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ABSTRACT 
 
Genetic Algorithms (GAs) have initiated a new scheme for solution of the complicated 
optimization problems. Here a genetic algorithm is developed for optimization of the 
convergent-divergent nozzles. First, a popular numerical method is chosen for solving 
the fluid dynamic problem. Then, optimization criterion and evaluation parameters 
(such as maximum thrust force) are determined. After introduction of the simple 
genetic algorithm, parameters of this method such as crossover probability, mutation 
probability and population size in each generation are used for optimization of the 
algorithm. After independent verification of the computational fluid dynamic scheme 
and the genetic algorithm, these two are integrated, and using different values for the 
above parameters, performance of the optimization algorithm for shape optimization 
of a nozzle is studied. Finally an optimum range of GA parameters are found, and are 
used to find optimum shape by less than 0.1% exhaustive search CPU time. 
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INTRODUCTION 
 
Genetic Algorithm (GA) is based on natural selection mechanism and natural 
genetics as a robust method among optimization techniques. Since for optimization, 
genetic algorithm uses information of objective function instead of derivative value 
and other useful information, it is different from the other optimization methods. In 
addition, genetic algorithm finds optimum point of a problem through a simultaneous 
multipoint search instead of a point by point search. These two properties of this 
algorithm cause genetic algorithm to be very useful and efficient in a wide range of 
engineering problems.  
In recent years, genetic algorithm is combined with many computational fluid dynamic 
schemes and is used for optimization of aerodynamic shapes [1-3]. It is very 
attractive for design and optimization of aerodynamic shapes because unlike the 
gradient based methods, more likely it is able to find the global optimum point of an 
optimization problem [4]. However, its time complexity advantage is still on debate. 
Our main purpose here is to optimize the time complexity of the algorithm, so that it is 
more advantageous to gradient based methods in all aspects. 
Optimization of an aerodynamic shape includes determining the values of design 
parameters. These values determine the geometric details of aerodynamic shapes, in 
a way that an objective function value is maximized while satisfying the aerodynamic 
constraints. Parameters of flow field must satisfy the governing equations of the flow 
field. Nowadays computational fluid dynamics (CFD) has reached to maturity, and we 
can efficiently solve the flow field equations for external and internal flows in all 
different subsonic, transonic and supersonic regimes in three different levels of 
simplifying assumptions as potential, Euler and Navier-Stokes equations. Our genetic 
algorithm is of course independent of solution method used in our CFD computations. 
In other words, any flow solution method could be integrated to any genetic algorithm 
optimization scheme [5,6]. This combination could appropriately be used for 
aerodynamic shape optimization. Design parameters are in fact parameters which 
determine the geometrical shape, and are due to satisfy the geometric constraints of 
the problem of finding a reasonable shape.  
For example, in aerodynamic shape optimization of a wing, geometric parameters 
such as wing span, wing chord, wing twist angle, maximum chord thickness, radius of 
trailing edge and radius of leading edge … in different cross sections of the wing 
must be limited to reasonable values. 
In this paper, To find maximum thrust force of nozzle, shape of a convergent 
divergent nozzle is optimized by using a genetic algorithm. The convergent section of 
the nozzle is given by a second order polynomial with known coefficients. The 
divergent part of the nozzle is assumed to be a third order polynomial whose 
coefficients are determined by GA, under some geometrical constraints. Geometric 
constraints applied here are constant throat and exit areas of nozzle. Under these 
conditions, the coefficients of this third order polynomial may change in a special 
range to produce only reasonable shapes.  
The nozzle flow is assumed quasi-one- dimensional. The thrust force of nozzle is 
obtained after numerical solution of the flow field by a finite volume method using 
Roe’s flux approximation and a time marching (explicit) method [13]. Its verification is 
performed by comparison with the analytical solution of the nozzle flow. The genetic 
algorithm used is a simple genetic algorithm that has three operators namely 
reproduction, crossover, and mutation. This algorithm is explained in details in 
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reference [7]. Its verification is also performed by finding the optimum point of a 10th 
order polynomial in a specific range, and is compared with results in reference [7]. As 
the genetic algorithm is independent of the flow solution method (objective function) 
[5,6], therefore it can be used for shape optimization of all kinds of convergent 
divergent nozzles to obtain maximum thrust force. The results, which are obtained by 
combination of the genetic algorithm and the numerical solution method for solving 
the internal flow of the nozzle, show the efficiency of the genetic algorithm in shape 
optimization of convergent divergent nozzles to find the maximum thrust force.  
 
