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ABSTRACT 
The overall objective of the present paper is to develop an accurate and robust 
numerical modeling of the instability of an interface separating two fluids (liquid-gas) 
due to buoyancy and capillary effects. The governing unsteady Navier-Stokes along 
with the stress balance and kinematic conditions at the interface are solved 
separately in each fluid using the finite-volume approach. The present numerical 
model interprets the surface and the body forces as a boundary value conditions on 
the interface. Thus enables accurate modeling of fluid flows driven by either body or 
surface forces. The position of the interface is captured implicitly on the Eulerian grid 
by the zero level set function, while appropriate interpolations at the interface are 
used to enforce the associated jump conditions. To asses the developed numerical 
model and its versatility, a selection of different unsteady tests are examined: 
oscillation of a capillary wave, sloshing in a rectangular tank, and the broken-dam 
problem involving different density fluids. The computational results demonstrate a 
remarkable capability of the developed numerical model to predict the dynamical 
characteristics of the two-phase flows, which is of great importance in many 
industrial and engineering applications. 
 
Keywords: interfacial instability, two-phase flow, level set method, capillary wave, 
sloshing, broken dam. 

 
INTRODUCTION 

 
The instability problems of an interface separating two fluids with different 

properties remain a considerable challenge to mathematicians and numerical 
analysts alike. Such problems are encountered in hydrodynamics and in the theory 
of convective heat and mass transfer in two-fluid systems, where the interaction 
processes contribute significantly to momentum and energy exchanges. Detailed 
analysis of these processes with numerical models may aid in understanding the 

                                                 
1* Lecturer, Dpt. of Mech. Power Engineering, Faculty of Engineering, Menoufia 
University, Shebin Elkom, Egypt. 
2* Associate Professor, Dpt. of Mech. Power Engineering, Faculty of Engineering, 
Menoufia University, Shebin Elkom, Egypt. 
 



 

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 CFD-07 2 
 

 

physical processes of two-phase flows. These range from rather small scale 
phenomena, such as the breakup or coalescence of raindrops, to large scale flows, 
like the motion of fuel in a space vehicle under low gravity conditions. Laboratory 
investigations of these phenomena are often complicated especially by problems 
encountered in simulating the actual physical situation. Therefore, a great attention 
has recently turned to this type of instability in connection of a variety of fluid flow 
problems particularly with the recent progress in computer performance. Accordingly, 
the superior variability of carefully executed simulations with possible resolution in 
such fields can virtually replace experiments and provides us with an important 
source of information that is not available experimentally [ 1].  

 
The capillary phenomena, caused by the existence of surface tension on an 

interface separating two fluids, may occur when the interface possesses 
considerable curvature or due to a local variation of surface tension.  In both cases, 
interfacial forces are developed that change the nature of the motion in each phase 
or induce motion originally absent. Formally, that appears in a change of the 
boundary conditions on the interface. Consequently, the effect of surface tension on 
the hydrodynamics and also on the basic mechanism for thermocapillary instability in 
a two-fluid system is considered to play a fundamental role in many natural and 
industrial phenomena. (e. g. interaction processes between air and ocean with 
breaking waves, crystal growth processes that are commonly used in microelectronic 
industry). There are several outstanding papers [ 2,  3 and  4] describing the early 
research, the detail derivation of basic equations, and the complexity of the physical 
phenomena included.  
 

In general, the effect of either the buoyancy or the capillary forces in two fluid-
systems plays an important role in a large domain of phenomena in physics and 
physical chemistry where the hydrodynamical regimes in such systems depend on 
the heat and mass transfer processes occurring in the systems.  The key feature of 
these phenomena is the interaction between the interfacial forces at the surface of 
fluid layers and the fluid inside. If the fluid is incompressible, these forces 
immediately affect the motion of the entire fluid; in turn, this motion changes the 
configuration of the boundary which determines the forces. This can be considered 
as a type of force-fluid interaction problems.  

 
Recently, there has been a strong interest in developing robust and accurate 

numerical methods for simulating complex fluid/fluid flows with imbedded interface of 
discontinuity. Such flows typically involve discontinuous material properties across 
the interface, which could pose severe limitation in the accuracy of common CFD 
methods. Moreover, and according to the basic principles of hydrodynamics, the 
condition of a balance of the forces acting in each phase either in the normal or the 
tangential directions of the interface must be fulfilled. Accordingly, the numerical 
methods for such problems engage two essential problems. On one hand, it is 
difficult to maintain the conservation properties of fluid/fluid system. On the other 
hand, the character of the interface can reduce the efficiency and the accuracy of 
iterative solution methods. 

