

Bulletin of Pharmaceutical Sciences Assiut University Website: http://bpsa.journals.ekb.eg/ e-mail: bullpharm@aun.edu.eg



# UPDATED REVIEW ON EXTRACTION, ISOLATION AND QUANTITATIVE ESTIMATION OF ERGOT ALKALOIDS

I.Theja, P. Sowmya and B. Ramya Kuber\*

Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam (Women's University), Tirupati, 517502, Andhra Pradesh, India

Ergot Alkaloids are potent  $\alpha$ -blockers that cause direct smooth muscle contraction. They are products of fungi in the genus Claviceps. The most prominent member of this group is Claviceps purpurea (rye ergot fungus). Their common sources include Rye, bread as well as other grains. These are nitrogen derived- natural substances which are grouped under indole alkaloids. These ergot alkaloids are a diverse category of secondary metabolites that have been classified into 3 groups as Clavines, Amides of lysergic acid, Ergopeptines and Lactum ergot alkaloids based on their bond arrangement. They contaminate a large variety of cereals such as rye triticale, wheat and barley. In this present review, basic information regarding the ergots along with their chemistry, extraction, purification and isolation procedures for ergot alkaloids were focused, that helps to produce a purified crude extract that is taken for chromatographic analysis. This review also provides detailed informations on the chromatographic approaches for the ergot alkaloids estimations such as TLC, HPLC, HPTLC, UPLC /UHPLC, LCMS, GCMS with different detection techniques like Mass spectrometry and Fluorescence detection which was done in the past decade and also provides information regarding the pharmacological activity of ergot alkaloids like its application in the treatment of severe, throbbing headaches such as migraine, cluster headaches and also other therapeutic applications.

Keywords: Ergot alkaloids, secondary metabolites, migraine, chromatographic approaches, Ultra Performance Liquid Chromatography.

### **INTRODUCTION**

Plant sources are ever advantageous for humans for their food for survival, energy and growth<sup>1</sup>. Herbals are majorly famous for TMS that relieves diseases. These are a pool of wide variety of active constituents which are rich in pharmacological activities. Amides and alkaloids are dominant secondary metabolites that were first spotted and utilized prehistorically i.e.4000 years before due to their pharmacological aptitude<sup>2</sup>. The word alkaloid was given by German pharmacist Wilhelm Meissner<sup>3</sup>. Pelletier defined Alkaloid as "A cyclic organic compound that contains nitrogen in a negative oxidation state". Alkaloids are identified in microorganism's marine organisms and mostly plants<sup>4</sup>.Based on

their molecular skeleton, Alkaloids are categorized into Indole alkaloids, Isoquinoline alkaloids, Tropane alkaloids, Steroidal alkaloids, Pyrrolizidine alkaloids, Pyridine According to Botanical origin, alkaloids. Alkaloids are again categorized into Opium Cinchona alkaloids. alkaloids, Rauvolfia alkaloids, Catharanthus alkaloids, Strychnous alkaloids, Cactus alkaloids, Solanumalkaloids<sup>5</sup>. Based upon Biogenesis, Alkaloids are categorized into True alkaloids(Alkaloids derived from Amino acids and contain nitrogen in Heterocyclic Ring.Ex: - Ergot alkaloids), Protoalkaloids (Alkaloids that have 'N' atom originatedfromAmino acids which does not include in Heterocyclic ring), Pseudo alkaloids (Alkaloids not originated from Aminoacids and have nitrogen in Heterocyclic ring<sup>2</sup>.

Received in 22/8/2021 & Accepted in 2/10/2021

<sup>\*</sup>Corresponding author: B.Ramya Kuber, E-mail: rkuberpharma@yahoo.com.

### **Ergot Alkaloids**

Ergot Alkaloids (EA) are nitrogen-derived natural substances that are categorized under indole alkaloids<sup>6</sup>. Entire species that belong to Claviceps genus give rise to Ergot Alkaloids. The fungi producers belong to the phylum Ascomycota, Claviceps, Epichloe. e.g., Particularly, Claviceps purpurea over sclerotia originating upon rye, wheat additionally to other grains. Other crucial origins for alkaloids include Grasses tainted by entophytes (or) Claviceps species from fungi like penicillium and Aspergillus. As a whole ergot is defined as a fungus that infect various cereal plants and forms compact black masses of branching filaments that replace many of the grains of host plant<sup>7</sup>. Also, most natural Ergot Alkaloids have been separated and reported as the donator for ergotism as well as fescue toxicosis. The above-reported Ergot Alkaloids offersa foundation for the development of synthesis routes for Ergot alkaloids of pharmacological importance<sup>8</sup>.

