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ABSTRACT 
 
This work aims at simulating two-dimensional viscoelastic incompressible fluid flow 
past a non-confined cylinder. The finite volume method is used to descritize the 
governing equations written in the generalized orthogonal coordinate system. For the 
viscoelastic constitutive equation, two models are studied; the Oldryod-B model and 
the Phan-Thien-Tanner model PTT model. The quadratic scheme QUICK is 
employed to evaluate the convection terms. The terms of diffusion, advection and 
acceleration are treated explicitly. The Elastic Viscous Split Stresses (EVSS) scheme 
is used to decompose the stress tensor to enhance the stability of computations.  
The obtained results indicate that, for Newtonian flow, the onset of von Karman street 
occurs at Reynolds number Re ≥ 47. Upon the onset of vortex shedding the 
downstream instability zone is elongated and the shedding frequency is reduced. The 
PTT model proves more stability of computations and reached higher Deborah 
numbers. 
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NOMENCLATURE 
Latin symbols: 

A  cylinder radius. 
iâ  covariant base vectors . 

bpC  average base pressure coefficient. 

dC  average drag coefficient. 

lC  average lift coefficient. 
( )D≡ijD  the rate of deformation tensor (matrix). 

f  frequency of vortex shedding. 
G  function representing the elongational viscosity. 
ijg  metric tensor . 
j
iH  coordinate variation term. 

ih  scale factors. 
J  Jacobian of coordinate transformation. 

ijj Du ζ−∇=L . 
n  power-law index. 
p  pressure field. 
rr  position vector. 
Str  Strouhal number. 
ΦS  source term. 
ijT  viscous stress tensor. 
t  time. 

0U  free-upstream velocity. 

iu  velocity vector. 

iV  physical components of velocity. 
( )21 xxx ,
r  Cartesian coordinate system. 

 
Greek symbols: 

β  retardation ratio. 
Γ  time parameter. 
γ&  generalized shear rate. 
ijδ  Kroneker delta. 

ε  material parameter related to its elongation behaviour. 
ζ  material parameter related to its elongation behaviour. 

0η  the zero-shear rate viscosity of the fluid. 

mη  molecular contributed viscosity. 

0mη  zero-shear rate molecular contributed viscosity. 

Nη  solvent viscosity. 
Θ  coefficients of generalized transport equation. 
Λ  coefficients of generalized transport equation. 
λ  relaxation time. 
( )21 ξξξ ,
r

 physical components. 
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iξd  physical infinitesimal length increment. 

ijτ  extra-stress tensor due to the viscoelastic contribution. 
ρ  fluid density. 
Φ  transported quantity. 
ϕ  velocity potential function. 
( )21 ψψψ ,
r  generalized orthogonal coordinate system. 
ψ  stream-line function. 

 
Operators: 

( )i∇  divergence operator. 
 

