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ABSTRACT 
 
The dispersion of  heavy particle triangular clusters in a homogenous, isotropic and 
incompressible 3-D turbulent flow have been studied using the Kinematic Simulation 
techniques.  In this study, the evolution of the size and the shape factors of the 
cluster are presented at different initial separations between particles, different inertia 
effect (different Stokes numbers), and different values of  drift velocities. 
For dispersion of heavy particles in turbulent flows It can be concluded that the inertia 
and gravity affect the size and shape of the three-particles cluster.  For the effect of 
Reynolds number on the dispersion of heavy particle clusters, Nicolleau and ElMaihy 
(2006) found that all the curves for constant values of initial separations of ∆0/L1 = 
0.032 and ∆0/L1 = 0.5 are approximately collapsed for factors <R2>1/2, <W> and <χ>]. 
These results can be extended to the heavy particle dispersion for Stokes numbers in 
the range 0.2 < St <1 at zero drift velocity for inertial ranges; 185< kN/k1 < 2000.  
However, in the present work a limitation has been introduced for  the above 
conclusion to initial separations above the Kolmogorov length-scale. 
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NOMENCLUTRE 

 
1. INTRODUCTION: 
One of the major problems existing in turbulence is the existence of two phase flow 
such as water bubbles in air or gaseous bubbles in water or vapour bubbles in oil as 
in the fluid power systems carrying turbulent flow.  Understanding the turbulent flow 
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features, especially these of the two phase regime in which the dispersion of heavy 
particle clusters plays a significant role in the three-dimensional turbulent flow, and 
as a consequence the factors affecting this dispersion process, may help in the 
analysis of such systems and may also shed some light on the turbulent flow details 
in two phase flow and give information about the turbulence fluctuations. 
Because of the recent developments in methods for tracking particles, one can now 
easily follow more than one or two particles making it possible to study not only the 
statistics of the relative dispersion of particles and their separation evolution, but also 
their geometry evolution.  
The term “Particle dispersion” is used to define the dispersion of particles with inertia 
and other effects due to the fact that they are different from the carrier fluid as their 
densities are larger than the fluid.  Industrial applications of heavy particle turbulent 
dispersion are concerned with the design and control of various multiphase 
processes such as droplets formation for combustion in furnaces, diesel engines or 
droplets of liquids in cyclone separation and pneumatic systems. 
The dispersion process of heavy particle clusters is characterized by both the 
properties of the heavy particles and the properties of the turbulent fluid that carries 
the particles such as the effect of the buoyancy force acting on the particle and the 
effect of the relative motion between the particle and the turbulent flow field.  These 
effects cause the velocity of the particle to be different from that of the surrounding 
fluid.  Hence, the trajectories between the heavy particle and that of the fluid element 
in the flow are also different.  Consequently, tracking of heavy particles is more 
difficult than the diffusion of small light particles. 
The importance of studying the evolution of n-particles in turbulent flow was 
addressed by Mydlarski et al [1] to study the n-order moments (higher order structure 
function) which was considered as a way to connect the scaling properties of 
turbulence to the spatial structure of the flow.  Particle inertia produces a bias in each 
trajectory towards regions of high strain rate (convergence zones) and low vorticity 
which affects the mean settling velocity.  Pumir et al [2] investigated the statistical 
geometry of Lagrangian trajectories of n=3,4 clusters of material particles in three-
dimensional turbulent flows either by using Direct Numerical Simulations (DNS)  at a 
moderate Reynolds number (Rλ =82) that corresponds to inertial sub-range of 
kN/k1=185 or by using a simple phenomenological model of Lagrangian kinematics 
owing to the Reynolds number limitations of DNS.  Castiglione and Pumir [3] studied 
the geometrical aspects of Lagrangian dispersion and the shape distortion of small 
triangles in an experimental 2-D turbulent flow in the inverse energy cascade regime 
with a k-5/3 spectrum.  The experiment results provided strong evidence that the 
shape of triangles distortion is nontrivial and depends on its initial size.  The 
Lagrangian dispersion of three particles with the help of the kinematic simulation was 
studied by Khan et al [4] in a two-dimensional turbulent flow.  They have used a 2-D 
flow to make direct comparison with the results obtained previously and investigated 
the shape distribution of triangles advected in turbulence with a high Reynolds 
number. Nicolleau and ElMaihy [5] extended the  studies  done by Khan et al [4] 
using the kinematic simulation technique to study the effect of the Reynolds number, 
the initial separation and the unsteadiness term modelling for triangles (three 
particles) and tetrahedron (four particles) advected in a 3-D turbulent flow.  
Here, a homogenous and isotropic incompressible turbulence is the studied domain.  
In this case, the dispersion of heavy particle triangle clusters in the turbulent flow and 
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the evolution of their size and shape factors have been studied at different cases of 
initial separation between particles, inertia effect and  gravity parameters. 
The numerical approach used to generate  turbulent flow field is introduced in section 
2, the heavy particle equation of motion is presented in section 3 with the considered 
assumptions.  In section 4, the heavy particle cluster parameterization is introduced.  
The  obtained results for dispersion of  heavy particle triangle clusters are discussed 
in section 5 and the conclusion is presented in section 6. 
 
2. KINEMATIC SIMULATION MODEL: 
Fung et al [6] extended the work of Kraichnan [7] and Drummond et al [8] and 
developed a new Lagrangian model of turbulent flow, and  called it Kinematic 
Simulation.  Kinematic simulation, KS, is not an Eulerian turbulence model but is 
based on a kinematical simulation of the Eulerian velocity field.  It is generated as a 
sum of random incompressible Fourier modes whose statistics agree with the values 
obtained from experimental measurements or other reliable numerical simulations 
(as opposed to simulation techniques based on the dynamical equations).  The flow 
structures in KS are turbulent-like in the sense that they are of the type of eddying, 
straining, and streaming structures similar to those expected and observed in real 
turbulent flows but with no sweeping effect of large scale to small scale eddies.  With 
this method, the computational task in is to calculate the trajectory of each particle 
placed in the turbulent field. Each trajectory is associated with the differential 
equation: 

