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ABSTRACT 
A new boundary condition treatment strategy is presented in this research for solving the two-
dimensional inviscid internal flow problems, spatial discretization has made by finite difference 
formulation using flux vector splitting of Van Leer. The time advancement is made using Euler 
backward time stepping technique. The aim of this research is to present new non-reflecting 
boundary condition treatment in the cases of metaphysical flow conditions occurred at the same 
space point. Such situation occurred in the internal flow problems as the corner points in 
nozzle., numerical flow simulations is carried out and shows good agreement with the analytical 
values and with published data. 

 
NOMENCLATURE 
 
CFL  Courant number 

tte  Total energy. 
a  Speed of sound. 
γ  Specific heat ratio 
ρ  Static density. 
P  Static pressure. 

vu,  Cartesian velocity components 
VU ,  Contravariant velocity components  

J  Jacobian. 
M  Mach number. 

yx,  Physical plane coordinates. 
ηξ ,  Computational plane coordinates. 
Q∆  Increment in conservative variables  

Λ  Eigenvalues diagonal matrix. 
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INTRODUCTION 
The goal of this research is to implement a new mathematical boundary condition 
treatment to solve internal flow problems for subsonic, transonic, and supersonic flow 
regimes. The proposed method is applied to solve the compressible inviscid flow 
through Nozzles and turbomachines. The computational model, based on the flux vector 
splitting technique, is used to solve the unsteady two-dimensional Euler equations. 
The Van Leer and Steger-Warming flux vector splitting methods are adopted for solving 
the system of governing equations. A special mathematical treatment is proposed that 
handle combinations of the flow boundary conditions. The developed Solver is applied 
to solve the two-dimensional subsonic, transonic, and supersonic flows through nozzles. 
The results show the capability of the code to present fast and accurate solutions using 
non-orthogonal grid at the boundary surface. A sharp resolution of the curved shock 
wave location is observed. The grid spacing normal to the boundary surface and 
achieved in this study was estimated to be fifty times larger than the recommended 
values by some researchers. The previous achievement leads to a substantial saving in 
computer memory and reduction in the number of grid points with reasonable accuracy 
and stability of the solution. 
Another version of the two-dimensional code was developed to solve subsonic and 
transonic two-dimensional cascade flow. A comparison with published experimental 
data is carried out and good agreement is noticed. 

 
Governing Equations 
The implemented flow model is Euler’s model, which represents the conservation of 
mass and balance of momentum and energy and contains the effect of rotationality 
associated with the formation of shock waves in compressible flow field. The flow field 
variables are nondimensionalized as follows: 
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The governing equations written in the computational plane; 
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Numerical Procedure 
The governing equations are descretised on finite difference formulation where the 
spatial derivatives are evaluated using Van Leer flux vector splitting technique. 
The descretised flow equations suitable for implicit time marching can be written as; 
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The generalized fluxes 
^
E  and 

^
F are split into forward and backward contributions 

according to the signs of the eigenvalues of the associated Jacobian matrices,
Q
F

Q
E

∂
∂

∂
∂ , , 

and are differenced accordingly.  
The flux in the ξ and η-directions can be differenced as: 

 −++− += EEE ςςς δδδ      (5) 
 

−++− += FFF ηηη δδδ  (6) 
Where E+ and F+ has all positive eigenvalues and E- and F- has all negative 
eigenvalues. 
The Van Leer flux-vector splitting, E is split according to the contravariant Mach number 
in theξ  direction, defined as: 

a
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and 
tyx vuU ξξξ ++=           (9) 

For locally supersonic flow, where 1≥ξM , 

E+=E.         E-=0.           1+≥ξM  
E-=E.         E+=0.           1−≤ξM        (10) 

For locally subsonic flow 1<ξM  the Flux and Jacobian matrix are 
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and 
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ξ
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The Jacobian matrices ±A   = 

Q
E
∂
∂ ±

can be expressed using MapleV symbolic manipulator  

 
OUTLINING SOLUTION ALGORITHM 
In deriving the implicit Approximate Factorization Algorithm, Beam-Warming [1] in 1976 
used the Euler temporal difference approximation [1], 
 

n
t

nn tQQQ ∆+=+1          (15) 