# Chemistry based classification

The familiar composition or structure description of ergot alkaloids are given by Ergoline ring in Fig:1. Almost all Ergot alkaloids have double bond at  $C_8$ ,  $C_9$  and  $C_{10}$ . The hydrogen atom at  $C_5$  was mostly in  $\beta$ -configuration and the 'H' atom at  $C_{10}$  in 8-ergolenes has  $\alpha$ -configuration. Carbon atom that was asymmetric at C8 of Ergolenes may produce epimers<sup>9</sup>.



Fig. 1: Basic structure of Ergot alkaloids<sup>9</sup>

Based on R-substituent on C<sub>8</sub> that belongs to ergoline ring, Ergot alkaloids are differently categorized<sup>7</sup>. The categories include the following important groups: Lysergic acid alkaloids like Ergometrine; Clavine alkaloids that include hydroxyl and dihydroderivatives of 6,8-dimethyl-ergoline like Agroclavine; peptide alkaloids which include Ergopeptines, eg., Ergotamine, Ergovaline and Lactum Ergot alkaloids like Ergocristam<sup>9-11</sup>.



**Fig. 2 :** Structures of LSD, Ergovaline, Ergotamine<sup>1</sup>

The major step in sampling is the amount of substance required for analytical process <sup>11</sup>. No studies are conducted on the sampling procedures for grains or grain products for the analysis of ergot alkaloids. Yet, because of unequal distribution of ergots in the grains, the sampling preferred sample size is 1000-5000g for visual evaluation of ergots<sup>12</sup>.

## Extraction

Almost in all methods, which are used for reporting ergot alkaloids in cereals, extraction is obtained by non-polar organic solvents in basic conditions or by polar solvents in acidic conditions<sup>12</sup>. In modern chromatographic methods, simple mixtures of acetonitrile with ammonium hydroxide or ammonium carbonate were used <sup>13</sup>. Ergot alkaloids can be produced from the arid samples of different sources. The preferred extraction method for this is low polarity solvent mixtures by the inclusion of ammonium hydroxide which results in basic pH<sup>11&13</sup>. Best recoveries were seen for the mixture of acetonitrile and ammonium carbonate buffer in the 84:16 v: v-ratio when Ergot Alkaloids in cereals were evaluated for extraction solvent. Recoveries ranges include from 91% - 121% indicating potent yields. Hence alkaline cases increase the Ergot alkaloids solubility<sup>13</sup>. Substitutional way of this is to make utilize polar solvents like Methanol, Acetonitrile in combination with dilute acids or buffers at low pH<sup>11</sup>.

Generally, for TLC/Colorimetric Analysis, extraction is carried out by using solvents like chloroform. methanol and ammonium hydroxide. Then the extract was evaporated to dryness. The process is followed bv partitioning of the residue obtained from ether solution by using acid continued by addition of ammonium hydroxide. Re-extraction was performed by using chloroform<sup>7</sup>.

For modern analytical techniques like LC/MS, the extraction and filtration procedures are uncomplicated. Hence direct injection of samples into LC/MS can be done<sup>13</sup>.

Incase of determining solitary ergot alkaloids in different sources, LC – Fluorescence detection can be used. In a mixed standard for use in Liquid Chromotographics, the concentration of ergopeptine alkaloids, ergotamine, ergoconine,  $\alpha$  – ergocryptine,  $\alpha$  – ergocristine was 10  $\mu$ m/ml, ergonovine concentration include1  $\mu$ m/ml<sup>7</sup>.

For HPLC fluorescence detection, a weighed quantity of sample along with solvents and mixture of salts were taken in a 50 ml polypropylene tube and was shaken in a horizontal shaker for 30 min followed by centrifugation filtration and evaporation under the Nitrogen stream. Reconstitution was done with 0.4 ml of mobile phase and passed through 0.454 m of nylon syringe filter and subjected to HPLC-FLD<sup>14</sup>.