1. INTRODUCTION 
 
Viscoelastic fluids are one class of non-Newtonian fluids. They are also referred to as 
polymeric liquids, meaning that they contain some fraction of high molecular weight 
substance. The viscosity of a polymer solution is usually not a material constant, but 
depends on the flow state of the liquid, namely the local shear rate. When a 
viscoelastic material is suddenly stretched and then kept fixed in that state, the force 
it exerts will first rise sharply and then decrease with a characteristic relaxation time. 
This effect is also the origin of the term "viscoelastic". An elastic body would hold the 
tension once developed, whereas a viscous fluid would only exert a force during the 
short stretching period. 
The understanding of such a flow is required for important engineering applications 
and has attracted a great deal of attention in the literature. This simplified model 
configuration is employed to study important fluid mechanical phenomena including 
drag characteristics and the detailed kinematics such as wake structure, vortex 
shedding frequency, etc. Similarly, this information is frequently needed for the 
design of structures exposed to fluid flow (such as off-shore pipelines, piers and 
supports, heat exchangers, …etc.). [1]. 
Cadot & Lebey [2] visualized the wake behind a circular cylinder and concluded that 
a drastic change of the shape of the wake of viscoelastic solutions is observed 
compared to that observed for water injections. They also remarked that the aspect 
ratio of the wake is decreased, the wavelength of the vortices is increased, and a 
large region of slow fluid motion is developed behind the cylinder indicating a delay of 
the shear roll-up and thus an inhibition of the shear instability. Pipe & Monkewtiz [3] 
have characterized the influence of small amounts of fluid elasticity on the 2-D 
laminar vortex shedding instability and the effects on the fluctuating and time-
average velocity fields. 
The Phan-Thien-Tanner (PTT) model represents the promising simple member of the 
family of viscoelastic differential constitutive equations. Dou & Phan-Thien [4,5] 
studied the flow past a confined cylinder but foucused on the parallisation. They used 
the Oldroyd-B model (extracted from the same equation of PTT) and added discrete 
elastic viscous split stress (DEVSS) formulation together with an independent 
interpolation of the vorticity. Phan-Thien & Dou [6] investigated the drag coefficient of 
confined cylinder and found that the drag coefficient for Upper convected Maxwell 
(UCM) fluid firstly decreases with the increasing Deborah number at low values and 
then seems to tend to be a constant at high values of Deborah number, while for PTT 
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fluid it decreases rapidly with the increasing Deborah number at low Deborah, and 
then slowly decreases with Deborah at high Deborah number. 
The generalized orthogonal coordinates offer an effective solution for complex 
geometry fluid flow. Pope [7] proposed a methode for adapting the generalized 
orthogonal coordinates to simulate the turbulent flow through a diffuser. This method 
proves its efficiency.  
In this work, the two-dimensional viscoelastic incompressible fluid flow past a cylinder 
is simulated using the finite volume method to descritize the governing equations in 
generalized orthogonal coordinate system. Two viscoelastic models are studied; the 
Oldryod-B model and the Phan-Thien-Tanner (PTT) model. 
 

GOVERNING EQUATIONS 

Governing equations in Cartesian coordinate system 

The fluid flow past a cylinder is governed by the mass and momentum conservation 
equations: 
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For the viscoelastic fluids, the viscous stress tensor is decomposed into two parts; 
the Newtonian stress tensor ijN Dη2  (with ηN usually, but not necessarily, the solvent 
viscosity) and the extra-stress tensor due to the viscoelastic contribution ijτ  

ijijNij DT τη += 2  (3) 
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The viscoelastic extra-stress tensor is related to the velocity field through the 
constitutive equation: 
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where ( )ijm τTr exp 0ηλε=G , and ijj Du ζ−∇=L . The two viscosities ηm and  ηm0 are 
related by: 

( )
( )( ) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

Γ+

−+
== −

2
1

22

22

0
1

21        ,      nmm
γ

γλζζµµηη
&

&
 (6) 

where ijDTr  2=γ&  is the generalized shear rate, and Γ is a time parameter 

assumed to be λ=Γ .  
The constitutive equation (5)can now be rewritten as a transport equation of τij: 
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where 00 mN ηηη +=  is the zero-shear rate viscosity of the fluid  and 00 ηηβ m=  is the 
retardation ratio. According to the values of β, ε, and ζ, six models can be defined: 

• Newtonian Fluid (ε = 0, ξ = 0, β = 0,η0 = ηN) 
• Upper Convected Maxwell (UCM) (ε = 0, ξ = 0, β = 1,η0 = ηm = ηm0) 
• Oldroyd-B (ε = 0, ξ = 0, 0< β <1, η0 =ηm =ηm0) 
• simplified PTT (SPTT) (ξ = 0, β = 1,η0 = ηm =ηm0) 
• modified PTT (MPTT) ( β = 1,η0 = ηm =ηm0) 

Governing equations in general orthogonal coordinate system 
 
For the case of two-dimensional flow, we have the Cartesian coordinate system 
( )21 xxx ,
r and the generalized orthogonal coordinate system ( )21 ψψψ ,

r . The admissible 
transformation between two coordinate systems is carried out through the Jacobian J 
which is defined by ψ

rr
∂∂= xJ . 