 

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 CFD-03 5 
 

 
Now equation (16) is inserted in equation (3) together with equation (5)and (6), which 
results in,  
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ηηςς δδδδ     (16) 

 
where 
 

−++−−++− +++= FFEERn
ηηςς δδδδ        (17) 

 
Solution can be obtained using the ADI method 
 
NEW METHOD FOR BOUNDARY CONDITION IMPLEMENTATION IN 
TWO-DIMENSIONAL INVISCID FLOW 
 
In the present subsection the new method of dealing with the flow boundary conditions 
and its implementation in the (FVS) for two-dimensional inviscid compressible flow is 
presented. Note that all the flow dependence relations for each boundary condition are 
listed in Appendix A. 
 
1. Solid wall (tangency to η= cons. Line) (2-D) 
If xy ηη f , then the y momentum equation has a larger contribution to the normal 
momentum equation so the y momentum equation is dropped.  
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Implementing the boundary condition can be summarized by the following procedure: 
1 – Drop the Eq. at which Q3 are in the temporal derivative term i.e. Eq. 3  
2 – Modify the Jacobian matrices as follows, 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∆
∆
∆
∆

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=∆

4

3

2

1

44434241

34333231

24232221

14131211

**

Q
Q
Q
Q

AAAA
AAAA
AAAA
AAAA

QA       (21) 

After modification, this becomes, 
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The above modification is implemented into the FDE and the solution sequence 

421 ,, QQQ ∆∆∆  and then get 2
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If yx ηη f  then the x-momentum equation has larger contribution to the normal 
momentum equation so the x-momentum equation is dropped.  
The above modification is implemented in to the FDE and the solution sequence 
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2. Inflow Boundary (2-D) 
 
Case A: Supersonic Inflow  
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Case B: Subsonic Inflow 
To = cons., Po =cons., v = u*tan (θin) 
Implementing the boundary condition can be summarized by the following procedure: 
1– Drop the equations at which Q1, Q3, Q4, are in the temporal derivative term.  
2– Modify the Jacobian matrices as follows, 
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apply the new methodology which has been discriped in detailes for the tangency 
boundary condition to get 2Q∆  then; 
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3.  Out Flow Boundary (2-D) 
 
Case A: Supersonic Out Flow 
Use linear extrapolation, 
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Case B: Subsonic Out Flow 
Only the back pressure Pb is specified. So must drop one equation (the energy 
equation) and solve the continuity equation with the two Momentum equations.  
After performing the two ADI steps, obtain 321 ,, QQQ ∆∆∆  and hence 4Q∆ is obtained 
from the relation, 
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APPLICATIONS 
The Numerical solution of the two-dimensional flow through convergent-divergent 
nozzle is presented. This section also includes a numerical solutions of the two-
dimensional flow through turbomachine cascade. The steady state solution is reached 
when five order of magnitude as maximum error achieved.  
 
1. Transonic Nozzle test case 
In this test case the 2-D Euler solver developed is extended to deal with transonic flow 
through convergent-divergent nozzle. The nozzle geometry and back-pressure condition 
are given below: 

Back Pressure: 75.
1

=
o

b

P
P  

The geometry of the nozzle is described by the following function: 
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The solution is obtained using an H-grid 51*30 in addition to a 51*5 “ very coarse grid” 
with no orthogonality at the nozzle surface and with CFL = 1.5 for 700 iterations. Results 
are shown in figs (1) to (4). 
 
 

 
 
 
 
 
 
 
 
 

          Figure (1) H-Grid 51*5     Figure (2) H-Grid 51*30 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (3) Pressure distribution (51*5 grid)   Figure (4) Pressure distribution (51*30 grids) 
 
Figures show that there is a slight difference in the numerical solution (about 1.3%) of 
both cases. The disadvantage of the coarse grid is losing of the shock curvature. 
 