In another HPLC- FD extraction process, the ergot alkaloids are extracted by drenching of *Claviceps sclerotia* in the solvent that is utilized for extraction for 60min followed by centrifugation, isolation and, purification. The resulting purified isolate is used for HPLC-FD<sup>15</sup>.

In Agricultural products, EA is extracted by ELISA (Enzyme-linked immune sorbent assay). This is very simple and there is no requirement for cleanup. For example, the ergot alkaloids are extracted by a shaking methanol phosphate buffer solution that contains Tween-20 in 1:1, *v/v-ratio* with the sample or by also stirring sample with phosphate buffer saline solution<sup>6</sup>.

For UHPLC-MS/MS analysis, samples of 500 g were ground in IKAM20 mill which results in the powder of particle size 0.5 mm. This milled sample was rinsed with ultrapure water and acetone followed by manual shaking in a large clean bucket for homogenization and then from the resulting test material 10 g were taken and incubated in 40 ml of acetonitrile and mixed properly with the help of ultra-turrax mixer for 3min and kept centrifugation for 10min at 4000g.The dilution ratio for 1ml of supernatant which is taken for instrumental analysis is in the 1:4 ratios with water<sup>16</sup>.

For a Bio-analytical method, fundamental sections of tilters are gathered into liquid nitrogen and they are moved to freeze drier. Evaporated samples were ground and homogenized by using a Bead Ruptor in 7ml vial by making use of a <sup>1</sup>/<sub>4</sub> inch Zirconium bead (30 s at 4.5 m/s). The samples were prepared by the extraction of 1mL of extracting solvent in 2ml plastic vials for 1hr by end over end rotation(30Hz) in the dark. Then they are kept for centrifugation 5000 x g for 5min and from the supernatant liquid, 600µl., was taken and diluted with 3.2 ml of Milli-Q water. These samples were taken for analysis after clean up<sup>17</sup>.

In case of wheat milling products, 50ml, 84:16 (v/v) acetonitrile /3.03mM aqueous ammonium carbonate were used for extraction. The milled products were made into slurry and shaken in a Flatbed shaker for 30 min and comminuted in homogenizer for 3 min at 12000 rpm and then centrifuged. The supernatant was taken and diluted with 3.03Mm aqueous ammonium carbonate followed by internal standards addition to all samples before going into analysis<sup>18</sup>.

# Isolation and Purification

Purification is generally necessary for solvent extracts before analysis<sup>13</sup>. Hence, the clean-up can be done by Liquid-Liquid partitioning with the manipulation of acid/base effects of N-6<sup>12</sup>. Solid- phase extraction occurs sometimes utilizing a strong cation exchange mode depending on acid-base separations. This SPE was taken into account for the biological fluids like urine or plasma<sup>13</sup>. For bio-analytical method, the samples which were prepared from the extraction were taken onto previously conditioned and equilibrated Strata-X-CW SPE Cartridges by the process of centrifugation for 2min at 500 x g followed by subsequent washing of cartridges with water, 50% methanol and, eluted once with 5% formic acid in methanol and 1% ammonia in methanol. These final eluents were taken into the HPLC vials and made to dry by centrifugal evaporation then followed by resuspension with 200µL of 50% methanol and stored at -20<sup>o</sup>C before analysis <sup>17</sup>. The remaining cleanup process includes extrulent columns partitioning<sup>12&13</sup>. Partition of alkaloids between immiscible solvents, with the inclusion of salting-out methods, finding a polar solvent dissolution followed by an easy washing with hexane results in the sample that is suitable for LCMS/MS analysis<sup>13</sup>. The purification of crude extract was also done by preparative  $LC^{19}$ .

## MATERIALS AND METHODS

## Analytical Methods Colorimetric analysis

The Colorimetric method for quantitative assay of ergot alkaloid was performed in liquid culture filters with the addition of van urk p-dimethylamino reagent (0.125%) benzaldehyde in 63% sulphuric acid+ 0.1% of 5% ferric chloride) by using lysergic acid as standard<sup>20</sup>. A positive reaction is the appearance of blue color at 580nm. These colorimetric methods are utilized for grain ergot extracts and artificially contaminated triticale grain at 35% of ergot. The composition in van-urk reagent is altered by Michelon and Kelleher where they substituted ferric chloride with sodium Nitrate which was reported with better sensitivity and stability<sup>7</sup>.