 
There is a class of fluid/fluid problems in which the interface between the fluids 

can be considered as a free-boundary, and therefore the computation can be limited 
to the more viscous and dense fluid. The idea of solving only one fluid and use of 
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appropriate boundary conditions at the free surface has been used with almost any 
interface tracking method such level set method (LSM) or volume of fluid (VOF) 
method to capture the dynamic evolution of the moving interface. In such 
formulation, surface tension effects are modeled classically by positing a pressure 
jump at the interface that is proportional to the local curvature (the Laplace-Young 
condition). Therefore, the computation of the pressure can be done in a standard 
way without pressure and velocity oscillations at the interface that are common in 
two-fluid systems with large density ratios.  However, to reduce the associated 
numerical diffusion which will destroy the sharpness of the interface, several 
algorithms have been presented (e.g. [ 7,  8 and  9]). An extended review of recent 
advances in computations of incompressible flows involving a fully nonlinear free 
surface that treated explicitly as a discontinuity is given in [ 1].  

 
In the second class of fluid/fluid problems, both fluids are solved either as a 

continuous medium or they are treated separately. In the former approach, the 
governing equations are solved within each fluid with smoothed, instead of 
discontinuously changed, fluid properties across the interface by using the Heaviside 
function formulation as made in [ 10]. The interfacial boundary conditions or jump 
conditions can be integrated into the equation of motion, resulting in a body force 
concentrated in the interface of a single incompressible fluid with variable properties 
[ 11]. Thus the interface is smoothed across a finite thickness region, usually a few 
grid points thick introducing a transition region. This results in smearing of the flow 
properties and variables, forcing them to be continuous at the interface regardless of 
the appropriate jump conditions. Consequently, the most prominent methods of [ 11, 
 12] induce the so-called spurious or “parasitic” currents as a result of inconsistent 
modeling of the surface tension effects and the associated jump conditions. These 
numerical artifacts may lead in some cases to catastrophic instability in interface 
calculations and only moderate accuracy in regarding to determining the curvature 
and the steep gradients occurring at the interface. These problems are often 
compounded by the presence of multiphase flow problems involve fluids with very 
high density and viscosity ratios. Many numerical methods have been developed to 
overcome these problems (e.g. [ 13,  14]), however, this results in additional 
computational cost that can be very demanding in large 3-D computations.  

 
In the present study, we apply the second approach for computing fluid/fluid 

problems, in which the motion of each phase is separately treated. This method has 
an important advantage of not limiting the density ratio between two phases, and 
hence easily allows for large density ratio of water to air, while maintaining high 
numerical stability [ 3]. The interfacial boundary conditions, composed of kinematic 
and dynamical conditions, are satisfied at the interface between the two phases. The 
surface tension force is formulated as a gradient of a potential present only at the 
interface. Therefore both the surface tension potential and the pressure in the 
momentum equations are dynamically similar, and the physical pressure drop across 
the interface must exactly cancel the surface tension forces. Preliminary aspects of 
this work were described in [ 15].  

 
In order to describe the evolution of topologically moving interfaces, a number of 

methods have been proposed so far. In the context of incompressible flow, there are 
two numerical approaches for solving fluid/fluid problems. The first approach is 
based on the explicitly tracking the interface, e. g. the boundary integral method [ 16] 
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and the Lagrangian methods [ 17], while in the second approach, known as Eulerian 
approach, the interface is implicitly captured by a scalar function with fixed grids 
covering the two fluids regions. Thus, the calculation is conducted stably no matter 
how complicated the interface evolves. Furthermore, the extension from 2-D to 3-D 
can be achieved easily, especially in the presence of merging and breaking of 
interfaces. In this category, the marker and cell (MAC) method [ 7], VOF method [ 8] 
and LSM [ 10] have been widely accepted. The level set methods currently attract 
considerable attention. Since LSM only requires solution of a scalar hyperbolic 
transport equation, it is simple from an algorithmic point of view, its implementation is 
straightforward and the computational effort is negligible in comparison to VOF 
method. Therefore, LSM is adopted in the present work. 

