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ABSTRACT 
 
The paper considers heat transfer characteristics of thin film flow over a hot sphere 
from a cold vertical jet of liquid falling onto the surface.  A numerical solution of high 
accuracy is obtained for large Reynolds numbers using the modified Keller box 
method.  A good agreement is obtained. 
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1 INTRODUCTION 
 
The flow of a thin liquid film under gravity over a sphere occurs frequently in a variety 
of industrial heat-transfer applications, such as heat exchange in coating operations, 
in high precision wetted spheres and in multiple sphere absorbers.  In order to 
understand the operations and, in particular, the efficiency of these processes, it is 
important to have a detailed study of such flows.  However previous studies of thin 
film flow over a sphere were confined purely to the hydrodynamic problem.  Gyure & 
Krantz [1] used a perturbation analysis for low Reynolds numbers.  Gribben [2] 
obtained an approximation using the Pohlhausen integral momentum technique, 
which assumed an approximate velocity profile across the thickness of the film; Hunt 
[3] obtained a numerical solution using the modified Keller box method, which 
accommodated the outer, free boundary.  Heat-transfer characteristics of the flow 
have not been considered. 
 
In this paper an accurate numerical solution for both velocity and temperature 
distributions is obtained.  The heat transfer in the flow of a cold, axisymmetric jet over 
a hot sphere is investigated here. 
 
 
2 MODELLING 
 
The problem to be examined concerns the film cooling which occurs when a cold 
vertically draining column strikes a hot sphere.  Although a column of fluid draining 
under gravity is accelerated and thin at impact, it is reasonable to model the 
associated volume flow as a jet of uniform velocity 0U  and radius 0H  as is illustrated 
in Fig. 1.  The notation 0

2
0 UHQ π=  is introduced for the flow rate and a film Reynolds 

number may be defined as 
ν

aU
R 0

e =  based on the sphere radius where ν  is the 

kinematic viscosity of the fluid and a  is the radius of the sphere. 
 
 
3 GOVERNING EQUATIONS 
 
The flow under investigation has been modelled as a steady, axisymmetric flow of 
incompressible fluid.  In the absence of viscous dissipation, the equations expressing 
conservation of mass, momentum and energy are consequently 

0V =•∇
r

         (1) 
( ) VPFVV 2

rrrr
∇+∇−=∇• µρρ             (2) 

( ) TkTVC p
2∇=∇•

r
ρ        (3) 

where ( )rv,vV θ=
r

 are velocity components associated with spherical coordinates 
( )r,θ  measured the angular displacement from the top of the sphere and the radial 
distance from the centre of the sphere respectively.  ρ , µ , pC  and k  are the 
density, dynamic viscosity, specific heat at constant pressure and the thermal 



  

conductivity of the cooling fluid in the jet respectively.  T  and P  are respectively the 
temperature and pressure within the fluid. 
 
In the specified physical setting, the equations are to be solved subject to the 
following conditions. 
 
(i) The no slip boundary condition at the wall requires that 

πθθ ≤≤=== 0,on0 arvv r .              (4) 
(ii) The temperature at the wall is assumed constant as wT , say 

πθ ≤≤== 0,on arTTi.e. w .      (5) 
(iii) On the free surface of the film, prescribed by ( )θHar += , the shearing stress 

may be assumed negligible and consequently 
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(iv) Similarly, in a film cooling environment such as water surrounded by air, it may be 
assumed that there is negligible heat flux on the free surface and hence that 
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(v) Once an overall flow rate 0
2
0 UHQ π=  has been prescribed, a conservation of 

volume flow constraint at any given θ  station leads to the condition 
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Under the assumption that the film thickness remains thin relative to a characteristic 
horizontal dimension, a boundary layer treatment of the equations leads to significant 
simplification. 
 
The following non-dimensional variables are introduced 

( ) ( ) ( )
a
HR

xH
a

arR
Yx ee θ

θ
2
1

2
1

,, =
−

== , 

2
000

2
1

0

,,,
U
Pp

TT
TT

U
vR

V
U
v

U
w

wre

ρ
φθ =

−
−

=== .           (9) 

 

In the limit +∞→eR  with x  remaining ( )1O  and after neglecting terms of ⎟⎟
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compared with unity, the following equations are obtained 
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where 
κ
ν

=rP  is the Prandtl number with ν  the kinematic viscosity 
ρ
µ  and κ  the 

thermometric conductivity 
pC

k
ρ

, 
ag
U

F
2
0

r =  is the Froude number based on the jet 

velocity on its surface and 0w TTT −=∆ .  Equation (12) implies that the pressure 
across the film remains constant.  In the absence of external pressure gradients and 
with zero shear assumed on the free surface, the pressure term in (11) is identically 
zero. 
 
The boundary conditions now read 
(i) π≤≤=== xYVU 0,0on0       (14) 
(ii) πφ ≤≤== xY 0,0on0        (15) 
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Approximations of equations (10)-(11) under boundary conditions (14), (16) and (18) 
have been outlined by Gribben [2]. 
 