# TLC

It is not possible to report the ergot alkaloids contents by visual detection. Hence we need the help of analytical techniques<sup>7</sup>. Previously, paper chromatography was used sooner a TLC came into existence as they are inexpensive and relatively rapid. TLC methods can isolate isomers and have a low limit of detections. According to a survey, the drawbacks of TLC are specificity is less and it interferes with the other components<sup>11</sup>. Generally in TLC, the stationary phase used mainly is silica gel and its substitution is alumina. The solvent system includes chloroform, Benzene, ethanol, acetic acid in their combinations. Then they are checked for fluorescence under UV<sup>7, 11, 12&21</sup>.

# HPLC

RP-HPLC plays a prominent role in the estimation of ergot alkaloids. The first reported HPLC analysis of ergot in combination with LSD is by Jane and Wheals<sup>8</sup>. HPLC-FD is used in-case of individual ergot alkaloids should be quantified<sup>13</sup>. The solvent system includes chloroform, diethyl ether, isopropanol and ethanol<sup>22</sup>. Other solvents include acetonitrile and injection volume was 100ml<sup>13</sup>. For detection purpose, fluorescence detection isused.Ergometrine, ergotamine, ergoconine, ergot alkaloids that are usually analyzed by HPLC. Total alkaloids content is the sum of all ergot alkaloids <sup>23</sup>.

# **UPLC/UHPLC**

Ergot alkaloids are estimated by Acquity UPLC in combination with MS <sup>16</sup>. Solvent systemincludes Ammonium carbonate, Acetonitrile (10:3); Water and Acetonitrile with 0.1% v/v Formic acid <sup>16&24</sup>. Flow rate include 0.4m/min <sup>16</sup>. Nitrogen can be taken for desolvation. The column used is C18 ( $2.1 \times 100$  mn) with 1.74µm particles. These UPLC are connected to MS which functions prominent role<sup>25</sup>.

# LCMS

LC coupled to MS and LC Tandem MS generally utilize ESI in a positive mode for estimation of ergot alkaloids<sup>12</sup>. Flow rate include 0.2 ml/min. Column details are 150 mm×20 m.Mobile phases include 0.1% v/v aqueous formic acid and 0.1% formic acid in acetonitrile. Run time is 43 min<sup>26</sup>.

# GC/MS

As Ergot alkaloid decomposes in the hot injector, GC is not preferable but the peptide portions can be reported by GC/MS<sup>23</sup>. Electro impact, GC/MS can measure LSD and Iso LSD in urine samples. The recoveries till now are up to 69% and hence these are not mostly used<sup>13</sup>.



Fig 3: Estimation of Ergot alkaloids by UPLC<sup>2</sup>

| S.no | Compound           | Source                                         | Analysis | Detector                             | Mobile Phase                                         | Chromatograph<br>ic conditions                              | Ref  |
|------|--------------------|------------------------------------------------|----------|--------------------------------------|------------------------------------------------------|-------------------------------------------------------------|------|
| 1    | Ergot<br>alkaloids | Epichloefestucae                               | HPLC     | MS – ESI                             | Ammonium<br>carbonate<br>Acetonitrile                | C <sub>18</sub> column                                      | [17] |
| 2    | Ergot<br>alkaloids | Rye, wheat                                     | UHPLC    | Tandem mass<br>spectrometry          | Acetonitrile,<br>Ammonium<br>carbonate               | BEH C <sub>18</sub> column                                  | [28] |
| 3    | Ergot<br>alkaloids | Swine feed                                     | UHPLC    | Tandem mass spectrometry             | Acetonitrile,<br>Ammonium<br>carbonate               | BEH C <sub>18</sub> column<br>0.4mL/min                     | [29] |
| 4    | Ergot<br>alkaloids | Oats based<br>functional foods                 | HPLC     | MS                                   | Methanol & Water<br>with 0.1% Formic<br>acid         | Zorbax eclipse<br>plus C <sub>18</sub> column<br>0.4mL /min | [30] |
| 5    | Ergot<br>alkaloids | Cereal samples from Algeria                    | UHPLC    | MS                                   | Acetonitrile,<br>Ammonium<br>carbonate               | C <sub>18</sub> column<br>0.4mL /min                        | [31] |
| 6    | LSD                | Metarhizium species                            | HPLC     | FLD                                  | Methanol                                             | C <sub>18</sub> column                                      | [32] |
| 7    | Ergot<br>alkaloids | Breads in<br>Netherlands                       | UPLC     | Tandem Mass<br>Spectrometry<br>– ESI | Acetonitrile,<br>Ammonium<br>carbonate               | BEH C <sub>18</sub> column<br>0.4mL/min                     | [33] |
| 8    | Ergot<br>alkaloids | Wheat, Triticale,<br>Rye, Fodder<br>pellets    | UHPLC    | MS                                   | Acetonitrile & Water<br>with 0.1 % Formic<br>acid    | BEH C <sub>18</sub> column<br>0.4mL/min                     | [16] |
| 9    | Ergot<br>alkaloids | Plectenchym-atic<br>Mycelia                    | TLC      | Colorimetric<br>analysis             | Ethyl acetate,<br>Ethanol, Diethyl<br>formamide      | TLC Plates<br>Silica gel – G                                | [20] |
| 10   | Ergot<br>alkaloid  | Rye                                            | HPLC     | ELISA                                | Acetonitrile,<br>Ammonium<br>carbonate               | C <sub>18</sub> column                                      | [34] |
| 11   | Ergot<br>alkaloid  | Cereal grain<br>intended for<br>animal feeding | UPLC     | MS                                   | Acetonitrile,<br>Ammonium<br>carbonate               | Phenyl Hexyl<br>Luna column                                 | [35] |
| 12   | Mycotoxins         | Dairy cattle & poultry feed ingredients        | LC       | MS                                   | Methanol, Water,<br>Acetic acid,<br>Ammonium acetate | C <sub>18</sub> column<br>1000µL/min                        | [36] |