dx/dtuE =  
where uE is the Eulerian velocity field and supposed to be known throughout the KS.  
Trajectories’ calculation are independent of each other and calculated using the 4th 
order predictor corrector method (Adams-Bashforth-Moulton) in which Runge-Kutta 4 
is used to compute the first three points in Adams-Bashforth’s method.   
By knowing the initial position at initial time, the particle position could be calculated 
using equation (1) at each time step. This kind of computational program does not 
require the storage of a lot of data with very big tables as in calculation with direct 
numerical simulation and this is one of the KS advantages.  
The KS model could be considered a powerful tool to study the problem of the 
dispersion of heavy particle clusters in turbulence.  It should also be noted that the 
KS model, beside its simplicity, is a unified Lagrangian model of one-two- and indeed 
multi-particle turbulent diffusion where the effects of small scale flow structures on 
Lagrangian statistics are taken into account (Fung et al. [6], Fung and Vassilicos [9], 
Malik and Vassilicos [10]). 
2.1 Kinematic Simulation Model Construction: 
The most important target required for studying the turbulence using a Lagrangian 
approach as KS is to decompose the fluctuations of turbulence into sinusoidal 
components and study the distribution of turbulent energy among the different 
turbulent scales is.  As in Flohr and Vassilicos [11], the 3-D KS turbulent velocity field 
in this study is represented by a truncated Fourier series, sum of N random Fourier 
modes: 
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where θn ∈[0, π] and φn ∈[0, 2π] are picked randomly in each mode and realization so 
that the random choice of directions for the nth wavemode is independent of the 
random choice of directions for  all other modes.   
2.2 Wavenumber distribution: 
The value of kn has to be chosen by discretizing the wavenumber space into a finite 
number of modes Nk.  This descritization of modes could be chosen according to one 
of the following distributions: 
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Here, the geometric distribution has been chosen because it leads to equally spaced 
energy shells for log(k).  The wavenumber interval ∆kn is defined as the following to 
ensure that the energy at each mode is equal to dkkE )( : 

∆k1 = 2/)( 12 kk −  for   n = 1 
∆kn = 2/)( 11 −+ − nn kk  for   n ∈ [2,kN-1] 
∆kN= 2/)(

1−
−

kk NN kk  for   n = kN 
2.3 Energy spectrum: 
The fully developed turbulence consists of large number of eddies of different scales; 
each eddy has a certain kinetic energy.  The area between the two boundaries L1 
and η is named “Inertial Range” where the dissipation effect could be neglected. This 
area is characterized by a power law with an exponent of –5/3.  In this study, we will 
use an energy spectrum which does not change with time, in the following form 

otherwise
kkkkCkE lk ηε 〈〈
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Ck is the Kolmogorov dimensionless constant equal to Ck=1.5 (Fung el. al. [6]) and ε 
is the dissipation rate of units energy per unit mass.  The total kinetic energy, E, is 
obtained by integrating the energy spectrum over the total range of wavenumber as: 

Nk  number of Fourier modes.  
nk̂  a random unit vector distributed independently 

and uniformly   over a unit sphere   nnn K K̂K =         
nn banda    vectors are chosen randomly under certain  

constrain that they are normal to nk̂ . 
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The turbulent velocity fluctuation is:  
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where u` is the r.m.s. velocity of the turbulent flow. 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 1. The Energy Spectrum. 
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2.4 The unsteadiness frequency: 
The frequency ωn determines the unsteadiness associated with the nth wavemode.  
This parameter enables us to create three-dimensional effects in the case of a two-
dimensional simulation. It has been shown by Malik and Vassilicos [10] that for the 
first method in three-dimensional isotropic KS for two-particle diffusion, most of the 
statistical properties are insensitive to the unsteadiness parameter’s value provided 
that it rests in the range 0 ≤ λ ≤ 1.  According to Malik and Vassilicos , the 
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unsteadiness frequency ωn is chosen to be proportional to the eddy-turnover time of 
the wavemode n as: 

ωn = λ (kn
3 E(kn))  ½  

In accordance with these results we have not added any unsteadiness term (λ = 0) in all KS 
simulations. 
 
2.5 Characteristic time scales and computing time step: 
One of the important time scales existing in the turbulent flow is the eddy turnover 
time scale which corresponds to the integral length scale L.  The eddy turnover time 
is the time needed for the largest eddy to turn around itself.  Before this time the 
particle remembers its initial position, for times larger than the turnover time the 
particles are free to move randomly. 
The turnover time is defined as 

`u
Ltd =  

where L is the integral length scale and u` is the r.m.s. value of the velocity 
fluctuation.   
The other important time scale is the Kolmogorov time scale which corresponds to 
the Kolmogorov length scale. The Komogorov time scale is the time needed for a 
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The time step is determined by tracking the motion of fluid element down to the 
smallest scales; it must be smaller than both the smallest eddy turnover time and the 
time that a typical fluid particle would take, on average to move by a Kolmogorov 
length scale.  According to Fung [12] a time step equal 0.1 of the Kolmogorov time 
scale is enough to ensure that the results are independent of the time step within the 
statistical error. 
 
3. Heavy Particle Clusters:  
The study of heavy (particles with inertia) multi-particle clusters dispersed in a 
turbulent flow is important in many environmental, geophysical and industrial 
processes.  The enhancement of concentration in clouds and powders in chemical 
and pharmaceutical industries or the control of air pollution can be achieved by 
monitoring the clustering pattern and the concentration fluctuation generated from the 
interaction of inertial particles with the turbulent flow.   
A heavy particle is any small particle in the flow with a density much larger than the 
density of the fluid carrying it.  The resulting mixture is a two-phase flow.  Their 
dynamics of dispersion in a turbulent flow is different from that of fluid elements 
because of the introduction of additional forces resulting from the relative motion 
between the particle and the surrounding fluid.  During its journey in the flow the 
particle is subjected to its inertia and to a body force.  Therefore, the problem of the 
dispersion of heavy particles is more difficult to study than that of the diffusion of fluid 
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elements as it is characterized by both the properties of the particles (their density 
and their response time) and that of the turbulent flow which carries the particles. 
 
3.1 Heavy particle equation of motion: 
Study of the equation of motion of heavy particles is still the subject of much current 
researchers( Fung [12], Maxey et al [13] and Maxey [14]).  Let’s consider a heavy 
particle with its centre positioned at xp(t) and moves with a velocity v(t) in the 
surrounding flow field of velocity field u(xp,t).  The equation of motion of a heavy 
spherical  particle can be calculated as: 

t)v,(u,F  
dt
dvm actingp ∑=  

The term on the RHS of equation (13) is the sum of all forces acting on the particle.  
The equation proposed by Maxey and Riley [13] is the most recent full derivation of 
the equation of motion for a spherical particle in non-uniform unsteady flow with a 
particle starting at rest relative to the fluid.  Maxey [14] used equation of motion, 
which is introduced here, without the limitation of the initial velocity of the heavy 
particle to be equal to fluid velocity.  The equation of motion for a spherical heavy 
particle is written as the follows: 

where    
and 

m p mass of the spherical particle 
mf equivalent mass of the displaced fluid 
g gravity acceleration 
µ fluid dynamic viscosity 
ν fluid kinematic viscosity 
xp position of the sphere centre which moves with a velocity v(t) 

through  an ambient flow u(x,t). 
 
