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ABSTRACT 
A method is presented for solving three dimensional inviscid internal flows, with 
application to three dimensional noncircular nozzles. Spatial discretization is made on 
the finite difference formulation of Euler’s equations. The convective terms is 
differenced using the Van Leer flux vector splitting technique. Time is advanced using 
the implicit Euler backward time stepping. The resulting system of algebraic equations is 
solved using ADI method. New numerical treatment of the flow boundary conditions is 
presented and applied to handle the complicated mixed boundary conditions. 
Application to solve flow through nozzles shows good agreement with analytical results. 
 
NOMENCLATURE 

CBA ,,              Flux Jacobian matrices in ζηξ ,,  directions.           
CFL                 Courant, Fridrichs, and Lewys number. 

GFE ,,              Inviscid flux vectors in ζηξ ,,  directions.  

tte                     Total energy. 
a                      Speed of sound. 
γ                      Specific heat ratio =1.4 for air 
ρ                     Staticdensity. 
P                     Static pressure. 

wvu ,,               Cartesian velocity components in (x, y, z) directions 
WVU ,,             Contravariant velocity components in ζηξ ,,  directions.  

J                     Jacobian. 
M                    Mach number. 
Q                     Conservative Variables Vector. 
t                      Time. 
T                     Temperature. 

zyx ,,                Physical plane coordinates. 
ζηξ ,,               Computational plane coordinates. 
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t∆                    Time step. 
Q∆                   Increment in conservative variable vector.  

λ                     Eigenvalue. 
Λ                      Eigenvalues diagonal matrix. 

zyxt ξξξξ ,,,        
zyxt ∂

∂
∂
∂

∂
∂

∂
∂ ξξξξ ,,, , 

zyxt ηηηη ,,,       
zyxt ∂

∂
∂
∂

∂
∂

∂
∂ ηηηη ,,,  

zyxt ζζζζ ,,,      
zyxt ∂

∂
∂
∂

∂
∂

∂
∂ ζζζζ ,,,  

ζηξ ∆∆∆ ,,         Increments in ζηξ ,,  directions. 
 
INTRODUCTION 
The procedure of the time marching technique consists of writing the unsteady Euler’s 
equations in finite difference form and then solving it as a function of time. The steady 
state solution is then computed as the asymptotic limit, of an unsteady solution. That is 
obtained after a large calculation time. The solution approach adopts a fully implicit 
difference scheme for the numerical solution of the gas dynamic equations. The 
Douglas-Rashford method of stabilizing correction type is used as an ADI sequence. To 
obtain an economical scheme, the splitting operator matrices are chosen so that at each 
fractional step all the unknown variables are determined independently of one another 
by scalar pivotal condensations.  
Van Leer [1] introduced an alternate flux splitting with continuously differentiable flux 
contributions that leads to smoother solutions at sonic points. In addition, the splitting is 
designed so that the shock structures can be realized with no more than two interior 
zones [2], THE Van leer flux vector splitting is superiour than the Jamson’s strategy for 
flux splittings introduced in ref {3}. 
Some points in nozzle have many physical boundary conditions such as , tangency to 
surface plus out flow or inflow , this motivate the need of developing new boundary 
condition treatment for the finite difference solution of  such flow capable of overcoming 
such problem without many approximations. 
A new boundary condition treatment is presented to handle the mixed boundary 
conditions occur at the same point in the physical domain. 
The objective of this study is; 
1. Developing a new nonreflecting boundary condition treatment for the mixed 

boundary conditions occurred at the same point, for the finite difference solution of 
the flow field. 

2. Applying the constructed flow solver to solve the flow problem of nozzle flow in three 
dimensions. 

 
GOVERNING EQUATIONS 
Euler’s model, which represents the conservation of mass and balance of momentum 
and energy, is used. The flow field variables are nondimensionalized as follows: 
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The strong conservation form of 3-D Euler equations in the generalized coordinates can 
be written in non-dimensional form as: 
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The contravariant velocity components (U, V, W) in equations (2) are as follows: 
wvuWwvuVwvuU zyxzyxzyx ...,...,... ζζζηηηξξξ ++=++=++=  (2) 

NUMERICAL PROCEDURE 
The governing equations are descretised on finite difference formulation where the 
spatial derivatives are evaluated using Van Leer flux vector splitting technique. 
The descretised flow equations suitable for implicit time marching can be written as; 
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The generalized fluxes 
^^

, FE  and 
^
G are split according to Van Leer flux-vector splitting, 

For example E is split according to the contravariant Mach number 
                                             −++− += EEE ςςς δδδ  (5) 

as, tzyx wvuUandUUwhere
a
UM ξξξξ

ξξ +++=
∇

==
−

−

,  (6) 

For locally supersonic flow, where 1≥ξM , 
E+=E  &  E-=0  ( 1+≥ξM )   ,   E-=E   &    E+=0  ( 1−≤ξM ) (7) 

and for locally subsonic flow, where 1<ξM , for 3-D flow 
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And,   
ξ
ξ

ξ
∇

= t
t  (11) 

 
THE SOLUTION PROCEDURE 
Appling the finite difference technique, the descretised flow equations will be;  
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the solution is obtained using ADI method and the solution after each time step will be, 

QQQ nn ∆+=+1  (13) 
 
Steady state solution is reached with 0→∆Q  hence the results are 2nd order accurate 
in space. 
 
New Boundary Condition Implementation Method in 3-D Inviscid Flows: 
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In the present subsection the new method of dealing with the flow boundary conditions 
and its implementation in the (FVS) for two-dimensional inviscid compressible flow is 
presented.  
 
