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ABSTRACT

A method is presented for solving three dimensional inviscid internal flows, with
application to three dimensional noncircular nozzles. Spatial discretization is made on
the finite difference formulation of Euler's equations. The convective terms is
differenced using the Van Leer flux vector splitting technique. Time is advanced using
the implicit Euler backward time stepping. The resulting system of algebraic equations is
solved using ADI method. New numerical treatment of the flow boundary conditions is
presented and applied to handle the complicated mixed boundary conditions.
Application to solve flow through nozzles shows good agreement with analytical results.

NOMENCLATURE

AB,C Flux Jacobian matrices in &,n,¢ directions.

CFL Courant, Fridrichs, and Lewys number.

E,F.G Inviscid flux vectors in &,7,{ directions.

&, Total energy.

a Speed of sound.

y Specific heat ratio =1.4 for air

P Staticdensity.

P Static pressure.

u,v, w Cartesian velocity components in (X, y, z) directions
u,v,Ww Contravariant velocity components in &,7,{ directions.
J Jacobian.

M Mach number.

Q Conservative Variables Vector.

t Time.

T Temperature.

XY, Z Physical plane coordinates.

éEnd Computational plane coordinates.
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At Time step.
AQ Increment in conservative variable vector.
A Eigenvalue.
A Eigenvalues diagonal matrix.
05 05 05 0g
é:t'éx’fy’fz 6t16X16y|621
on on on on
nt’nxiny!nz 6t ’6x’6y’az
9¢ 9¢ 0¢ 9¢
é/t’é/x’é/y’é/z at vaxaayvaz
AE, AR AL Increments in &,n,¢ directions.
INTRODUCTION

The procedure of the time marching technique consists of writing the unsteady Euler’s

equations in finite difference form and then solving it as a function of time. The steady

state solution is then computed as the asymptotic limit, of an unsteady solution. That is
obtained after a large calculation time. The solution approach adopts a fully implicit
difference scheme for the numerical solution of the gas dynamic equations. The

Douglas-Rashford method of stabilizing correction type is used as an ADI sequence. To

obtain an economical scheme, the splitting operator matrices are chosen so that at each

fractional step all the unknown variables are determined independently of one another
by scalar pivotal condensations.

Van Leer [1] introduced an alternate flux splitting with continuously differentiable flux

contributions that leads to smoother solutions at sonic points. In addition, the splitting is

designed so that the shock structures can be realized with no more than two interior
zones [2], THE Van leer flux vector splitting is superiour than the Jamson’s strategy for

flux splittings introduced in ref {3}.

Some points in nozzle have many physical boundary conditions such as , tangency to

surface plus out flow or inflow , this motivate the need of developing new boundary

condition treatment for the finite difference solution of such flow capable of overcoming
such problem without many approximations.

A new boundary condition treatment is presented to handle the mixed boundary

conditions occur at the same point in the physical domain.

The objective of this study is;

1. Developing a new nonreflecting boundary condition treatment for the mixed
boundary conditions occurred at the same point, for the finite difference solution of
the flow field.

2. Applying the constructed flow solver to solve the flow problem of nozzle flow in three
dimensions.

GOVERNING EQUATIONS
Euler's model, which represents the conservation of mass and balance of momentum
and energy, is used. The flow field variables are nondimensionalized as follows:
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The strong conservation form of 3-D Euler equations in the generalized coordinates can
be written in non-dimensional form as:

0Q 0E oF 0G_

o ag K ag

p pYU PV PW
1 pu 1 pulU + ps, 1 puV + pn, 1 PUW + pd, (1)
sz X, ’Ezj pvU +ps, | F :3 JAAE 78 ’sz PVW+pg,
PW WU + pg, PWV + p7, PWW + pg,
| P& | | U.(og +p) ] |V.(pg + 1) | | W.(o& + ) |
The contravariant velocity components (U, V, W) in equations (2) are as follows:
U=5u+s,v+S&,wV=nu+n v+n,w, W=7 U+J V+, W (2)

NUMERICAL PROCEDURE

The governing equations are descretised on finite difference formulation where the
spatial derivatives are evaluated using Van Leer flux vector splitting technique.
The descretised flow equations suitable for implicit time marching can be written as;

{I +At* (aA ®B aCHAQ At* (R—O—E—a—F—aGJ 3)
of  on oc o0& on o
AQ [oE oF oG] _ Lty
Where, v +[8§+67y+8§} R (Note: Q Q" +AQ) (4)