The different terms in the equation (14) could be explained as follows: 
• gmm fp )( −  represents the net  body force which represents the cumulative effect of 

buoyancy force and gravity force.  It is based on the difference of density between 
the heavy particle and the surrounding flow field. 
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of the added mass of the fluid which will move with the particle (Elmaihy [15]) 
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• )(6 tHaµπ  represents the drag force that can be calculated from the relative velocity 
of the particle and the surrounding fluid and depends on the particle Reynolds 
number, Rep, based on the particle diameter.  The Stokesian drag coefficient 
(linear drag) for a spherical particle based on the particle Reynolds number is to be 
less than unity Rep << 1. 

• ττπν
τ

µπ dt
d

tdHa
t

})]([)(6 2/1

0

2 −−∫  represents the friction effect in a viscous fluid flow in 

the transient state known as the Basset history force, this effect results from  the 
diffusion of vorticity of the particle as the particle is moving unsteadily.  The past 
acceleration is included in this effect weighted with (t- τ)½, where (t- τ) is the time 
lag since the past acceleration.   

• )0()(6 2/12 Hta πνµπ  is standing for heavy particle having an initial velocity different 
than that of the surrounding fluid. 

  
3.2 Assumptions: 
The motion of the heavy spherical particles here is considered to be in a uniform, 
isotropic, stationary, homogeneous three-dimensional turbulent flow.  The fluid has a 
constant mean velocity taken to be zero for simplicity.  The following assumptions 
have been made in order to simplify the equation of motion of the heavy particle in 
the turbulent flow: 

1. The density of the heavy particle, ρp, is assumed to be much larger than the 
surrounding fluid density ρf, then the effect of  added mass (2nd and 3rd  term of 
the RHS of the equation)and the Basset history term (5th term of the RHS of the 
equation) may  be ignored. 

2. Radius of the heavy particle sphere, a, is assumed to be smaller than the 
smallest length scale of turbulence, the Kolmogorov length-scale of turbulence, 
then the heavy particle responds to all scales of  turbulent flow and does not 
affect the turbulence mechanism. 

3. Radius of the spherical heavy particle is considered to be much larger than the 
free path of fluid molecules  then the particle aerodynamic response time is 
much larger than the mean molecular collision time, and the effect of Brownian 
motion can be ignored in comparison with the dispersion by turbulence eddies. 

4. Radius of the spherical heavy particle is assumed to be sufficiently so small that 
the Reynolds number based on it be much smaller than unity; then the affecting 
drag force on the heavy particle may be considered a Stockesian drag (linear 
Stocks drag), 

5. Concentration of particles in the fluid flow field must be small enough to make 
sure that the interaction between the particles can be ignored so that the 
presence of the particles does not modify the turbulence flow structure, 

6. The relative flow approaching the particle is effectively considered to be  uniform  
so no lift force is introduced, also the domain of turbulence is assumed to be 
infinite to ignore the interaction between the fluid  molecules and solid wall. 

 
Even with all the above-mentioned assumptions, the equation of motion describing 
the motion of heavy particles in turbulent flows is still under current researches.  This 
equation of motion is still complex and worth studying and is applicable to many 
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different problems such as aerosols in gases, small particles in water, and vapour in 
oil systems.   
 
 
3.3 Simplified equation of heavy particle motion: 
After applying the above-mentioned assumptions, the equation of motion of heavy 
particle which was derived by Maxey [14] can be simplified to achieve our goal and 
reduce the computational expense.  It is considered to be applied on a frame of 
reference moving with the fluid velocity, as follows: 

u)-(va6- m 
dt
dv p µπgmp =   

a

dVv-u dv
τ
+

=
dt

 

where 
 
 
 
 
 

 
 
 
Two dimensionless parameters can be introduced: 

• The Stokes number which expressed the ratio between the particle’s dynamic 
response time (inertia effect) and the turbulence characteristic time 
represented in the largest eddy(eddy turn over time scale).  It measures the 
relative importance of the particle inertia.  In the limiting case St = 0; the inertia 
particles recover the motion of the fluid particles, on the other hand, at St = ∞, 
the inertia particles become less and less influenced by the surrounding 
velocity field. 

St = τa / td 
• The drift parameter which is the ratio between the particle’s drift velocity and 

the turbulence rms velocity (turbulence effect): 
W = Vd / u’ 

For each simulation, the statistical quantities were obtained by taking the ensemble 
averaging over 4000 realizations of the flow field.  All simulations reported here have 
been performed using two hundred Fourier modes (N=200).  All  statistical quantities 
are statistically converged with respect to increasing the number of realizations in the 
ensemble averaging or increasing the number of  modes. 
 
4. Three-Particles Cluster: 
In this section, three-particle cluster parameterization is studied.  The evolution of 
size and shape factors that describe the distortion as a result of dispersion in the 
isotropic homogenous turbulent flow field is investigated.  
4.1 Three-Particle Cluster parameterization: 
Considering a three-particle cluster locates at X1, X2 and X3, as shown in Fig.2, the 
initial positions of the particles are chosen randomly in each realization.  The initial 

aτ  particle’s dynamic response time  
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position of the first particle is chosen randomly, then the other particles positions are 
calculated relative to the first particle.  The initial separation between any two 
particles is set to be  ∆0 = n η where n varies from 0.25 to 1000 according to the 
choice of the inertial sub-range. For more randomness the cube shown in Fig. 2, is 
rotated by a random angle at each realization. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (2): The initial positions of heavy particle cluster consists of three particles. 
 
The evolution of size and shape of the three-particle cluster corresponding to the 
points X1, X2 and X3 is described using the same Eulerian parameterization as that 
used in (Pumir et. al. [2] and Castiglione and Pumir [3]). 
 