1. Tangency to surface (η=cons. Or ξ = cons) 
The boundary condition is 0=V  (η=cons) where V is the contravariant velocity 
component in the η direction. Or W=0 (ξ = cons) where W is the contravariant velocity 
component in the ξ direction, and both can be expressed as follows: 
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It is required to eliminate a momentum equation and the rule is to eliminate the 
momentum equation in the direction at which η or ξ have large gradient. The above 
boundary equation (14) can be used to get the relations between the flow variables. The 
modification of fluxes and Jacobian matrices can be summarized as follows, 
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After modification, this becomes  
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Where if ηx> ηy,ηz then i = 3, j = 4, k = 2 and if ηy> ηx,ηz then i = 2, j = 4, k = 3 and if ηz> 
ηx,ηy then i = 2, j = 3, k = 4. 
The modified fluxes are, 
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The above modification is implemented in the three steps of ADI splitting and produces 
a standard block (4*4) tri-diagonal system, which can be solved to get 

51 ,,, QQQQ ji ∆∆∆∆  and the reminder sQ'∆  are computed from the calculated sQ'∆ . 
 
2. Inflow Boundary Condition 
The boundary conditions are, ToPo,  are specified at the inlet and the flow direction are 
known and given by the following relations, 

)tan(*),tan(* uwuv uwuv θθ ==  (20) 
where uwuv and θθ ..  are the flow direction angles. It is required to eliminate two momentum 
equations (y and z), and continuity and energy. The above boundary equation can be 
used to get the relations between the flow variables. the modification of fluxes and 
Jacobian matrices can be summarized as follows,  
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After modification, this becomes  
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and the modified fluxes are, 

][][ 2EE =             (23).    ][][ 2FF =          (24).      ][][ 2GG =    (25) 
 
The above modification is implemented in the three steps of ADI splitting and produces 
a standard scalar tri-diagonal system, which can be solved to get sQ'∆ listed above and 
the reminder sQ'∆  are computed from the calculated ones. 
 
3. Outflow Boundary Condition: 
The boundary condition is that the back pressure, bP , is specified at the outlet .We need 
to eliminate energy equation. The above boundary equation can be used to get the 
relations between the flow variables. the modification of fluxes and Jacobian matrices 
can be summarized as follows,  
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After modification, this becomes 
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The modified fluxes are 
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The above modification is implemented in the three steps of ADI splitting and produces 
a standard scalar tri-diagonal system, which can be solved to get sQ'∆ listed above and 
the reminder sQ'∆  are computed from the calculated sQ'∆ . 

APPLICATIONS 
The three-dimensional Euler’s flow solver has been constructed to solve the subsonic 
and transonic flow through a three-dimensional duct. The transonic test cases show the 
success of the inflow and out flow boundary conditions and at each test case presents a 
success in tangency boundary condition implementation and mixed boundary conditions 
(tangency + inflow, tangency + out flow… etc). The transonic test case shows a sharp 
presentation of the shock surface. The 90o-bend duct shows the ability of the code to 
solve the flow field with large metric gradients. The results obtained using a very coarse 
grid could be executed on typical PC platforms with moderate computation time. 
 
Test case 1: Nozzle (Transonic) 
In this test case, the 3-D Euler solver developed is tested to deal with transonic flow 
through a convergent-divergent nozzle with geometry variation in the (y & z)-direction. 
The solution is obtained using two grid systems, coarse grid (21*5*5), and fine grid 
(42*10*10). The comparison of the results shows that there is a small difference 
between results but with great computation time increasing for the fine grid case. 
Results are shown in following figs. A sharp resolution of the shock surface is obtained. 
The nozzle geometry and back - pressure are given below:, the results compares well 
with the quasi one dimensional analytical solution which gives exit Mach number =.22, 
while the results from 3-D Euler code gives exit Mach number=.207, the developed 
boundary condition treatment gives the ability to increase the normal grid size without 
loosing to much accuracy but will eventually decrease the amount of computer 
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processing time and memory, which is important in the early stage of the aerodynamic 
shape design. 
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Figure (1) Physical Domain Grid 
(21*5*5) 

Figure (2) Physical Domain Grid 
(42*10*10) 

 
  

Figure (3) Pressure Distribution 
(42*10*10) grid 

Figure (4) Pressure Distribution 
(21*5*5) grid 
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Figure (5) Mach distribution along the wall 
(21*5*5) grid - (“*” & “.” for edges, “+” for 
center) 

Figure (6) Mach distribution along the wall 
(42*10*10) grid -  (“*”&“.”edges, “+”center) 

 
Test Case 2: uniform 90o bend duct (Subsonic) 
The solution of the three-dimensional flow through uniform 90o-bend duct is obtained for 
Pb/Po1 = 0.8,this test case was carried out for testing the rigidity of the boundary 
condition treatment (tangency surface ) for dealing with high gradient tangency surfaces 
and the results show that the flow can be treated as a two-dimensional flow.  Results 
are shown in the following figs. 
 
 
 

 

 
Figure (7) Physical Domain Grid 
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Figure (8) Mach Distribution Figure (9) Pressure Distribution 
 
 
CONCLUSION 
The three-dimensional Euler’s flow solver has succeeded to solve the subsonic and 
transonic flow through a three-dimensional duct. The transonic test cases show the 
success of the inflow and out flow boundary conditions and at each test case presents a 
success in tangency boundary condition implementation and mixed boundary conditions 
(tangency + inflow, tangency + out flow… etc). The transonic test case shows a sharp 
presentation of the shock surface. The 90o-bend duct shows the ability of the code to 
solve the flow field with large metric gradients. The results obtained using a very coarse 
grid could be executed on typical PC platforms with moderate computation time. 
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