = repulsive potential length-scale 
Ω  = circular orbit angular velocity 
ω   = object angular velocity vector 
 
 
INTRODUCTION 
 
Free flying robots enable flexible assembly and service facilities to work inside space 
facilities or in the free space. They serve in conjunction with space redundant 
manipulators and astronauts with the advantage of flexibility over the first and safety 
over the second type. 
Formation of a potential field incorporating both translational and rotational motion is 
used herein to define motion parameters of a free-flyer maneuvering at the 
International Space Station. The global potential is composed of attractive and 
repulsive potentials. Attractive potentials bring the free-flyer toward its goal 
configuration, while repulsive ones protect it and the station structure from 
collisions[1]. 
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Wide Space applications for the potential field method include proximity 
manoeuvring [2], large angle slew manoeuvres [3], and formation-flying [4]. On-orbit 
assembly of large structures is another major application of the method [5-7]. 
Distinctive station modules using the same model, nevertheless their shape and size 
differences are defined using superquadric functions. They are formed in local body 
frames of reference; hence error quaternions are used to find relations between local 
and inertial parameters.  These functions are modified to deform from the modules 
shapes to spheres and combined with attractive potentials [8,9]. The deformation 
rate is controlled through the relative distance to avoid local minima formation due to 
overlap of multiple objects interface.  
The repulsive potentials depend on the relative distance between the free-flyer and 
the ISS modules. As they have different sizes and orientations, a rigid body 
formulation is required instead of considering only their centers to calculate the 
separation distances [10].  
The potential function proposed in this paper is aimed to minimize on-board sensors 
requirements through using only kinematic data as the measured quantities. The 
required impulses are calculated on-board, then produced by small thrusters, 
whereas a continuous control torque is produced from control moment gyros. 
 
 
ATTRACTIVE POTENTIAL 
 
A parabolic attractive well is chosen to drive the free-flyer toward its goal 
configuration. The translational attractive field is a function of the Euclidian distance 
between the free-flyer and its goal position, Fig. 1. The error quaternions, q which are 
the difference between the quaternion of the free-flyer and its goal orientation, 
represent the rotational attractive field as: 

 ( ) ( ) qqrrrr ..V q
GG

p
att 22

λλ
+−−=    (1)  

The free-flyer will move down the gradient of the potential field towards this global 
minimum where its position vector r equals the goal position vector rG. The first three 
terms in the error quaternion vector, , are set to zero at the goal 
orientation. The two constants λp and λq represent the ratio of the translation to 
rotation capability of the free-flyer. 

⎡ Tqqqq 4321=q ⎤

 
 

SUPERQUADRIC FUNCTION 
 

Superquadrics are mathematical representations of solid objects. They are a set of 
parametric functions that have great utility in object modeling. Their parametric 
characteristics enable the creation of a range of object shapes by manipulating the 
so-called roundness and shape parameters as demonstrated in Fig. 2. A generic 



 

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 APM-02 4 
 

 
  

implicit superquadric function (inside-outside function) is defined in body axes as 
[11,12]: 
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The superquadric surface satisfies the equation: 

 ( ) 1=B,F xa  (3) 

where the vector a, represents superquadric radii a, b, and c and the roundness 
parameters є1, and є2. The vector xB is the position vector w.r.t. a body frame of 
reference. The approximate minimum distance between two superquadric solid 
models (object and obstacle) is found to be [10]: 

 ( ) ( ) ( ) ⎥⎦

⎤
⎢⎣

⎡ −−=
−−

22
11

1 
obj,obs,

B,objobjobjB,obsobsobs/objB,objB,obsobjobs ,F,F,,,d
εε

xaxarxxaa  (4) 

A suitable form of the superquadric function is suggested, depending on the obstacle 
shape, to define a deformable solid model that takes an object shape near its edges, 
while deforming to a sphere at some distance from them [8,9]. 
 
 
REPULSIVE POTENTIAL 
 

Repelling the free-flyer away from the station structure is achieved through a 
repulsive potential. A Superquadric repulsive potential is defined according to the 
separation distance between the free-flyer and station structure, d, as [8, 9]: 

for         mindd ≥
d

eAV
d

obs

α−
=  (5-a) 

for         mindd <
αα  −= d

obs eAV
1

1+

 (5-b) 

where dmin is a predefined distance depends on objects under investigation, normally 
unity. The repulsive potential amplitude, A, should be set to zero at the final docking 
to allow smooth contact as: 

 ( )σ2

1 Grr−−−= eAA o   (6) 

The exponent α, controls the rate of the superquadric shape change from the 
obstacle shape to a spherical one. Ao is the maximum amplitude and σ is the 
standard deviation of the Gaussian distribution [7]. 
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A separation distance calculation considering the object centre is not adequate as 
the station modules shape, size, and orientation should be considered. Figure 3 
illustrates how the object orientation affects the distance d. 
 