4.1.1 Size variation parameter: 
A set of two reduced vectors, ρi,  independent of the centre of mass variable ρ0 can 
be defined as follows: 
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The radius of gyration which is used to characterize the global size of the triangle can 
be defined as:  
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where ij X - X =ijr  are the triangle sides, the triangle area is: 
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4.1.2 Shape variation parameters: 
To characterize the shape of the three-particle object, Pumir el. al. [2] introduced a 
“moment of inertia-like” tensor as follows: 
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where a
iρ is the a component of the vector ρi.  

For the three-dimensional velocity fields, there are three eignvalues that describe the 
spatial extension of the triangle in the three-dimensional turbulence.  The triangle 
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continuously experience dilatation, rotation and translation during its evolution in the 
turbulent flow.  Its shape is varying continuously; this variation can be calculated 
through monitoring the value of the quantity I2 which is defined as the ratio between 
g2 and R2:  

2
2

2 R
g  =I , 0 < I2 < ½ 

An equilateral triangle corresponds to a value of I2=1/2, a smaller value of I2 
corresponds to more elongation of the triangle.  
The other method to describe the shape of the triangle is to use the parameters w 
and χ (Castiglione and Pumir [3]) which are defined as follows: 

[ ] [ ]1,1-         w
R
   2 2

21 ∈
×

=
ρρw  

[ ]πχ
ρρ
ρρχ 0,         

 - 
 .  2arctan 

2
1

2
1

2
2

21 ∈
⎥
⎥
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⎤

⎢
⎢
⎣

⎡
=  

The parameter I2 can be related to the parameter w as: 
2/)11( 2

2 wI −−=  
Pumir [16] shows that due to the global invariance of the triangles under any 
relabelling of the three vertices, the parameter [ ]1,1−∈w  and [ ]πχ ,0∈  domain can 
be reduced to [ ]1,0∈w , [ ]6/,0 πχ ∈ .  The value w=0 indicates that the three points are 
aligned, whereas the value w=1 corresponds to an equilateral triangle.  
Small values of χ indicate that separation between two particles (e.g 1 and 2) is much 
smaller than their separation with the third one.  Fig. 3 shows different examples of 
the triangle corresponding to different values of w and χ. 

Figure (3): The shape of a triangle as a function of factors w and χ 
(Castiglione and Pumir [3]) 

4.2 Three-particle cluster simulation: 
The equations of motions were integrated over 4000 realizations of the flow field and 
the initial velocity of the heavy particle is set to be the same as the fluid element.  

v (t=0) = u (xp(t=0),0) + Vd 
The equations of motion have been integrated using a 4th order Runge-Kutta 
scheme.  The chosen time step has been smaller than the Kolmogorov time length 
scale in order not to influence the evaluation of the quantities of interest, R, A, I2, w, 

(22) 

(23) 

(24) 

(25) 
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and χ.  The particle time constant, τa, has been chosen always to be larger than the 
smallest time scale of the turbulent flow (tη).  All runs have been made for (kN/k1) = 
185, 1000 and 2000; to study the effect of higher Reynolds numbers on the inertial 
sub-ranges with an unsteadiness value of λ=0. 
The ranges of particle inertia parameters, Stokes numbers, (St = τa/td) and fall 
velocities (W = Vd/u`) are set as follows: 

• six values of St, namely 0.05, 0.2, 0.4, 0.6, 0.8 and 1, are simulated at W=0; 
the first one, St=0.05, is light enough to behave as a fluid element and the last 
one, St = 1, is heavy enough to have significant inertia and “crossing-
trajectories” effects (Yudine [17]). 

• six values of W, namely 0.2, 0.4, 0.8, 1, 2 and 4, are simulated at St=0.02  to 
introduce the “crossing-trajectories” effect.  

The initial position of the particle has been chosen randomly in each realization and 
for each run of the simulation, statistical quantities have been obtained by taking the 
ensemble average of many realisations; the results have been obtained for 4000 
realizations of the velocity field.  The number of realisations has been chosen such 
that the convergence of the results has been fulfilled.   
5. Three-particle cluster results:  
The study of the effect of particle inertia and drift velocity on three-particle clusters at 
different initial separations and different inertial ranges is presented here. The 
calculations have been made for three-particle clusters with different inertia (different 
Stokes numbers) in the absence of gravity and with different drift velocities (different 
values of W) and different initial separations between the three particles. 
5.1 Effect of particle inertia on three-particle cluster: 
The effect of  particle inertia (changing  Stokes number values) in the absence of 
gravity (W=0) on the dispersion of a three-particle cluster in a homogenous isotropic 
turbulent flow has been studied.  The evolutions of  size and  shape of an initially 
equilateral triangle immersed in isotropic turbulence are presented.  The size of the 
triangle is monitored as a function of time by computing the evolution of <R2>1/2, 
where R is the radius of gyration, for different initial triangle sizes.  The changes in  
triangle’s shape are measured using the parameters <w>, <I2> and <χ> as functions 
of time.  
5.1.1 Comparison with  diffusion case: 
To compare the dispersion of the heavy particle clusters in  turbulent flow and the 
diffusion of  fluid particle cluster, both cases have been run under the same 
conditions.  The diffusion process has been run for the three-particle cluster for an 
inertial sub-range of kN/k1=185 and initial separations ∆0/η = 0.09 , 0.25 and ∆0/η = 4.  
The dispersion process has been also run for the same conditions with a Stokes 
number St=1 and no gravity (drift velocity). Fig. 4, presents the time evolution of the 
triangle size <R2>1/2 and shape factor <W> as a function of the time normalized by 
the largest eddy turnover time for an inertial sub-range kN/k1=185 and an initial 
separation ∆0/η = 4 for both cases: diffusion of marked fluid elements and dispersion 
of heavy particles. Fig.5 presents the time evolution of the triangle size and shape 
factor <χ> as a function of the time normalized by the largest eddy turnover time for 
an inertial sub-range kN/k1=185 and an initial separation ∆0/η =0.25 for both cases: 
diffusion of marked fluid elements and dispersion of heavy particles. 
Fig. 6, presents the time evolution of the triangle size and shape factor <χ> as a 
function of the time normalized by the largest eddy turnover time for an inertial sub-
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range kN/k1=185 and an initial separation ∆0/η = 0.09  for both cases: diffusion of 
marked fluid elements and dispersion of heavy particles. 
 
 
 
 
 
 
 
 
 
 
 
  
 

Fig.4. Time evolution of the triangle size and shape factor <W> for kN/k1 = 185 and an 
initial separation ∆0/η = 4 for both diffusion and dispersion of heavy particles. 