The metric tensor relates distances to the infinitesimal coordinate increments; and is 
given by jijiij gaag == ˆˆ o  with 21,,ˆ =iai  are the covariant base vectors defined by 

i
i xra ∂∂=

rˆ with the position vector rr . The condition of orthogonality implies that the 
diagonal terms of the metric tensor are nonzero. Its convenient to write 2

iii hg =  where 
hi are called the scale factors which represent the ratio of a distance to the coordinate 
differences.  
In order to formulate the governing equations in generalized orthogonal coordinates 
the methodology described in Pope [7] is applied and the variables are expressed in 
terms of their physical components ( )21 ξξξ ,

r
. The advantage of using physical 

components rather than covariant or contravariant components is that the vectors 
retain the same dimensions in all directions and in all locations and tat there are no 
additional terms for the stretching of the coordinate system. 
The governing equations can now be rewritten in generalized orthogonal coordinate 
system as follows: 

The continuity equation 
0=∇ iiV  (8) 

The momentum equation 
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The constitutive equation 
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where iii h ψξ dd =  is the physical infinitesimal length increment, iii uhV =  is the 
physical components of velocity, ( )( )iiji

j
i hhhhH ∂∂≡ 1  is the coordinate variation term 

which represents the inverse of the radius of curvature, and ( ) ( ) ( )∑
≠

+∂∂≡∇
ik

k
iii Hξ  

is the divergence operator.  
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NUMERICAL METHOD 
 
In order to solve the initial value problem defined by the equations (8), (9), and (10) 
with appropriate boundary conditions, the finite volume method is used. The general 
form of the transport equation can be used to scribe all the governing equations.  
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where Φ is the transported quantity which can be scalar, vector component, or 
tensor. The coefficients Θ and Λ have different meanings depending on the 
transported variable. The first right-hand side term is the rate of change term, the 
second one is the convective term, the first left-hand side term is the diffusion term, 
and the last term ΦS  is the source term which includes all terms that cannot be 
accommodated in the convective or diffusive terms. 
To stabilize the computation of the constitutive equation, the elastic viscous split 
stress (EVSS) formulation is applied to stabilize numerical scheme by separating 
explicitly the elastic and viscous stresses. 
For the time marching algorithm, the first-order accurate Euler forward explicit 
scheme is applied obeying the adaptation of Marker and Cell algorithm developed by 
Mompean and Deville [8]. 
The spatial discretization is performed in a staggered mesh. The convective terms 
are evaluated using the second-order accurate "Quadratic Upstream Interpolation 
Scheme for Convective Kinematics" (QUICK) scheme. The diffusion terms are 
calculated with the second order accurate centered difference scheme. 
The velocity potential function ( )( )222

0 1 yxAxU ++⋅=ϕ  and the stream-line function 
( )( )222

0 1 yxAyU +−⋅⋅=ψ  are used to generate the mesh; where Uo is the free-
upstream velocity and A is the cylinder radius. The generated mesh is optimised at 
160x80 control volumes. Figure 1 represents a zoomed view of the mesh around the 
cylinder and the extensions of domain limits to guarantee the non-confined case. 
For non-confined case, the boundary conditions are considered to be 

atmzx ppuUu === ,, 00  at the east of domain, and symmetry boundary conditions for 
both top and bottom boundaries. 
 
 
RESULTS AND DISCUSSION 
In our pervious work, Kamal et al. [9], the Newtonian fluid flow past a cylinder was 
simulated. We found that the profile of the 2-D flow past the cylinder allow to fully 
identify 3 different vortex shedding regimes: 

• Creep regime (Re < 5), with no separation from the cylinder. 
• Laminar steady regime (5 ≤ Re < 47), in which two steady symmetrically 

vortices on each side of the wake are created and as the Reynolds number 
increases the inertia force increases over the viscous force and the instability 
region becomes bigger and elongated. 