Table 1: Estimation of ergot alkaloids by different Liquid Chromatographic Techniques

## Table 1: Continued

| S.no | Compound                           | Source                                         | Analysis | Detector                        | Mobile Phase                                                     | Chromatograph<br>ic conditions                                      | Ref  |
|------|------------------------------------|------------------------------------------------|----------|---------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|------|
| 13   | Ergot<br>alkaloids                 | Wheat & Rye<br>derived products<br>in Italy    | UHPLC    | MS with<br>Triple<br>quadrapole | Ammonium<br>carbonate,<br>Acetonitrile                           | BEH C <sub>18</sub> column<br>0.4mL/min<br>CT: 40 <sup>0</sup> C    | [37] |
| 14   | Ergot<br>alkaloids                 | Pasta                                          | HPLC     | ESI- Positive<br>mode           | Ammonium<br>carbonate,<br>Acetonitrile                           | C <sub>18</sub> column<br>1mL/min                                   | [18] |
| 15   | Ergot<br>alkaloids                 | Rye products                                   | LC       | FLD                             | Aq.Ammonium<br>carbonate,<br>Acetonitrile                        | Phenomonex<br>Luna phenyl<br>hexyl column                           | [38] |
| 16   | Ergot<br>alkaloids                 | Phyllantus niruri<br>Linn.                     | TLC      | Densitometry                    | Chloroform,<br>Methanol, Ethyl<br>acetate, Ammonium<br>hydroxide | TLC Plates                                                          | [39] |
| 17   | Ergot<br>alkaloids                 | Cereals from<br>Luxembourg                     | UHPLC    | FLD                             | Acetonitrile, Water                                              | BEH C <sub>18</sub> column<br>0.2 mL /min                           | [40] |
| 18   | Ergot<br>alkaloids &<br>Mycotoxins | Wheat & Maize                                  | UPLC     | MS-ESI                          | Aq.0.3%FormicacidwithAmmonium formate                            | BEH C <sub>18</sub> column<br>0.4 mL /min<br>CT:- 30 <sup>0</sup> C | [41] |
| 19   | Ergot<br>alkaloids                 | Maize                                          | HPLC     | MS                              | Acetonitrile, Water,<br>Formic acid                              | C <sub>18</sub> column<br>500µL/min                                 | [42] |
| 20   | Ergot<br>alkaloids                 | Western<br>Canadian grains                     | HPLC     | Tandem mass spectrometry        | Acetonitrile,<br>Ammonium acetate                                | C <sub>18</sub> column                                              | [43] |
| 21   | Ergot<br>alkaloids                 | Rye flour                                      | HPTLC    | FLD                             | Methanol, water                                                  | 6.0 x 3.0mm<br>plates                                               | [44] |
| 22   | Ergot<br>alkaloids                 | Rye containing breads                          | HPLC     | MS, FLD                         | Methanol, Water                                                  | C <sub>18</sub> column                                              | [45] |
| 23   | Lysergic<br>acid amide             | Morning glory<br>seeds<br>(Ipomea<br>violacea) | GC       | MS                              | Chloroform,<br>Methanol,<br>Ammonium<br>hydroxide                | C <sub>18</sub> column<br>FR –1 ml/ min                             | [46] |
| 24   | Ergot<br>alkaloids                 | N.fumigata                                     | HPLC     | FLD                             | Acetonitrile,<br>Ammonium acetate                                | C <sub>18</sub> column                                              | [47] |