 
In the present paper, we extend further the approach of separately treating fluids 

to include all the surface forces arising in the normal direction to the interface due to 
surface tension effects. The buoyancy effect is also modeled in a similar way to the 
surface tension effect. Consequently, the dynamical and kinematic conditions 
between the two phases are defined exactly at the interface avoiding the visual 
errors associated with nonphysically smearing out of the discontinuous material 
properties across the interface. An extended level set method for tracking the moving 
interfaces is presented, where the interface is modeled as the zero level set of a 
smooth function defined entirely in both sides of the interface. The governing 
equations for both phases are solved using the projection method on a non-
staggered grid system, constructed in the physical domain rather than using any 
domain mapping.  

 
The outline of the paper is as follows: first the governing equations and their 

solution algorithm are described with a review of the level set method. Next, all the 
particulars of the numerical modeling of the surface and body forces are described. 
Finally, the effectiveness and usefulness of the present scheme are evaluated 
qualitatively and quantitatively in a wide rang of numerical example. 

 
COMPUTATIONAL METHODOLOGY 
 

1- Governing Equations 
 
In two-phase problems, the Navier-Stokes equations have to be satisfied in each 
fluid. Then, the flow is governed by the following equations written in the primitive 
dependent variables as: 
 
 

                                           0u =⋅∇ k                                                      (1) 

                     kkk
k

kk p
t

u1u)u(u 2k ∇+∇−=∇⋅+
∂

∂ ν
ρ                            (2) 

 
where the subscript k means the quantities in fluid k for k=1, 2 corresponding to the 
liquid and gas phases, respectively. The quantities u, p, ρ and ν denote velocity 
vector, pressure, density and kinematic viscosity. In the above equations, it is 
noticed that the terms represent the gravitational field and the surface tension are 
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included in the pressure term through the interfacial boundary conditions as 
described later.  
 

2- Interfacial Boundary Conditions 
 

The boundary conditions at the interface, or jump conditions, are comprised of 
the dynamic and kinematic conditions. In the case of two immiscible fluids, referring 
to figure (1), the dynamically conditions may be written in the following general form: 
 

                               )n-(.nD]2I[- σσκµ tp ∇+=+                                      (3) 
 
where I is the identity matrix, p is the pressure, µ is the dynamic viscosity, σ is the 
surface tension coefficient, and  D is the deformation tensor whose components are 
Dij=0.5(ui,j+uj,i). The bracket means the jump of the stresses along the fluid interface 
�, the unit normal vector n is taken from fluid 2 to fluid 1 and t is an arbitrary vector 
perpendicular to the normal to the interface. The curvature of the interface is 
computed from  

                                                    n⋅∇=κ                                                    (4)  
 

The normal and tangential velocity components are Vn and Vt respectively. It is 
clearly that, the effect of the surface tension is to balance the jump of the normal 
stress along the fluid interface. The second term on the right hand side of the above 
equation is the stress due to gradient on surface tension in the local interface 
coordinates or Marangoni effect, usually important when a temperature gradient is 
applied parallel to the interface, e. g. thermocapillary convection. The interfacial 
curvature κ is computed from: 

 
 

 
 

Figure (1) Schematic of normal and tangential velocity components of an arbitrary 
interface 

  
In contrast to the previous two-phase numerical methods [ 10], in which the 

interfacial jump conditions are embedded naturally on the formulation, the jump 
conditions at the interface between the two fluids, described by Eq. (3), are treated 
here as a boundary conditions enforced explicitly at the interface. Taking the 
projections of the jump conditions in the directions normal and tangential to the 
interface, considering a constant surface tension, one obtains the following two 
equations in the normal and tangential directions, respectively:                   
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                                    nn]n)u(2[ σκµ =⋅⋅∇−p                                        (5) 
 

                               0n]t)u(tn)u([ =⋅⋅∇+⋅⋅∇ µµ                                     (6) 
 
It is noticed from the above equations that surface tension effects are included in 

the normal stress balance, Eq. (5), while the equality of the shear stress is satisfied 
in the tangential direction, Eq. (6).  

 
In case of considering the buoyancy effect, the gravity is assumed to be lumped 

with the pressure to define a piezometric pressure; p=ρgz, where z is the vertical 
coordinate at the interface. This pressure rise must be imposed at the fluid/fluid 
interface; consequently, it is included in the normal stress balance, Eq. (5). 
 