 
GENETIC ALGORITHM 
 
Genetic algorithm (GA) is a mathematical algorithm which uses operational patterns 
of Darwin’s principle in accordance to the survival of fitness and under basis of 
natural genetic processes such as mating, crossover, and mutation. Also it can 
change population of a single mathematical object (chromosome) with special fitness 
level to a new generation. Although genetic algorithms are considered as part of 
stochastic methods, they have simple deterministic processes. They apply informa-
tion of the previous generation with a high efficiency to find new points. These 
algorithms are not completely random, and in the literature of genetic algorithm, a 
process usually can not be found that is completely random. This algorithm does not 
need to the derivative value of the objective function for optimization, and only uses 
objective function value of each point. Also, the genetic algorithm can be applied to 
any continuous or discrete objective function, and in each step it surveys a set of 
possible points, therefore it can obtain more than one optimized response. 
Here the simple genetic algorithm that has three operators namely crossover, 
reproduction and mutation, is used for optimization. Chromosomes in this kind of 
genetic algorithm has genes that their values can be zero or one (binary). The profile 
of the convergent section of that nozzle, which is modeled by a 2nd order polynomial, 
is assumed constant. The profile of the divergent section is modeled by a 3rd order 
polynomial given by 
 

                                            43
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To produce different shapes of this divergent section, it is sufficient to change 
coefficients 1a  to 4a  in their acceptable ranges (to satisfy the geometric constraints). 
Geometric constraints in this problem are constant throat and exit areas and the 
slope of the nozzle profile in throat is zero. By applying these conditions to equation 
(1), three coefficients of 1a  to 4a  are dependent on the others. Here only the 
coefficient 2a is assumed independent and can be changed in an acceptable range 
for producing reasonable shapes. This coefficient changes to binary code and 
produces the required chromosomes for this genetic algorithm. In each generation 
different shapes are produced and in fact each chromosome introduces a specific 
shape for nozzle. First generation is produced randomly. Usually this procedure 
guarantees finding of a near optimum point of solution. First generation is produced 
by using mutation operator, which is applied on a random bit of the chromosome. The 
fitness evaluation is the basis of genetic algorithm and it has a great role in its 
selection procedures. 
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The genetic algorithm recognizes chromosomes that have higher fitness values and 
selects them as parents for producing the next generation. In this research, finding 
the shape of a nozzle which is produced maximum thrust force is the goal of 
optimization procedure. Hence the thrust force of the nozzle is used as fitness value 
(objective function value) in this algorithm.  
CFD software calculates thrust force of the nozzle and then transfers it to the genetic 
algorithm, so by this way the genetic algorithm gets objective function value. CFD 
software for a chromosome in each generation should be called at least once. 
Therefore so many calls of CFD solver are needed for a complete optimization. The 
numerical experiences show that time duration of numerical computation of available 
operations in the genetic algorithm in comparison with operations of CFD software is 
much small. The selection of parent is based on Roulette wheel and the probability 
that a parent is selected depends on its fitness value. Each pair of parents produces 
two offspring (two new chromosomes) by using crossover operator. Then mutation 
operator is applied to offspring in basis of its probability. In this research, one-point 
crossover is used. The crossover point which is on the parent chromosome is 
selected randomly. The mutation operator is performed on a gene in a chromosome 
which is selected randomly, and changes its value (if it is zero, it will become one and 
vice versa). Although the reproduction and crossover procedures are done randomly 
on the basis of fitness value, they may destruct valuable strings, therefore the genetic 
algorithm can not converge to the global optimum of problem uniformly. To have a 
uniform convergence, the best chromosome of each generation can be transferred to 
the next generation. This operator is named elitism [8]. Here, elitism is used for 
increasing the convergence rate and getting a uniform convergence.  
 