(St=1 and zero drift velocity) 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5. Time evolution of the triangle size and shape factor <χ> for kN/k1 = 185 and an initial 
separation ∆0/η = 0.25 for both diffusion and dispersion of heavy particles.  

(St=1 and zero drift velocity) 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6.  Time evolution of the triangle size and shape factor <χ> for kN/k1 = 185 and an initial 
separation ∆0/η = 0.09 for both diffusion and dispersion of particles. 

(St = 1 and zero drift velocity) 
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The size and shape of the three-particle cluster in turbulent flow is affected by the 
dispersion process in which the heavy particles are released over the diffusion 
process as follows: related to the size of the cluster, it can be shown that if the initial 
separation is above the Kolmogorov length-scale, the dispersion process is larger 
than the diffusion process in the turbulent flow.  But if the initial separation is below 
the Kolmogorov length-scale, there will be a critical time before which the dispersion 
process is more important and after which the diffusion process is more significant.  
This critical time decreases when the initial separation decreases.  The same trend 
can be noticed on the shape of the cluster. 
5.1.2 Effect of varying initial separation at the same Stokes number: 
In this section, we study the effect of the initial separation on the dispersion of a 
three-particle cluster in a homogenous isotropic turbulent flow.  This is done for a 
given particle inertia (Stokes number) and a zero drift velocity.  The evolution of the 
size and the geometry of an initially equilateral triangle are presented. 
Fig. 7, presents the evolution of the triangle size and shape factor <w> as a function 
of the time normalized by the largest eddy turnover time for an inertial sub-range 
kN/k1=185, a Stokes number St=1 and a zero drift velocity for different initial 
separations ∆0/η = 0.25, 1, 4, 16, 32, 64 and 92.5.   
 
 
 
 
 
 
 
 
 
 

 
 

Fig.7). Time evolution of the triangle size and shape factor <χ> for kN/k1 = 185, St = 1 
and W = 0 for different initial separations: ∆0/η = 0.25, 1, 4, 16, 32, 64 and 92.5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.8. Time evolution of the triangle size and shape factor <W> for kN/k1 = 1000, St = 
1 and W = 0 for different initial separations: ∆0/η = 16, 32, 64 and 500. 
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Fig. 8, presents the evolution of the triangle size and shape factor <w> as a function 
of time normalized by the largest eddy turnover time for an inertial sub-range 
kN/k1=1000, a Stokes number St=1 and a zero drift velocity for different initial 
separations ∆0/η = 16, 32, 64 and 500.  
For the size factor at the same Stokes number, one can observe that with the 
increase of initial separation the size reaches the largest length scale and is going 
towards the asymptotic values without experiencing the Richardson regime.  For the 
shape factor at a constant Stokes number, it can be noticed that the minimum value 
of the factors w, I2 and χ is decreased with increase of initial separation, by 
continuing the increase of the initial separation these parameters reach the 
asymptotic value directly without passing through a minimum value. 
According to Pumir et al [2], at large time all curves corresponding to different initial 
sizes approach an asymptotic value <w>asy =0.5, <I2>asy =0.11 and <χ>asy =0.25 while 
their Gaussian values are <w>Gau =1/2, <I2>Gau =0.107 and <χ>Gau =0.262, these 
values have also been obtained for the diffusion case studied by Nicolleau and 
ElMaihy [5] at large time and they obtained these values 0.66 for <w>, 0.16 for <I2> 
and 0.26 for <χ>.   
We can extend the validity of values obtained by Nicolleau and ElMaihy [5] for the 
dispersion of heavy particle clusters to the case of varying Stokes number at zero 
drift velocity. 
With the increase of initial separation between heavy particles in the clusters, the 
minimum value of shape factor w is increased as shown in Fig. 9. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9.  Minimum values of the triangle shape factor <w>, for different initial 
separations (∆0/η = 1, 4, 16, 32 and 64), different Stokes numbers (St = 0.2, 0.4, 0.6, 

0.8 and 1.0 from bottom to top) and zero drift velocity, for kN/k1 = 185 
 

5.1.3 Effect of varying Stokes number at the same initial separation: 
In this section, the effect of particle inertia on the dispersion of three-particle cluster 
in a homogenous isotropic turbulent flow is studied for an initial separation and  zero 
drift velocity.  The evolution of the size and the geometry of an initially equilateral 
triangle immersed in an isotropic turbulent flow are presented. 
Fig.10, presents the evolution of the triangle size as function of time normalized by 
the largest eddy turnover time for an initial separation ∆0/η = 16, a zero drift velocity, 
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an inertial sub-range kN/k1=185 and at different Stokes numbers St= 0.2, 0.4, 0.6, 0.8 
and 1. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.10. Time evolution of the triangle size and shape factor <χ> for kN/k1 = 185, an 

initial separation ∆0/η = 16 and zero drift velocity at different Stokes number  
(St = 0.2, 0.4, 0.6, 0.8 and 1) 

It can be seen that with the increase of inertia (Stokes number) at a fixed initial 
separation between the heavy particles in the clusters, the minimum value of the 
shape factor <w> increased.  Consequently, they tend to reach the asymptotic value 
faster than in case of diffusion, this is illustrated in Fig. 11. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.11. Minimum values of the triangle shape factor <w>, at different initial separations 
(∆0/η = 1, 4, 16, 32,and 64 ), different Stokes numbers (St = 0.2, 0.4, 0.6, 0.8 and 1.0) 

and  zero drift velocity, for kN/k1 = 185.  
5.1.4 Effect of  Reynolds number in  presence of inertia effect: 
Here the obtained results are plotted for different Reynolds numbers at  certain Stokes 
number and for initial separations between the heavy particles in the clusters either less 
than the Kolmogorov length-scale or more than the Kolmogorov length-scale. Fig. 12, 
presents the evolution of the triangle size and shape factor <w> as  function of  time 
normalized by the eddy turnover time for  Stokes numbers St= 1,  zero drift velocity and  
initial separation ∆0/L1 = 0.0005 (below the Kolmogorov length scale), and at different 
inertial sub-range of kN/k1=185, 1000 and 2000.  Fig.13, presents the evolution of the 
triangle size and shape factor <w> as  function of the time normalized by the eddy 
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turnover time for a Stokes numbers St= 1, zero drift velocity and  initial separation ∆0/L1 = 
0.032 (above the Kolmogorov length scale), and for different inertial sub-range of 
kN/k1=185, 1000 and 2000.  Fig.14, presents the evolution of the triangle size and shape 
factor <w> as  function of  time normalized by the eddy turnover time for a Stokes 
numbers St= 1,  zero drift velocity and  initial separation ∆0/L1 = 0.5 (above the 
Kolmogorov length scale), and at different inertial sub-ranges kN/k1=185, 1000 and 2000.  
 