In order to fix ideas, the subscripts l and g are used for the liquid and gas phase 
respectively. Then the general jump conditions can be written as: 
 

                                      grgl ppppp +++= µσ                                          (7) 
 
and,  
                                                        gl ττ =                                                      (8) 
 

where pσ, pµ , pgr are the interfacial pressure rise due to the surface curvature, the 
viscous normal stresses and the gravity force, respectively. In addition to the equality 
of the dynamically interfacial stresses described above, the kinematic conditions 
should also be considered. When there is no mass transfer through the interface, the 
kinematic conditions is satisfied by assuming the continuity of the normal velocity 
component, i.e.  

                                                       gnln VV )) =                                            (9) 
 

The system of equations and boundary conditions (1)-(9) must be solved 
simultaneously to determine the flow field in the two fluids. The velocity components 
are then used for advection of the deformable interface by solving the appropriate 
equation of the level set functions. 
 

3- Level Set Formulation 
 

Since the original work of the level set method introduced in [ 18], a large amount 
of bibliography on the subject has been published and several types of problems 
have been tackled with this method; for instance one can see the cited review [ 19]. 
In the formulation of the level set, a smooth function φ is typically initialized as a 
signed distance function from the interface i.e. its value at any point is the distance 
from the nearest point on the interface and its sign is positive on one side and 
negative on the other. Let us set f as positive in liquid and negative in gas. The 
location of the interface is then given by the zero level set of the function φ. In 
absence of the interfacial mass transfer such as evaporation or condensation, the 
equation of the level set method can be written as: 
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                                               0u =∇⋅+
∂
∂ φφ

t                                             (10) 

and from the level set function, the normal vector can be computed as: 
 

                                              φ
φ

∇
∇

−=n                                                       (11) 

By projecting the velocity u onto the direction n normal to the interface, and by 
using the definition of the normal vector, Eq. (10) becomes 

 

                                              0V =∇+
∂
∂ φφ

nt                                             (12) 

 
A variety of methodologies have been proposed for solving the above advection 

equation of the level set function. One of the most recently developed numerical 
methods is proposed in [ 20]. In this method the normal velocity Vn in Eq. (12) is 
replaced by some velocity field Fext known as the extension velocity, which at the 
zero level set, equals the given speed Vn. In other words,  

 

                                            0=∇+
∂
∂ φφ

extF
t                                             (13) 

where 
 
                                        0on  == φnext VF                                        (14) 

 
An important step is to maintain the level set function a distance function within 

the two fluids, especially near the interface region, at all times. This is achieved by 
the iterative reinitialization algorithm discussed in [ 10].  
 

 
NUMERICAL PROCEDURE 

 
Recently, we have developed a computational method for two-phase flows with a 

moving interface [ 21], in which the level set method is used to capture the moving 
interface. To avoid the numerical instability due to high-density ratio between the 
phases, each phase is treated separately, thereby; transition from one phase to 
another is performed through a consistent balance of kinematic and dynamic 
conditions on the interface separating the two phases. The accuracy of this method 
is examined through the computation of simple numerical examples. Furthermore, 
we have also confirmed the high performance of this method for convective transport 
simulations, in particular, the oscillatory deformations and bag break-up of a single 
droplet exposed in a convective gas flow, implying the high numerical accuracy and 
capability of this computational method to handle a wide range of incompressible 
two-phase flow problems. 

 
The fundamental concepts of this numerical method are as follows: the governing 

transport differential equations are converted to algebraic equations before being 
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solved numerically. The finite volume scheme described by [ 22], which involves 
integrating the governing equations about each control volume, yielding discrete 
equations, is applied. The governing equations were discretized using the second-
order central scheme to achieve the best accuracy. Pressure-velocity coupling is 
achieved by solving the Poisson equation for the pressure. The velocity field is 
assumed to reach its final value in two stages. The first stage is designed to 
construct a velocity field, which does not satisfy the continuity equation, based on a 
guessed pressure filed. The second stage is to correct the obtained velocity field for 
the pressure effects, whereby assuring a divergence-free velocity field.    
 