 
COMPUTATIONAL FLUID DYNAMICS (CFD) 
 
The run time of the objective function which is used in genetic algorithm for 
optimization, has a strong effect on convergence rate of genetic algorithm and on the 
efficiency of the genetic algorithm in optimization problems [9]. If the run time of 
objective function decreases, the required time of optimization will be decreased, and 
genetic algorithm efficiency for optimization will be increased. Hence, the objective 
function is a CFD software which can solve the internal flow of the nozzle and can 
calculate its thrust force for reducing the run time of the CFD software, the viscous 
flow of the nozzle is assumed quasi-one dimensional and therefore a completely 
uniform and quasi-one dimensional grid is produced for solving the internal flow of 
the nozzle. 
In this research, using any kind of initial condition is possible unless it causes the 
divergence of the solution. Here, the uniform initial condition is used [10]. For 
applying the boundary condition, two kinds of boundary condition, inlet and outlet 
conditions, are used. By using characteristics theory, for inlet condition two or three 
data (based on supersonic or subsonic inlet flow) and for outlet condition zero or one 
datum (based on supersonic or subsonic outlet flow) are applied [11]. The governing 
equation of a quasi-one dimensional, viscous, and compressible flow in differential 
form is  
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where U

r
 is conservative parameters vector, F

r
 is flux vector and Q

r
 is a vector that 

shows the influence of quasi-one dimensionality and viscosity of the nozzle flow. 
These vectors are defined by equation (3) 
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The first term of vector Q

r
 is the effect of one-dimensionality of the nozzle flow in 

which ( )xS  is the cross section area of the nozzle, ( )
dx

xdS  is the cross section area 

change of the nozzle in x -direction, and c  is the speed of the sound. The second 
term of vector Q

r
 is the viscous effect of the nozzle flow, where wτ  is the shear stress 

on the walls of a cell, and cellA  is the surface area of the cell in the direction of the 
nozzle flow. By assuming steady and laminar flow of the nozzle, the shear stress on 
the walls of each cell is calculated by considering the method which is described in 
reference [12]. The governing equation of internal flow of the nozzle becomes 
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Where (*)f  is the calculated flux on each face of a cell. The superscript n  determines 
the values of different parameters in tn∆  moment. In the first order Roe’s 
approximation [13], the flux of each face is calculated by the equation (5) 
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Where jλ  and jrr  are eigenvalue and eigenvector of jacobian matrix, respectively. 
Also jw∂   determines the wave amplitude on each face of cells [11]. 
Here the numerical method includes a finite volume method using first order Roe’s 
flux approximation and a time marching (explicit) method [13]. Therefore the accuracy 
of this method is first order. In Roe’s numerical, when the value of a characteristic 
near the sonic line approaches to zero, the expansion waves appear which reduce 
the accuracy of this method. The different entropy conditions are presented for 
solving this problem in the Roe’s method. In this research, Van leer’s entropy 
condition is used [11]. The pure decreasing of residual value versus iteration explains 
the complete convergence of CFD code and reliability.  
 
 
GENETIC ALGORITHM VERIFICATION 
 
In this research for verification of the genetic algorithm application, it is used for 
finding the maximum of a 10th order which is normalized by its global maximum and 
in the interval of [0, 1073741824]. With respect to reference [7], the population size in 
each generation and chromosome length are 30 and 30, respectively. Hence the total 
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number of inputs of this function becomes 1.07 billion ( )930 1007.112 ×=− . The 
crossover probability of 0.6 and the mutation probability of 0.0333 are considered. 
This algorithm can converge to the maximum of this function only after passing 30 
generations. As the number of chromosomes in the mating pool is equal to 
population size of each generation, therefore this algorithm can find the maximum of 
that function only by 900 calls of the objective function. This number of objective 
function calls includes approximately 0.0001% of the total number of available 

points ⎟
⎠
⎞

⎜
⎝
⎛ ≅×

×
0001.0100

1007.1
900

9 . Fig.1 shows the growing of the maximum value and 

changes of the mean value of the objective function value in each generation. The 
robustness of the genetic algorithm which is used in this research is verified by 
comparing its results by reference [7].  
 