 
 
 
 
 
 
 
 
 
 

 
Fig.12.  Time evolution of the triangle size for the initial separation ∆0/L1=0.0005, St = 1 

and zero drift velocity for different Reynolds numbers 
kN/k1 = 185 (∆0/η = 0.09), 1000 (∆0/η = 0.5) and 2000 (∆0/η = 1) 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.13.  Time evolution of the triangle size for the initial separation  ∆0/L1=0.032, St = 1 
and zero drift velocity for different Reynolds numbers  

kN/k1 = 185 (∆0/η = 6), 1000 (∆0/η = 32) and 2000 (∆0/η = 64) 
 
 
 
 
 
 
 
 
 
 
 

0 5 10 15 20 25 30
0.4

0.5

0.6

0.7

0.8

0.9

1

t/td

<
w

>
 

kN/k1 = 185 
kN/k1 = 1000 
kN/k1 = 2000 

 

 

10 -3 10 -2 10 -1 10 0 10 1 102
10 -1 

10 0 

10 1 

10 2 

t/td 

<
R

2 >1/
2  

kN/k1 = 185 
kN/k1 = 1000 
kN/k1 = 2000 

 

 

0 5 10 15 20 25 30
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

t/td

<
w

>
 

kN/k1 = 185 
kN/k1 = 1000 
kN/k1 = 2000 

 

 

10 -3 10 -2 10 -1 10 0 10 1 10
2

10 0 

10 1 

10 2 

t/td

<
R

2 >1/
2  

kN/k1 = 185

kN/k1 = 1000

kN/k1 = 2000

 

 

0 5 10 15 20 25 30
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

t/td 

<w
> 

kN/k1 = 185

kN/k1 = 1000

kN/k1 = 2000

 

 

10 -4 10 -3 10 -2 10 -1 10 0 10 1 102
10 -3 

10 -2 

10 -1 

10 0 

10 1 

10 2 

t/td 

<R 2 > 1 /2 

kN/k1 = 185 
kN/k1 = 1000 
kN/k1 = 2000 

 

<R
2 >1/

2  



 

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 CFD-05 19 

 

Fig.14.  Time evolution of the triangle size for the initial separation  ∆0/L1 = 0.5, St = 1 
and zero drift velocity for different Reynolds numbers  

kN/k1 = 185 (∆0/η = 92.5), 1000 (∆0/η = 500) and 2000 (∆0/η = 1000) 
All curves for constant value of ∆0/L1 = 0.032 and ∆0/L1 = 0.5 are approximately 
collapsed for the plotted values of <R>1/2, <W> and <χ>.  This result was obtained in 
the case of cluster diffusion (Nicolleau and ElMaihy [5]).  We extend their findings to 
the heavy particle dispersion for Stokes numbers in the range of 0.2 < St <1 at  zero 
drift velocity for the range of inertial ranges 185< kN/k1 < 2000. 
It is also noticed that as the initial triangle size increases the shape distortion 
becomes weaker. When the initial triangle size becomes comparable to the largest 
length scale L1 (∆0 ≈ 0.5L1), we find that the parameters describing the shape change 
decrease from their initial values to their asymptotic values directly without passing 
through a minimum value and then increase to the asymptotic values as seen for 
smaller initial triangle sizes (∆0<< 0.5L1).  
For the initial separation between the heavy particles below the Kolmogorov length-
scale, ∆0/L1 = 0.005, the curves of <R>1/2, <W> and <χ> do not collapse.  So, we limit 
the above conclusion to initial separations only above the kolmogorov length-scale. 
5.2 Effect of particle drift-velocity on three-particle cluster: 
In this section, the effect of the particle drift velocity (changing the drift parameter W) 
in the presence of particle inertia (Stokes number is fixed to the value of 0.02) on the 
dispersion of three-particle cluster in a homogenous isotropic turbulent flow is 
studied.  The evolution of the size and  geometry of an initially equilateral triangle 
dispersed in isotropic turbulent flow is presented. 
5.2.1 Comparison with diffusion case: 
Here, a direct comparison with the diffusion of the three-particle cluster has been 
introduced over the dispersion of the heavy particle clusters in the turbulent flow.  
Both processes will be run at the same conditions.  The running conditions are for an 
inertial sub-range of kN/k1=185 and with an initial separation ∆0/η = 0.25 (below the 
Kolmogorov length scale) and for ∆0/η = 4 (above the Kolmogorov length scale).  In 
the dispersion process, heavy particle parameters will be for inertia effect Stokes 
number St=0.02 and for gravity effect W=0.2, 1 and 2.   
Fig. 15, presents the evolution of the triangle size and shape factor <χ> as  function 
of  time normalized by the largest eddy turnover time at  inertial sub-range of 
kN/k1=185, initial separation ∆0/η = 0.25 for both cases of diffusion of marked fluid 
element and dispersion of heavy particle clusters.   
Fig.16, presents the evolution of the triangle size and shape factor <χ> as  function of  
time normalized by the largest eddy turnover time at  inertial sub-range of kN/k1=185, 
initial separation ∆0/η = 4 for both cases of diffusion of marked fluid element and 
dispersion of heavy particle clusters. The size and shape of three-particle cluster in 
the turbulent flow could be affected by the dispersion process in which the heavy 
particles are released over the diffusion process as follows:  Related to the size of  
cluster, with the increase of  drift velocity, whether the initial separation is below or 
above the Kolmogorov length scale, the dispersion process enhances the size 
distortion of the cluster by reaching the asymptotic value faster than the diffusion 
process.  Related to the shape of the cluster, also with the increase of  drift velocity 
whether the initial separation is below or above the Kolmogorov length scale the 
dispersion helps the cluster to reach the minimum value faster than the diffusion.  In 
the dispersion case it can be noticed that the asymptotic value are obtained as 
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<I2>asy = 0.152, <w>asy = 0.632 which are lower than the obtained value  in the 
diffusion case (<I2>asy = 0.16, <w>asy= 0.66 ) while <χ>asy is as the same in the 
diffusion case which and (<χ>asy= 0.26); Nicolleau and ElMaihy [5]). 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig.15. Time evolution of the triangle size and shape factor <χ> for kN/k1 = 185 and an initial 
separation ∆0/η = 0.25 for both cases: diffusion and dispersion of heavy particles 