 
 

 
Figure (2) Calculation stencil for obtaining the intermediate flux velocity at cell faces 

 
In case of two-fluid systems, one important requirement is the imposition of 

interface boundary conditions, and for this purpose a non-staggered grid is more 
appropriate than the staggered grid technique.  The only drawback of the non-
staggered grid system is that it requires a high-order approximation to calculate the 
fluxes and to obtain difference equations that can prevent pressure oscillations. In 
the present study, the derivatives at the central point of the control volume are 
approximated using the second-order central difference scheme to achieve the best 
accuracy. The velocity components at the control volume faces are calculated using 
the average values of the two-edge points that are calculated through the average of 
the four neighbouring grid points, as seen in figure (2). 
 

Since the interface between the two fluids is not located at the grid points, an 
interpolation scheme must be devised to enforce the interfacial pressure condition at 
the interface. The interface itself can be easily identified by locating the change in 
sign of φ between two contiguous points along any coordinate line. The pressure in 
the liquid side, derived from the jump conditions, is given by Eq. (7) and was 
calculated exactly at the interface intersections with grid lines. These values are 
used as boundary conditions for the pressure Poisson equation. More details about 
the numerical algorithm and the interpolation technique can be found in [ 21,  23]. 
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The time-stepping procedure for the level set equation is based on the second-

order Runge-Kutta method. Each time step, the level set function is reinitialized to 
⎢∇φ ⎢=1 in the all computational domain by applying the reinitialization algorithm 
described in [ 10] for a specified small number of iterations, see for more details [ 24]. 

 
NUMERICAL MODEL VALIDATION 

 
Since the aim of this paper is to develop a numerical model for the interfacial 

jump conditions at an interface separating two fluids, we concentrate in different 
kinds of unsteady two-phase flow problems with different interfacial jump conditions, 
ranging from simple to complex interface topologies. To check the developed 
numerical modelling of the interfacial jump conditions, the numerical method 
described in the previous sections is applied to different unsteady cases; namely, an 
oscillating flow in a two-dimensional tank due to capillary force, sloshing in a two-
dimensional tank, a breaking dam involving different density fluids, and 
thermocapillary flow in two immiscible liquid layers. 
 

1- Capillary Wave Oscillation  
 
The wavy motion of interface separating two fluids represents one of the most 
important cases where capillary forces are displayed. Assuming an arbitrary, 
infinitesimally small, and horizontal sinusoidal displacement, as a result of random 
disturbances, is imposed upon the initially steady free surface. As seen in figure 3, 
the initial free surface has the form: 
 

                                )tcos(),( kxtx o += ωηη                                             (16) 

 
Figure (3) Schematic of flow domain configuration for capillary wave  

 
where ηrepresents the displacement of the free surface in the vertical direction from 
its undisturbed position, ηο is the initial amplitude, t is time, k=2π/λ is the wave 
number, λ is the wavelength, and ω is the excitation frequency. The initial frequency 
of the oscillation is given by the following relation: 



 

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 CFD-07 10 
 

 

 

                                
3
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2 )08.13(

2
π

ρ
σω ==

k
                                            (17) 

 
Schematic of flow domain configuration is illustrated in figure 3, where a two-
dimensional square tank of length L=0.7m contains water of depth H=0.5m. The tank 
extends horizontally from x=-0.5L to x=0.5L and from y=-0.5m to y=.2m in the 
vertical direction. The water is treated as inviscid and the effect of the ambient gas 
on the free surface evolution is neglected. Free slip boundary conditions are applied 
on all boundaries. The numerical simulation is carried out over a range of wave 
amplitudes; ηο=0.001, 0.005, 0.01. The small initial amplitudes are essentially 
necessary to satisfy the linear theory assumptions [ 25]. 
 

Figure 4 shows the capillary wave evolution at the left side and the middle of the 
two-dimensional tank against the non-dimensional time t* =ωt for different initial 
wave amplitudes. It can be seen that, no excessive damping of the free surface 
elevation could be observed over a large period of time. Moreover, the constant 
period of oscillation reveals that a good mass conservation has been obtained using 
the prescribed algorithm of the level set method.  
 

 
 

Figure (4) Time histories of the capillary wave profile at the left wall (---) and the middle 
(      ) of the tank for different initial wave amplitudes 
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2- Sloshing in a Two-Dimensional Tank 
 

In the next examples, the present numerical method is further applied to the 
simulation of sloshing problem, where a free surface oscillating in a two-dimensional 
tank as a result of the gravity force. This example demonstrates the capabilities of 
both the numerical model to describe the free surface dynamics due to interfacial 
body forces, and the level set method to capture and to preserve mass of the free 
surface. For this flow, the Froude number is Fr=1 assuming that the reference value 
of the velocity is Uref = (gL)0.5. The same initial and boundary conditions applied in the 
previous example are also applied in this example. However, the surface tension 
effect is neglected. 
 