 
GLOBAL POTENTIAL 
 
Attractive and repulsive potentials are now combined to form a global field. It is used 
to drive the free-flyer from its initial parking configuration to its final one while 
avoiding collision with station modules. The overall potential field should satisfy the 
stability criteria defined by Lyapunov's second theorem [13]. The proposed global 
function is expressed as: 

 ( ) ( ) obs
q

GG
p V..V ++−−= qqrrrr

22
λλ

 (7) 

The time derivative is: 

 ( ) qrqqrrr &&&&& .V.V..V obs
q

obsqGp ∇+∇++−= λλ  (8) 

where 
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To set the time derivative of the potential function to be negative semi-definite, the 
control laws will be: 

 ( )
V
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The angular velocity is calculated as [14]: 

 qQω &12 −=  (14) 

 
 
ISS SUPERQUADRIC MODEL 
 
An approximate model of the ISS is formed using superquadric functions, Fig. 4. 
Superquadric functions prove their ability to give a simple mathematical formulation 
of all station modules. For parallelepiped elements both є1 and є2 tend to zero hence, 
the inside-outside function for a deformable superquadric is expressed as [8]: 
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The parameter n characterizes contour surfaces as n→∞ at the parallelepiped 
modules edges, whereas n→1 away from them as: 

 de
n α−−
=

1
1

 (16) 

For cylindrical modules of radius ρ and length c, the inside-outside function is 
defined as: 
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FREE-FLYER SIMULATION 
 
A free-flyer parked on the station surface will maneuver to another point to perform 
certain operations like inspection, installation, or repair. The free-flyer is equipped 
with thrusters to enable it to perform the required maneuver. Thrusters are on when 
the time derivative of the global potential function is larger than some non-positive 
value, cf. Control actuation is then required when: 

  (18) fi cV ≥&

As this rate satisfies Eq. (18), the free-flyer will move according to the orbital 
mechanics equations using the Clohessy-Wiltshire approximation since the relative 
distance between start and goal positions are much smaller than that distance to the 
Earth’s centre. Solution of the linearised differential equations of motion lead to 
describe the free flyer motion with the state transition matrix Φ(t) as: 

 ( ) ( ) ( )0sΦs tt =  (19) 
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⎤where w.r.t. a local orbiting frame of reference, and s(0) 
is the initial conditions for the current period of free flight between impulses. The 
state transition matrix can then be defined as [15]:  

( ) ⎡ T
LLLLLL zyxzyxt &&&=s
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where Ω is the natural circular angular velocity of the station orbit. 
Trajectory modifications are shown at each impulse as shown in Fig. 5-a. Coupling 
between translation and rotation produces the quaternion change in Fig. 5-b 
although initial and goal orientations are identical. 
The impulses required to perform the mission described in Fig. 5-a are shown in 
Fig.6. 
 

   
CONCLUSIONS 
 

The potential field method proved its ability to perform successful motion planning of 
a free-flying robot used with the ISS. Removing translation velocity and angular 
velocity sensors can be compensated through proper definition of the control 
algorithm. Merging between impulsive motion and natural orbital motion of the free-
flyer was carried out considering a pure impulse by limiting the maximum change in 
the object velocity instead of assuming infinite power thrusters. Coupling between 
translational and rotational motion facilitates the free-flyer motion in case of 
obstacles nearby through decreasing its global potential using both motions to avoid 
collision whilst maintaining a continuous approach to its goal. 
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FIGURES 
 

 
Fig. 1 Parabolic-well attractive potential 

  
є1 = 0.01, and є2 = 0.01 є1 = 1, and є2 = 1 

  
є1 = 2, and є2 = 2 є1 = 3, and є2 = 1 

Fig. 2 Superquadric shapes 
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Fig. 3 Orientation effect on separation distance 
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Fig. 4 International space station model 

 
Fig. 5-a) Free-flyer trajectory 
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Fig. 5-b) Free-flyer rotation 

 



 

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 APM-02 11 
 

 
  

 

0 500 1000 1500 2000 2500 3000
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

time, [sec]

Im
pu

ls
e 

in
 x

-d
ire

ct
io

n 
[m

/s
ec

]

 
Fig. 6-a) Free-flyer thrust impulses in x-direction  
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Fig. 6-b) Free-flyer thrust impulses in z-direction 
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