 
VERIFICATION OF THE CFD SOFTWARE 
 
The CFD software which is written by C++ Programming language can solve two 
kinds of the nozzle flow, a fully supersonic flow and a flow with the subsonic inlet and 
outlet and a normal shock in the divergent section of the nozzle. Here the governing 
equations are acceptable for a quasi-one dimensional and viscous flow which its 
analytical solution does not exist, but the analytical solution of a quasi-one 
dimensional and inviscid flow is available [14]. Comparing the numerical solution of 
the viscous flow with the analytical solution of inviscid flow [14], shows completely 
identical trends for all kinds of flow parameters along the nozzle length, but the 
difference of their values never omits because of viscosity. After fining the grid from 
50 cells to 100, and from 100 to 200 cells, the same results are obtained and they 
converge to identical values. Converging the obtained results from several grids to 
the same values, shows the capability and robustness of this CFD software. 
 
 
RESULTS 
 
In this part, the nozzle length is assumed 10 times of the diameter of the throat, the 
ratio of inlet area to throat area and the ratio of the outlet area to throat area are 
assumed 2.5 and 12, respectively for studying of the effects of change of the genetic 
algorithm parameters on the internal flow of the nozzle with two kinds of boundary 
condition. The effects of two kinds of boundary condition (a fully supersonic flow, and 
a transonic flow with a normal shock wave in the divergent section of the nozzle). In 
the first condition, the stagnation pressure, the stagnation temperature and the inlet 
Mach number are assumed 100 kpa, 298 K, 2.6, respectively. In the second 
condition, the inlet stagnation pressure, the inlet stagnation temperature and the 
static outlet pressure are assumed 155kpa, 456K, and 100kpa, respectively. The 
chromosome length is 18 bits and the selected range for changing of coefficient 2a is 
the interval of [-1.35, 4.00]. The reason for selecting this interval is the production of 
reasonable and acceptable shapes for the divergent section of the nozzle. With 
respect to this selected interval and the chromosome length, the minimum and 
possible increment for changing of coefficient 2a  is 0.00002. 
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The Effect Change of Population Size 
The population size of each generation increases the variety in each generation, and 
decreases the probability of the fast convergence of the genetic algorithm to a local 
optimum point, but increases the convergence time of the genetic algorithm. 
Therefore assuming a fairly low and reasonable population size is necessary for 
obtaining the maximum convergence speed of the genetic algorithm. By regarding to 
reference [15], assuming the population size of 4 in each generation is effective on 
decreasing of CFD code runs, and on increasing of the convergence speed. To be 
optimum is the reason for choosing this value for the population size [15]. Fig.2 
shows the growth trend of maximum thrust force of the nozzle with fully supersonic 
flow, in 30 generations and for two population sizes of 4 and 18. The comparison of 
these two graphs shows that the increase of population size in each generation 
decreases he convergence speed and does not have any effect on the accuracy of 
the obtained optimum point. In this research, the population size of each generation 
always is assumed 4 which is optimum and constant. 
 
 
The Effect of Using Elitism 
As the reproduction and crossover processes perform randomly, and being 
proportional to the fitness value, it is possible destructing the strings with high fitness 
value. This issue can cause that the genetic algorithm does not converge to the 
global optimum point uniformly. For having a uniform convergence of the genetic 
algorithm, the best individual of each generation (which has the highest fitness value 
in that generation) is transferred to the next generation. In Fig.3 the convergence 
trend of maximum thrust force of the nozzle with the fully supersonic flow is shown by 
using and without using elitism in 25 generations. The genetic algorithm by using 
elitism will have a uniform convergence and without using elitism its results may have 
fluctuation and even the genetic algorithm can not converge. Hence using the elitism 
is necessary for guaranteeing the convergence of the genetic algorithm.  