" A

The generalized fluxes E,F and G are split according to Van Leer flux-vector splitting,
For example Eis split according to the contravariant Mach number

S.E=6E" +5E (5)
U - U
as, M, =—, where U =—— and U=&Uu+S&V+EW+E (6)
a vél
For locally supersonic flow, where ‘M g‘ >1,
E'=E & E=0 (M, >+1) , E=E & E'=0 (M, <-1) (7)

and for locally subsonic flow, where [M| <1, for 3-D flow
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L ferimrgy ]
Where, £, = x & i fzzi 9)
Vel vl V¢l
and
fie= ipTa(W +1f

(1_7)0212(7—1)0 a+2a2 +(u2+V2+W2) é:t (10)

fe;ergy = frr_la$ ( 2 _1) 5 —7(—Ui2aj

S
And, & = 2 11
nd, ¢ V2 (11)

THE SOLUTION PROCEDURE
Appling the finite difference technique, the descretised flow equations will be;
[+ A A" +6A +6,B" +5B +5,C* +5:C JAQ=—At* RHS"

12
where, RHS" = 67E" +8;E™ +6,F" +5 F +5.G" +5;G" -R 12)

the solution is obtained using ADI method and the solution after each time step will be,

Q™ =Q"+AQ (13)

Steady state solution is reached with AQ — 0 hence the results are 2" order accurate
in space.

New Boundary Condition Implementation Method in 3-D Inviscid Flows:
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In the present subsection the new method of dealing with the flow boundary conditions
and its implementation in the (FVS) for two-dimensional inviscid compressible flow is
presented.

1. Tangency to surface (n=cons. Or ¢ = cons)

The boundary condition is V =0 (n=cons) where V is the contravariant velocity
component in the n direction. Or W=0 (¢ = cons) where W is the contravariant velocity
component in the & direction, and both can be expressed as follows:

Ny pu+n,*pv+n,* pw=_0
o, 7,*Q,+n,*Qy+n,*Q, =0
or, & *pu+s, *pv+S5,*pw=0
or, &*Q,+45,*Q;+£,*Q, =0

(14)

It is required to eliminate a momentum equation and the rule is to eliminate the
momentum equation in the direction at which n or & have large gradient. The above
boundary equation (14) can be used to get the relations between the flow variables. The
modification of fluxes and Jacobian matrices can be summarized as follows,

A A A Ar As| |AQL
An Ay Ay Ay Ag| |AQ2
[AI*{AQ} = Ay Ay Ay Ay Ag |F1AQ3 (13)
A A, As Ay Ag| |AQ4
A A, A Ag As] (AQS

After modific_ation, this becomes

0 0
A A+ACTE AATE A
A At AFSE A A Al (aG
[A1*{AQ} = o o [l
A At Ay *TQI_K Ay + Ay *87(; Ajs AQ;
[ j
0Q, « 0Q,
A AACTE A AT A
L [ ] i

Where if N> ny,n. theni=3,j=4,k=2andif ny> ne,n.theni=2,j=4, k=3 and if n,>
NxNytheni=2,j=3, k=4.
The modified fluxes are,

El Fl Gl
E F G
E=| (17). F=| (18). G=| (19)
E, F, G,
E5 I:5 G5
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The above modification is implemented in the three steps of ADI splitting and produces
a standard block (4*4) tri-diagonal system, which can be solved to get
AQ,,AQ;,AQ;,AQ; and the reminder AQ's are computed from the calculated AQ's.

2. Inflow Boundary Condition

The boundary conditions are, Po,To are specified at the inlet and the flow direction are
known and given by the following relations,

v=u*tan(¢,), w=u*tan(ég,,) (20)

where 6, .and.¢,, are the flow direction angles. It is required to eliminate two momentum
equations (y and z), and continuity and energy. The above boundary equation can be

used to get the relations between the flow variables. the modification of fluxes and
Jacobian matrices can be summarized as follows,

Ar A A Ay As| AL
A Ay Ay Ay As| |AQ2

[AI*{AQ}=| A, A, Ay Ay A |*1AQ3 (21)
Ar Ax Az Ay Ag| |AQ4
A A As Ar As] 1AQS

After modifi(‘:ation, this becomes

* LAY = w0 p w0 A 0Q p k£ OQs |
[Al {AQ}—_A22+A21 2Q, + Ay 2Q, + Ay 20, + A 8QJ {AQ,} (22)

and the modified fluxes are,

[E]=I[E.] (23). [F1=[F.] (24).  [C]=IG,] (25)
The above modification is implemented in the three steps of ADI splitting and produces

a standard scalar tri-diagonal system, which can be solved to get AQ'slisted above and
the reminder AQ's are computed from the calculated ones.