 
4 NUMERICAL SOLUTIONS 
 
The continuity equation (10) can be eliminated by introducing a stream function ψ  
defined by 
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Owing to the geometry, ( )xH  is singular at 0x =  and π=x .  To remove this 
singularity, y  and ( )xh  are introduced and given by 

( ) ( )xHxxhYxy sin,sin == .         (20) 
Substituting equations (19) and (20) into (10)-(18) gives 
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subject to boundary conditions 
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where the initial condition (25) appears due to the original initial condition 

θ
θ

θ θ sin
,0on,,

sin

2
02

00

2
02 H

araTTUv
H

aaH +≤<===++−= .       (26) 

 
The detailed numerical method procedure for this case is fully discussed in [4,5].  For 
the sphere, the relevant physical parameters should be chosen as 
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5 RESULTS 
 
A typical run has a coarse grid of dimensions 4860×  in the (ξ , η ) domain with each 
cell being divided into 1 , 2 ,3  and 4  sub-cells respectively.  Because of the 
coordinate singularity at 0=ξ , 1=η , a non-uniform grid is employed and given by 

75.1ξξ = , ( ) 5.111 ηη −−=  where ξ  and η  are uniform.  When 7
6

59
1 πξ∆ ≡  and 

47
1

≡η∆ , this gives 004.0~ξ∆  and 003.0~η∆  near the singularity, which is 

sufficiently small to give good accuracy.  From the convergence of the extrapolation 
process, the absolute error is 7106 −× .  A typical set of numerical data is presented in 
Table. 
 
In Fig. 2, the numerical solution for the film thickness distribution over the sphere is 
compared with Gribben's approximation [2] for 1Fr =  and 5.0=γ .  The agreement is 
seen to be surprisingly good.  Figs. 3-9 depict the flavour of the numerical results.  
Figs. 3-4, Figs. 5-6 and Figs. 7-9 show film thickness, free surface velocity and free 
surface temperature respectively for various cases. 
 
For the sphere case, the velocity of the flow is controlled by two opposing forces, 
viscosity trying to slow it down and gravity trying to speed it up.  The viscous 

component of force affecting the flow is greatest near 
2

x π
=  and least near 0x =  and 

π=x .  Figs. 5 and 6 show that free surface velocity initially has a slight increase, 
followed by a sharp decrease as viscosity starts to dominate, and finally a gradual 
increase is observed as the bottom of the sphere is approached.  As rF  decreases, 



  

the effect of gravity increases and hence the thin film thickness, high velocity and low 
temperature appear corresponding to the small rF  values.  As γ  decreases, the 
amount of fluid in the impinging jet decreases and the ensuing film becomes thinner.  
The effect of viscosity increases and hence the low velocity and low temperature 
appear corresponding to the small γ  values.  Where γ  is greater than a certain 
value, e.g., 2=γ  for 1Fr = , Fig. 6 shows no decrease for the velocity over the 
sphere.  As rP  increases, the temperature decrease becomes more gradual. 
 
 
6 CONCLUDING REMARKS 
 
Comprehensive numerical solutions for the flow of cold axi-symmetric jets over a hot 
sphere have been obtained.  The gross features of such flows have been illustrated 
over a range of representative parameter values.  In a practical setting, appropriate 
parameter values may be evaluated and the design characteristics readily identified 
from the numerical scheme.  In practice, it is not obvious that uniform wetting of the 
sphere would occur.  Instabilities may distort or even disrupt such a uniform 
distribution.  Nevertheless for a given overall flow rate, the model may represent a 
valuable first approximation to the aggregate properties of the flow [6-13]. 
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Fig. 1. The vertical jet and resultant film for the sphere 

 



  

 
Fig. 2. Film thickness for the numerical solution and Gribben's approximation at 

1Fr =  and 5.0=γ  
 

 
Fig. 3. Film thickness for various Froude numbers at 5.0=γ  
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Fig. 4. Film thickness for various values of the parameter γ  at 1Fr =  

 

 
Fig. 5. Free surface velocity for various Froude numbers at 5.0=γ  
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Fig. 6. Free surface velocity for various values of the parameter γ  at 1Fr =  

 

 
Fig. 7. Free surface temperature for various Prandtl numbers at 1Fr =  and 5.0=γ  
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Fig. 8. Free surface temperature for various Froude numbers at 5.0=γ  and 2Pr =  

 

 
Fig. 9. Free surface temperature for various values of the parameter γ  at 1Fr =  and 

2Pr =  
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Table. Film thickness, free surface velocity and temperature for the sphere with 
1Fr = , 5.0=γ  and 2Pr =  

 

x  
film 

thickness 
( )xh  

free surface 
velocity 

( )( )xh,xu  

free surface 
temperature 

( )( )xh,xφ  
000.0  500.0  000.1  000.1  
218.0  585.0  023.1  000.1  
396.0  678.0  063.1  000.1  
587.0  775.0  997.0  964.0  
786.0  891.0  864.0  831.0  
994.0  007.1  756.0  654.0  
208.1  086.1  695.0  484.0  
427.1  128.1  667.0  343.0  
595.1  141.1  658.0  260.0  
823.1  138.1  659.0  180.0  
996.1  122.1  667.0  139.0  
290.2  072.1  695.0  210760.9 −×  
590.2  994.0  744.0  210779.7 −×  
018.3  861.0  823.0  210022.7 −×  
π  836.0  831.0  210013.7 −×  

 