 

 
Figure (5) Time histories of the free surface amplitude for sloshing wave at the left  
        wall (---) and the middle (      ) of the tank for different initial wave amplitudes 

 
 
Figure 5 shows the time evolution of the free surface elevation at the left side and 

at the middle of the tank for different initial disturbance amplitudes. As one can see, 
no excessive damping of the free surface amplitude is observed, revealing that the 
numerical diffusion and dissipation are diminished in the adopted scheme. In 
general, the present numerical method does an excellent job in predicting the 
capillary wave oscillation and the sloshing problem over successive oscillation 
periods and for different initial wave amplitudes. Thus allows an extension of the 
numerical model to include many physically interesting two-phase flow problems. 
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3- Breaking Dam Problem  
 
In order to further validate the present numerical algorithm, a two-dimensional 

broken dam problem is carried out. This test case, although of its simplicity in the 
initial configuration and the boundary conditions, is useful for demonstrating the 
versatility of the developed numerical method. In this example, a rectangular 
hydrostatically equilibrium water column surrounded by air is allowed to flow out 
along dry horizontal floor, as shown in figure 6. The pressure jump condition at the 
interface is due to the gravity force acting downward, while the surface tension effect 
is neglected. 

 
 

Figure (6) Configuration of broken dam problem 
 
The rectangular computational domain with size (L=1m, H=0.5m) is surrounded 

by solid walls, at which the free-slip conditions are imposed. The water column is 
0.157m in width and 0.314m in height, and it has the density of 1000 kg/m3 and the 
viscous coefficient of 1.0×10-3 Ns/m, while the air has the density of 1.0 kg/m3 and 
the viscous coefficient of 1.5×10-5 Ns/m. The computational domain has uniform grid 
size in x- and y- directions, respectively. 

 
Figure 7 shows the present numerical results for the time histories of the 

horizontal water front location compared with both the experimental values 
presented in [ 26] and the numerical results obtained by using a novel finite-element 
technique [ 27]. The dimensionless time and displacement are given by t*=t(2ga)0.5 
and x*=x/a. In the legend of this figure, the computational results are in very good 
agreement with the experimental ones. Further, the effects of the ratio of water-to-
gas density on the gravity force and consequently on the horizontal location of the 
water front are investigated and illustrated in figure 8. The computed results show 
that, minor difference could be observed when the density ratio between the two 
fluids is more than 1:100. However, the influence of different density ratios is clearly 
visible. 
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Figure (7) Comparison of calculated results for horizontal displacement of 
breaking dam 

 
 

Figure (8) Horizontal water front location at different density ratios 
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Figure (9) Fluid configuration and flow field of broken dam at different times 
 
Figure 9 shows the computed fluid configurations and the flow field at several 

time levels for density ratio 1:1000. Obviously, the present method can successfully 
predict the topological changes of the interface and the formation of an entrapped air 
cavity. 

t=0 t=0.179s

t=0.261s t=0.444s

t=0.747st=0.557s 

t=0.839s t=0.957s

t=0.963s t=1.04s
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CONCLUSIONS 
 
An accurate and robust numerical model for predicting the effects of the interfacial 
forces arising due to buoyancy or capillary effects in two-phase flow has been 
developed. The present numerical model interprets the surface and the body forces 
as a boundary value conditions for the pressure on the interface. The surface 
pressure formula works well for the interface discontinuity.The mathematical problem 
is formulated in primitive variables and solving using the projection method for non-
staggered grid system. The level set method has been used to present the 
topological changes of the interface separating the two fluids. The accuracy has 
been checked by applying the numerical method to the calculation of capillary and 
sloshing waves. The numerical diffusion and dissipation are almost vanished in the 
adopted scheme. The validation of the developed numerical method is confirmed 
through its application to the broken-dam problem and the comparison with previous 
experimental and numerical results. The comparison indicates that the present 
method give good agreement with previous experimental results and accurately 
satisfies the conservation of mass. The implementation of the method in three 
dimensions appears to be straightforward and the extension of the numerical model 
to include many new and physically interesting problems could be easily done. 
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