2. Highly Non-Orthogonal Transonic Test Case 
In this test case the 2-D Euler solver developed is extended to deal with transonic flow 
through convergent-divergent nozzle,  
 

Back Pressure: 65.
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The geometry of the nozzle is described by the following function: 
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The solution is obtained using an H-grid 31*30 with no orthogonality at the nozzle 
surface and with a grid spacing in the η direction = 0.13 “coarse grid” with CFL = 1.5 for 
1200 iterations and high non-orthogonality of the grid axis near nozzle surface.  
 

 
 
 
 
 
 
 
 
 
 
 
 

 Figure (5) H-Grid 31*30 Figure (6) Mach distribution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure (7) Pressure distribution “*” centerline, “-“ wall    Figure (8) Pressure distribution 
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3. Cascade Test Cases 
In this section, the solution of highly subsonic and transonic inviscid compressible flow 
is presented versus the experimental tests available for HIGH CAMBERED DCA 
CASCADE [9]. The comparison will be based on the Mach distribution on the blade 
surfaces excluding the leading and trailing edges because it is not available in the 
experimental data. 
 
3.1. Highly Subsonic Test Case M1= .64 
In this test case the inviscid compressible solution is obtained numerically using Euler’s 
two-dimensional flow model and comparison with experiment shows good agreement 
but with deviation from experimental values just after the separation bubble at the blade 
leading edge. It also shows deviation from experimental values after the maximum 
Mach number point due to the absence of the boundary layer displacement thickness in 
the inviscid calculations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            Figure (9) Pressure distribution            Figure (10) Mach Number distribution  
 
 
 
 
 
 

 
 
 
 

 
 
 

 
Figure (11) Mach distribution, “*” & ”.” Numerical, “O” Experimental Ref [9] 
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Results show a deviation between the computed Mach number distribution and the 
experimental values at the blade lower surface leading edge and after the maximum 
Mach number point on the upper surface. The deviation at the leading edge of the blade 
lower surface is due to sharp edge approximation of the leading edge. The deviation 
after the maximum Mach number point at the blade upper surface may be due to the 
absence of the boundary layer displacement thickness in the inviscid calculations.  
 
CONCLUSION 
An approximate factorization procedure coupled with flux vector splitting methods, 
proposed by Van Leer and Steger-Warming, has been implemented to solve two-
dimensional Euler’s flow model. The developed solver is found to be useful to get 
accurate results with very limited computing facilities (microcomputers). The new 
treatment of the flow boundary conditions implemented here has enabled the use of a 
very coarse computational grid which dramatically reduce the amount of memory used 
and the computation time. 
 
Two-Dimensional Nozzle Flow 
The Two-Dimensional Euler’s flow solver has succeeded to solve multi-sonic flow 
regimes. The transonic test case shows the success of the inflow and out flow boundary 
conditions and at each test case presents a success in tangency boundary condition 
implementation. The transonic test case shows a sharp presentation of the shock wave 
and accuracy in locating the shock wave. The highly non-orthogonal grid test case 
shows the ability of the developed solver to obtain solution even with bad grid point 
distribution and the results show a sharp resolution of the shock wave without any 
dispersion in its location. The results of each test case show a very good agreement 
with the analytical results. The grid spacing normal to the boundary surface and 
achieved in this study was estimated to be fifty times larger than the recommended 
values by some researchers 
 
Two-Dimensional Cascade Flow 
The computed Mach number distribution is compared with the experimental values and 
shows a deviation between both values at the blade lower surface of the leading edge 
and after the maximum Mach number point on the upper surface. Good agreement is 
obtained at the remaining points. The deviations at the blade lower surface of the 
leading edge are due to the formation of the separation bubble which is not appear in 
the inviscid calculations. The deviations after the maximum Mach number point on the 
upper surface may be due to the absence of the boundary layer displacement thickness 
in the inviscid calculations. Other test cases are presented in order to examine the 
ability of the developed solver to analyze subsonic and transonic flows through 
turbomachine cascade. The transonic test case shows a sharp resolution of the shock 
wave that appears only on the blade upper surface.  
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