(St = 0.02 and W=2) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.16. Time evolution of the triangle size and shape factor <χ> for kN/k1 = 185 and 
an initial separation ∆0/η = 4 for both cases: diffusion and dispersion of heavy 

particles (St = 0.02 and different drift velocity W=0.2, 1 and 2) 
5.2.2 Effect of varying initial separation at same drift velocity: 
In this section, we study the effect of initial separation on the dispersion of three-
particle cluster in a homogenous isotropic turbulent flow.  This is done for a given drift 
velocity at a fixed particle inertia (Stokes number).  The evolution of the size and 
geometry of an initially equilateral triangle dispersed in isotropic turbulent flow are 
presented. 
Fig.17. presents the evolution of the triangle size and shape factor <w> as  function 
of  time normalized by the largest eddy turnover time for an inertial sub-range 
kN/k1=185,  Stokes number St=0.02 and drift velocity w= 0.2 for different initial 
separations ∆0/η = 4, 16, 32, 64 and 92.5.  
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It can be noticed that with the increase of  initial separation, the size reaches the 
largest length scale and is going towards the asymptotic values without experiencing 
the Richardson regime. Also for the shape factor at  constant drift velocity and Stokes 
number, it is noticed that the minimum value of the factors w, I2 and χ is decrease 
with the increase of  initial separation. These parameters reach  asymptotic value 
directly without passing through a minimum value by continuing the increase of the 
initial separation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.17. Time evolution of the triangle size and shape factor <w> for kN/k1 = 185, St = 
0.02 and  drift velocity W = 0.2 at different initial separations ∆0/η = 4, 16, 32, 64 and 

92.5 
5.2.3 Effect of varying drift velocity at the same initial separation: 
In this section, the evolution of the size and geometry of initially equilateral triangle 
disperse in isotropic turbulent flow are studied for a given drift velocity at a fixed 
particle inertia (Stokes number).   
Fig.18, presents the evolution of the triangle size and shape factor <w> as  function 
of  time normalized by the eddy turnover time are plotted for inertial sub-range 
kN/k1=185 for  Stokes number St= 0.02 and  initial separation ∆0/η = 92.5 at different 
drift velocity parameters  W = 0.2, 0.8, 1, 2 and 4.   
Fig.19, presents the evolution of the triangle size and shape factor <w> as a function 
of  time normalized by the eddy turnover time is plotted for inertial sub-range 
kN/k1=1000, Stokes number St= 0.02 and  initial separation ∆0/η = 92.5 at different 
drift velocity parameters  W = 0.2, 0.8, 1, 2 and 4. 
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Fig. 18. Time evolution of the triangle size and shape factor <w> for kN/k1=185, initial 
separation ∆0/η = 92.5 and St = 0.02 at different drift velocity parameters W = 0.2, 

0.8, 1, 2 and 4  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.19. Time evolution of the triangle size and shape factor <w> for kN/k1= 1000,  initial 
separation ∆0/η=16, St=0.02 at different drift velocity parameter W = 0.2, 0.4, 0.8, 1, 2 and 4 

With the increase of drift velocity parameter at a fixed initial separation between the 
heavy particles in the clusters, the shape factor W minimum value is the same but 
the asymptotic value which it reaches is becoming lower.  As a consequence, they 
tend to reach lower asymptotic value faster than in the case of the diffusion. 
5.2.4 Effect of Reynolds number in presence of drift-velocity: 
Here the results obtained are plotted for different Reynolds number at  certain Stokes 
number for  initial separation ∆0/L1 = 0.5 and ∆0/L1 = 0.032.  
Fig.20, presents the evolution of the triangle size and shape factor <w> as  function 
of  time normalized by the eddy turnover time are plotted at Stokes numbers St= 
0.02, drift velocity parameter W =0.2, and an initial separation ∆0/L1 = 0.032 at 
different inertial sub-ranges of kN/k1=185, 1000 and 2000. 
Fig. 21, presents the evolution of the triangle size and shape factor <w> as  function 
of  time normalized by the eddy turnover time are plotted at Stokes numbers St= 0.02 
,drift velocity parameter W =0.2 and an initial separation ∆0/L1 = 0.5 at different 
inertial sub-ranges of kN/k1=185, 1000 and 2000. 
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Fig.20.  Time evolution of the triangle size and shape factor <w> for initial separation  
∆0/L1 = 0.032, St= 0.02 and  drift velocity parameter W =0.2 at different Reynolds 

numbers kN/k1 = 185 (∆0/η = 6), 1000 (∆0/η = 32) and 2000 (∆0/η = 64) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.21. Time evolution of the triangle size and shape factor <w> for initial separation  
∆0/L1 = 0.5, St = 0.02 and  drift velocity parameter W = 2 at different inertia sub-

ranges kN/k1 = 185 (∆0/η = 92.5), 1000 (∆0/η = 500) and 2000 (∆0/η = 1000) 
 

All  curves for constant values of ∆0/L1 = 0.032 and ∆0/L1 = 0.5 are approximately 
collapse for the plotted values of <R2>1/2, <w> and <χ> for the range of 0.2 < W < 4 
at St =0.02.  These results are obtained of for a three-particle cluster but in case of a 
cluster diffusion (Nicolleau and ElMaihy [5]) we extend these finding to the heavy 
particle dispersion for drift velocities in the range of 0.2 < W < 4 at a Stokes number 
St=0.02 in the range of inertial range of 185 < kN/k1 < 2000.  
 