 
The Effect of Change of Crossover and Mutation Probabilities 
To find the optimum combination of mutation and crossover probabilities which cause 
obtaining of the maximum convergence speed and the minimum required time of 
optimization, the improvement of the genetic algorithm parameters is necessary. Only 
some references such as [3, 7] indicated that assuming a fairly high crossover 
probability and a fairly low mutation probability is considered. The range of change of 
the crossover probability is assumed between 0.7 and 1.0 and the range of change of 
the mutation probability is assumed between 0.1 and 0.4. With respect to reference 
[15] robustness and convergence of the genetic algorithm is guaranteed with any 
combination of crossover and mutation probabilities, therefore the convergence 
speed becomes the only important issue. 
In Fig.4 the graph of the required generation for convergence is shown versus the 
crossover probability for constant mutation probability of 0.2 and for a fully supersonic 
flow. Fig.5 shows the same graph for a transonic flow with a normal shock in the 
divergent section of the nozzle. In this part, the mutation probability of 0.2 is chosen 
randomly in the interval of [0.1, 0.4]. With respect to figures (4) and (5), it determines 
that the optimum value of crossover probability is independent from the type of 
boundary conditions, and in that range which references [3, 7] were determined, 
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there is always an optimum crossover probability which decreases the required 
generations for optimization to the possible minimum value. The optimum value of 
this parameter is approximately equal to 0.9 for both flows.  
With respect to references [3, 7] the mutation probability is given between 0.1 and 
0.4, of course the crossover probability value is equal to its optimum value that is 0.9. 
In Fig.6 the required number of generation for convergence is shown versus different 
mutation probability values for the fully supersonic internal flow of the nozzle. The 
optimum point of this graph becomes approximately 0.2.  
Fig.7 shows the same trend for a transonic flow with a normal shock wave which is 
standing in the divergent section of the nozzle. The optimum point of this graph is 
approximately 0.3.  
In these both cases, the value of crossover probability is 0.9 which is the optimum 
value. For verification of the obtained optimum values of crossover and mutation 
probabilities which are calculated for the first boundary condition (a fully supersonic 
flow) 0.9 and 0.2, and for the second boundary condition (a transonic flow with a 
normal shock wave in the divergent section of the nozzle) 0.9 and 0.3, respectively, a 
crossover probability is selected randomly and the optimization procedure is 
performed by changing mutation probability in its determined range.  
Finally results of this case are compared with the results of the optimum case. This 
random crossover probability is assumed 0.7. In Fig.8 the graph of the required 
number of generations for convergence is sketched versus mutation probability. 
These graphs are for two different crossover probabilities of 0.7 and 0.9, and the 
internal flow of the nozzle in this case is a fully supersonic one. With respect to Fig.8 
simultaneous usage of the crossover probability of 0.9 and mutation probability of 0.2 
the highest convergence speed among other combinations of these two parameters. 
Therefore the improved values of the genetic algorithm parameters that is the 
optimum crossover and mutation probabilities, which maximize the convergence 
speed of the genetic algorithm for a fully supersonic nozzle flow, will be equal to 0.9 
and 0.2, respectively. 
Fig.9 shows the changing trend of convergence speed versus mutation probability. 
Here these two graphs are sketched for two different crossover probabilities of 0.7 
and 0.9, and the internal flow of the nozzle is a transonic one with a normal shock 
wave in the divergent section of the nozzle. In this case the combination of crossover 
probability of 0.9 and mutation probability of 0.3 produces the maximum convergence 
speed for the genetic algorithm. Hence the improved values of the genetic algorithm 
parameters for a transonic nozzle flow which has a normal shock wave in the 
divergent section of the nozzle are 0.9 for the crossover probability 0.3 for the 
mutation probability.  
Therefore the improved genetic algorithm with crossover probability of 0.9 and 
mutation probability of 0.2 for a fully supersonic flow, and with crossover probability of 
0.9 and mutation probability of 0.3 for a transonic flow which has a normal shock 
wave in the divergent section of the nozzle, can optimize the shape of a convergent-
divergent nozzle for obtaining the maximum thrust force with minimum CFD code 
calls.  
The two graphs of Fig.10 show the maximum thrust force of the nozzle with a fully 
supersonic flow in 60 generation, once with using the improved genetic algorithm and 
once without using random crossover and mutation probabilities. The improved 
crossover and mutation probabilities for this flow are 0.9 and 0.2 and random values 
are assumed 0.6 and 0.02 respectively. In Fig.11 the value of coefficient 2a  is 
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sketched in 60 generations for this case. By regarding to figures (10) and (11) the 
improved genetic algorithm parameters increase the convergence speed of the 
genetic algorithm, also increase the accuracy of the obtained results.  
The two graphs of Fig.12 show the maximum thrust force of the nozzle with a 
transonic nozzle flow which has a normal shock wave in the divergent section of the 
nozzle in 60 generation, once with using the improved genetic algorithm and once 
without using random crossover and mutation probabilities. The improved crossover 
and mutation probabilities for this flow are 0.9 and 0.3, and random values are 
assumed 0.6 and 0.02 respectively. In Fig.13 the value of coefficient 2a  is sketched 
in 60 generations for this case. By regarding to figures (12) and (13) the improved 
genetic algorithm parameters increase the convergence speed of the genetic 
algorithm, also increase the accuracy of the obtained results.  
In all cases which are discussed, the genetic algorithm can find the optimum point of 
the problem after passing 60 generations (at maximum) with constant population size 
of 4. As the population size of each generation is equal to the population size of the 
mating pool, therefore this algorithm calls the CFD code 240 times. This number of 