3. Outflow Boundary Condition:
The boundary condition is that the back pressure, B, , is specified at the outlet .We need

to eliminate energy equation. The above boundary equation can be used to get the
relations between the flow variables. the modification of fluxes and Jacobian matrices

can be summarized as follows,

Ar A As Ay

Por Ay Ay Ay

[AAQY=| Ay A, As A
A Ap As Ay

A A A A

As
Pos
Ass
A
Ass

AQL
AQ2
AQ3
AQ4
AQ5
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After modification, this becomes

R S . AR
18 oo, et T At AT A tAsT
T W
[A]*{AQ} = ! > an 2 > aQZ 3 > aQ3 ¢ > aQ4 * AQZ (27)
B PO S N SRR, 1
17795750 fet s st R T Rt A oo | ag,
9% « Qs L9 L Qs
_A41+A45 a Agp + Pys @ A3+ Ay5 @ Ayy + Pyg @_
The modified fluxes are
E, F G,
E F G
E=| ° (28). F=| ? (29). G=| ° (30).
E3 F3 G?:
E4 F4 G4

The above modification is implemented in the three steps of ADI splitting and produces
a standard scalar tri-diagonal system, which can be solved to get AQ'slisted above and

the reminder AQ's are computed from the calculated AQ's.

APPLICATIONS

The three-dimensional Euler’s flow solver has been constructed to solve the subsonic
and transonic flow through a three-dimensional duct. The transonic test cases show the
success of the inflow and out flow boundary conditions and at each test case presents a
success in tangency boundary condition implementation and mixed boundary conditions
(tangency + inflow, tangency + out flow... etc). The transonic test case shows a sharp
presentation of the shock surface. The 90°-bend duct shows the ability of the code to
solve the flow field with large metric gradients. The results obtained using a very coarse
grid could be executed on typical PC platforms with moderate computation time.

Test case 1: Nozzle (Transonic)

In this test case, the 3-D Euler solver developed is tested to deal with transonic flow
through a convergent-divergent nozzle with geometry variation in the (y & z)-direction.
The solution is obtained using two grid systems, coarse grid (21*5*5), and fine grid
(42*10*10). The comparison of the results shows that there is a small difference
between results but with great computation time increasing for the fine grid case.
Results are shown in following figs. A sharp resolution of the shock surface is obtained.
The nozzle geometry and back - pressure are given below:, the results compares well
with the quasi one dimensional analytical solution which gives exit Mach number =.22,
while the results from 3-D Euler code gives exit Mach number=.207, the developed
boundary condition treatment gives the ability to increase the normal grid size without
loosing to much accuracy but will eventually decrease the amount of computer
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(31)

processing time and memory, which is important in the early stage of the aerodynamic

shape design.

THREE DIMENSIONAL GRID
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Figure (4) Pressure Distribution

(21%5*5) grid
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Figure (1) Physical Domain Grid
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Figure (3) Pressure Distribution

(42%10%10) grid
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Mach distrbution on the wall Mach distribution along the wall
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Figure (5) Mach distribution along the wall  Figure (6) Mach distribution along the wall
(21*5*5) grid - (**” & “.” for edges, “+” for (42*10*10) grid - (“"&".”edges, “+’center)
center)

Test Case 2: uniform 90° bend duct (Subsonic)

The solution of the three-dimensional flow through uniform 90°-bend duct is obtained for
Pb/Po1 = 0.8,this test case was carried out for testing the rigidity of the boundary
condition treatment (tangency surface ) for dealing with high gradient tangency surfaces
and the results show that the flow can be treated as a two-dimensional flow. Results
are shown in the following figs.

THREE DIMENSIONAL GRID

Figure (7) Physical Domain Grid
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Mach dstribution pé(garrm* 01 distribution

Figure (8) Mach Distribution Figure (9) Pressure Distribution

CONCLUSION

The three-dimensional Euler's flow solver has succeeded to solve the subsonic and
transonic flow through a three-dimensional duct. The transonic test cases show the
success of the inflow and out flow boundary conditions and at each test case presents a
success in tangency boundary condition implementation and mixed boundary conditions
(tangency + inflow, tangency + out flow... etc). The transonic test case shows a sharp
presentation of the shock surface. The 90°-bend duct shows the ability of the code to
solve the flow field with large metric gradients. The results obtained using a very coarse
grid could be executed on typical PC platforms with moderate computation time.
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