6. CONCLUSION: 
In the present work, the effect of  particle inertia in the absence of gravity and the 
effect of particle drift velocity in the presence of particle inertia on the dispersion of 
three-particle clusters in a homogenous isotropic turbulent flow are studied.  The 
evolution of the size and the shape of an initially equilateral triangle immersed in 
isotropic turbulence are presented.  
For the effect of  particle inertia in the absence of gravity, the dispersion of heavy 
particles in turbulent flow show that: 

1. Inertia affects the size and shape of the three-particle cluster in  turbulent flow. 
If the initial separation is above  Kolmogorov length-scale, the size of the 
cluster in  dispersion process is larger than  diffusion process in the turbulent 
flow. If the initial separation is below  Kolmogorov length-scale, there will be a 
critical time for the size and  shape of the cluster a before which  dispersion 
process is more important and after which the diffusion process which is more 
significant. This critical time decreases when the initial separation decreases, 

2. At  constant Stokes number, with the increase of  initial separation, the size 
reaches the asymptotic values without experiencing the Richardson regime. 
The minimum values of the shape factors w, I2 and χ decrease with the 
increase of  initial separation, by continuing  increase of  initial separation 
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these parameters reach their asymptotic value directly without passing 
through a minimum value, 

3. We can extend the validity of the obtained values by Nicolleau and ElMaihy [5] 
(0.66 for <w>, 0.16 for <I2> and 0.26 for <χ>) to the dispersion of heavy 
particle clusters in the case of varying Stokes number at zero drift velocity, 

4. At fixed initial separation, with the increase of inertia, the minimum value of 
shape factor w is increases. Consequently, they tend to reach asymptotic 
value faster than in case of diffusion. For the effect of  Reynolds number on 
the dispersion of heavy particle clusters, we extend Nicolleau and ElMaihy [5] 
findings [all  curves for constant values of initial separations of ∆0/L1 = 0.032 
and ∆0/L1 = 0.5 are approximately collapsed for factors <R2>1/2, <w> and <χ>] 
to the heavy particle dispersion of Stokes numbers in the range 0.2 < St <1 at 
zero drift velocity, for the range of inertial ranges 185< kN/k1 < 2000, but we 
limit the above conclusion to initial separations above the Kolmogorov length-
scale only. 

 
For the particle drift velocity in the presence of particle inertia, the dispersion of 
heavy particles in turbulent flow  shows that: 

1. The drift velocity affects the size and shape of the three-particle cluster in  
turbulent flow, with the increase of  drift velocity, whether the initial separation 
is below or above the Kolmogorov length scale, the dispersion process 
enhances the size distortion of the cluster by reaching the asymptotic value 
faster than the diffusion process and the cluster reaches the minimum value 
faster than the diffusion, 

2. With the increase of  initial separation the size reaches the largest length scale 
and is going towards the asymptotic values without experiencing the 
Richardson regime.  Also for the shape factor at a constant drift velocity and 
Stokes number, it is noticed that the minimum value of  factors w, I2 and χ  
decreases with the increase of  initial separation, by continuing the increase of  
initial separation these parameters reach the asymptotic value directly without 
passing through a minimum value, 

3. All the curves for constant values of ∆0/L1 = 0.032 and ∆0/L1 = 0.5 are 
approximately collapse for the plotted value of <R2>1/2, <w> and <χ> in the 
range of 0.2 < W < 4 at St =0.02 so we extend the finding in case of a cluster 
diffusion (Nicolleau and ElMaihy [5]) to the heavy particle dispersion for drift 
velocities in the range of 0.2 < W < 4 at a Stokes number St=0.02 in the range 
of inertial range of 185 < kN/k1 < 2000.  
 

REFERENCES: 
[1] Mydlarski, L., Pumir, A., Shraiman, B., Siggia, E.D. and Warhaft, Z., “Structure 

and Multipoint Correlators for Turbulent Advection: Prediction and Experiments.” 
Physical Review Letters, 81(20), 4373-4376, (1998).  

[2] Pumir, A., Shraiman, B.I. and Chertkov, M., “Geometry of Lagrangian 
Dispersion in Turbulence” Physical Review Letters, 85(25), 5324-5327, (2000).  

[3] Castiglione, P. and Pumir A., “Evolution of Triangles in a Two-Dimensional 
Turbulent Flow.” Physical Review E, 64, 056303, (2001). 

[4] Khan, M.A., Pumir, A. and Vassilicos, J.C., “Kinematic Simulation of Turbulent 
Dispersion of Triangles.” Physical Review E, 68, 026313, (2003). 



 

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 CFD-05 25 

 

[5] Nicolleau, F. and ElMaihy, A., “Effect of the Reynolds Number on Three- and 
Four-Particle Diffusion in Three-Dimensional Turbulence Using Kinematic 
Simulation.” Physical Review E, 74, 046302, (2006). 

[6] Fung, J.C.H., Hunt, J.C.R., Malik, N.A. and Perkins, R.J., “Kinematic Simulation 
of Homogeneous Turbulence by Unsteady Random Fourier Modes.” Journal of 
Fluid Mechanics, 236, 281-317, (1992). 

[7] Kraichnan, R.H., “Diffusion by a Random Velocity Field.” Physics of Fluids, 13, 
22-31, (1970). 

[8] Drummond, I., Duane, S. and Horgan, R., “Scalar Diffusion in Simulated Helical 
Turbulence with Molecular Diffusivity.” Journal of Fluid Mechanics, 138, 75-91, 
(1984). 

[9] Fung, J.C.H. and Vassilicos, J.C., “Two-Particle Dispersion in Turbulent-like 
Flows.” Physical Review E, 57, 1677-1690, (1998). 

[10] Malik, N.A. and Vassilicos, J.C., “A Lagrangian Model for Turbulent Dispersion 
with Turbulent-like Flow Structure: Comparison with DNS for Two Particle 
Statistics.” Physics of Fluids, 11, 1572-1580, (1999).   

[11] Flohr, P. and Vassilicos, J.C., “A Scalar Subgrid Model with Flow Structure for 
Large-Eddy Simulations of Scalar Variances.” Journal of Fluid Mechanics, 407, 
315-349, (2000). 

[12] Fung, J.C.H., “Kinematic Simulation of Turbulent Flow and Particle Motion.” 
Ph.D. dissertation, University of Cambridge, Cambridge, UK, (1990). 

[13] Maxey, M.R. and Riley, J.J., “Equation of Motion for a Small Rigid Sphere in a 
Nonuniform Flow.” Physics of fluid, 26, 883-889, (1983). 

[14] Maxey, M.R., “The Equation of Motion for a Small Rigid Sphere in a Nonuniform 
or Unsteady Flow” ASME/FED, Gas-Solid Flows, 166, 57-62, (1993).  

[15] ElMaihy, A., ” Study of Diffusion and Dispersion of Particles Using Kinematic 
Simulation.“ Ph.D. dissertation, The University of Sheffield, Sheffield, UK, 
(2003).   

[16] Pumir, A., “Structure of Three-Point Correlation Function of a Passive Scalar in 
the Presence of Mean Gradient.” Physical Review E, 57(3), 2914-2929, (1998). 

[17]  Yudine, M. I. (1959). "Physical Consideration on Heavy-particle Dispersion." 
Advances in Geophysics, 6, 185-191. 

 