CFD calls includes only 0.09% ⎟
⎠
⎞

⎜
⎝
⎛ ≅×

−
09.0100

12
240
18  of all possible CFD code calls. 

This issue determines the robustness and efficiency of the genetic algorithm in 
optimization of shape of convergent-divergent nozzles for getting maximum thrust 
force. 
The optimum value of the coefficient 2a  which is the controlling parameter of the 
shape of the divergent section of the nozzle for both types of flow (a fully supersonic 
flow or a transonic flow with a normal shock wave in the divergent section of the 
nozzle) is equal to 3.98, and values of other coefficients of equation (1) namely 1a , 

3a , and 4a  which are dependent to 2a , become -0.177, -26.525, and 56.25, 
respectively. By regarding to the values of these coefficients, the slope of the 
divergent section of the nozzle at the exit becomes zero. In Fig.14 the optimum 
shape of the nozzle which is obtained by the genetic algorithm for getting maximum 
thrust force is sketched.  
 
 
CONCLUSION 
 
Here capability and efficiency of the genetic algorithm is studied in optimization of the 
shape of convergent-divergent nozzles for getting maximum thrust force. The genetic 
algorithm which is used here, is simple and has three operators namely reproduction, 
crossover and mutation, and also uses the elitism. The CFD code which is used for 
solving the internal flow of the nozzle and for calculating the nozzle thrust force uses 
a finite volume method using the first order Roe’s Approximation and time marching 
(explicit) method. The capability or robustness of this genetic algorithm is shown by 
finding the similar shapes for different combinations of population size, crossover and 
mutation probabilities. With respect to performed comparisons for different genetic 
algorithm parameters, the efficiency and convergence speed of the genetic algorithm 
is highly increased after improving these parameters. By using these optimum 
parameters and using elitism, the optimum shape of the nozzle is found with only less 
than 0.1% of the total number of possible CFD code calls. This low number of CFD 
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code calls increases the efficiency and accuracy of the genetic algorithm which is 
used in optimization of the shape of convergent-divergent nozzles for getting 
maximum thrust force.  
 
 
FIGURES 

 
 

 
 

Fig.1.The maximum and mean values of 10th order polynomial in each generation 
 
 
 

 
 

Fig.2.The maximum thrust force for population sizes of 4 and 18 in each generation 
(fully supersonic flow) 
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Fig.3. Comparison of growth trends of the maximum thrust force of the nozzle 

between using and without using elitism 
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Fig.4. The required number of generations for convergence versus crossover 

probability (fully super sonic flow) 
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Fig.5. The required number of generations for convergence versus crossover 

probability (transonic flow with a normal shock) 
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Fig.6. The required number of generations for convergence versus mutation 

probability (fully super sonic flow) 
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Fig.7. The required number of generations for convergence versus mutation 

probability (transonic flow with a normal shock) 
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Fig.8.The required number of generations for convergence versus mutation 

probability of a fully super sonic flow by using two different crossover probabilities of 
0.7 and 0.9. 
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Fig.9. The required number of generations for convergence versus mutation probability of 

a transonic flow by using two different crossover probabilities of 0.7 and 0.9 
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Fig.10. Comparison of growth trends of maximum thrust force for a fully supersonic 

flow using normal and optimum genetic algorithms. 
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Fig.11. Comparison of growth trends of coefficient a2 for a transonic flow by using 

normal and optimum genetic algorithms. 
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Fig.12. Comparison of growth trends of maximum thrust force for a transonic flow 

using normal and optimum genetic algorithms. 
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Fig.13. Comparison of growth trends of coefficient a2 for a transonic flow by using 

normal and optimum genetic algorithms. 
 

 
Fig.14. The optimum shape of the nozzle for two different boundary conditions 
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