• Laminar vortex shedding regime (Re ≥ 47), the two vortices are no longer 
symmetric or steady and the von Kàrmàn street is established. 

The study of 2-D flow is limited to Re < 190 because after this limit the 3-D 
calculation is an obligation (cf. Williamson [10]). 
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In this work, we continue applying the same procedure but for the laminar 
incompressible viscoelastic fluid flow. In order to validate our results, three non-
dimensional quantities are adopted: non-dimensional frequency represented by the 
Strouhal number 02 UAfStr = where f is the frequency of vortex shedding, the 
average drag coefficient dC , and the average base pressure coefficient bpC .  
The previous literatures which discussed the flow of viscoelastic fluid past a non-
confined cylinder are rare and, up to our knowledge, the PTT model with the 
generalized orthogonal coordinates for such a case has not been used before. 
Hence, in order to validate the present simulation, the results are compared with that 
of Oliveira [11] who applied the FENE-CR model. Table 1, resumes the comparison 
of average drag coefficient for both PTT an Oldroyd models versus the results of 
Oliveira [11]. This comparison shows good agreement of results. The results of PTT 
model are shown to be more close to that of literature. 
The parameter G ,in equation (5), relates the stress tensor to the elongation 
parameters of the polymer. The presence of this parameter stabilizes the 
computations. In the case of Oldroyd fluid, the computations become less stable and 
higher Deborah numbers (De > 0.8 in our case) cannot be reached.  
Figure 2 shows the down-stream instability zone for Newtonian fluid and viscoelastic 
PTT fluids at Re = 100 and De = 0.5. The addition of polymer particles to a 
Newtonian fluid stabilizes the flow which leads a narrower less extended instability 
zone. This effect can be explained by the postulate of McKinley et al. [12] who 
proposed that the destabilizing mechanism is a combination of streamline curvature 
and elastic normal stresses. These results agree with the findings of Sahin & Owens 
[13] who treated the case of confined cylinder. 
As the elastic effect stabilizes the flow, the pressure drop behind the cylinder 
decreases leading to of the of averaged base pressure coefficient with the increase 
of Deborah number. Also, the frequency of flow oscillation, non-dimensionalized in 
the form of Strouhal number, decreases. Figure 3 represents the change of averaged 
base pressure coefficient and Strouhal number versus the Deborah number for Re = 
100. These results fairly agree with the work of Phan-Thien & Dou [6] and that of 
Pipe & Monkewtiz [3]. 
 
 
CONCLUSION 
 
The incompressible two-dimensional laminar flow of viscoelastic fluid past a cylinder 
was simulated. The constitutive equation governing the viscoelastic behavior allowed 
to use PTT and Oldroyd-B models. The governing equations represented in 
generalizd orthogonal coordinates are descritized using finite volume method.  
Results showed that the PTT model is more stable in computations than the Oldroyd-
B model. The viscoelastic effect stabilized the flow and decreased the drag and the 
oscillation frequency. 
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Table 1 Comparison of average drag coefficient with previous literature for Re=100 
 

De Oldroyd (β = 0.5) SPTT Oliveira [11] 
0.0 1.3806 ١٫٣٧٠٨ 1.3701 
0.5 1.4279 1.3732 1.3795 
1.0 - 1.3684 1.3732 

1.5 - 1.3644 1.3630 
(interpolated) 

 

            
(a)       (b) 

 
Fig. 1 (a) Zoomed view of the mesh around the cylinder, (b) domain limits. 

 

  
(a)       (b) 

Fig. 2 Down-stream instability zone: (a) Newtonian fluid, 
(b) viscoelastic PTT fluid at Re=100 and De=0.5. 

 

   
 

Figure 3 Averaged base pressure coefficient and Strouhal number versus 
the De (Re = 100) 
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