| 25   | Mycotoxins                         | Rye, Barley                                    | HPLC     | MS                              | Methanol, Water,<br>0.1% Formic acid                             | C <sub>18</sub> AQ column<br>350µL/min                              | [48] |
| 26   | Ergot<br>alkaloid                  | Wheat from<br>Albania                          | LC       | MS                              | Acetonitrile,<br>Ammonium<br>carbonate                           | Phenyl hexyl column                                                 | [49] |
| 27   | Ergot<br>alkaloid /<br>Mycotoxins  | Animal feed<br>maize samples                   | LC       | MS                              | Methanol, Water,<br>Ammonium acetate                             | C <sub>18</sub> column                                              | [50] |
| 28   | Ergot<br>alkaloid                  | Cereal samples                                 | UPLC     | MS                              | Acetonitrile,<br>Ammonium<br>carbonate                           | ACQUITY BEH<br>C <sub>18</sub> column                               | [25] |
| 29   | Ergot<br>alkaloid                  | Rye flour                                      | HPTLC    | MS – ESI                        | Methanol, 0.1 %<br>Formic acid                                   | 20 x 10cm plate<br>200µL/min                                        | [51] |
| 30   | 25 Ergots                          | Cereal samples                                 | UPLC     | MS                              | Acetonitrile,<br>Ammonium<br>carbonate                           | BEH C <sub>18</sub> column<br>0.2 mL/min                            | [27] |
| 31   | Ergot<br>alkaloid                  | Animal feeding<br>stuff                        | HPLC     | FLD                             | Acetonitrile,<br>Ammonium<br>carbonate                           | Luna C <sub>18</sub> column<br>0.7–1mL /min                         | [14] |
| 32   | Ergot<br>alkaloid                  | Cereals                                        | HPLC     | MS                              | Acetonitrile,<br>Ammonium<br>carbonate                           | C <sub>18</sub> column                                              | [23] |
| 33   | Ergot<br>alkaloid                  | Sclerotia of<br>Claviceps<br>purpurea          | HPLC     | MS – ESI                        | Methanol, Water, 1<br>% Formic acid                              | Phenyl hexyl<br>column<br>250µL/min                                 | [52] |

Table 1: Continued

| S.no | Compound                   | Source                                 | Analysis    | Detector         | Mobile Phase                                               | Chromatograph                         | Ref  |
|------|----------------------------|----------------------------------------|-------------|------------------|------------------------------------------------------------|---------------------------------------|------|
|      |                            |                                        |             |                  |                                                            | ic conditions                         |      |
| 34   | Ergot<br>alkaloid          | Grain products                         | LC          | MS – ESI         | Acetonitrile,<br>Ammonium                                  | Sphinx RP<br>1.8µm column             | [53] |
| 35   | Ergot<br>alkaloid          | Cereals                                | UHPLC       | HRMS             | Acetonitrile,<br>Methanol                                  | Hypersil gold<br>column<br>400 µL/min | [54] |
| 36   | Ergot<br>alkaloid          | Epichloe                               | HPLC        | FLD              | Acetonitrile,<br>Ammonium<br>carbonate                     | C <sub>18</sub> column<br>0.9mL/min   | [55] |
| 37   | Fumiga<br>clavines D-<br>H | Entophytic<br>Aspergillus<br>fumigates | RP-<br>HPLC | NMR, FTIR,<br>UV | Petroleum Ether,<br>Acetone                                | C <sub>18</sub> column                | [56] |
| 38   | Ergot<br>alkaloid          | Tall fescue seeds                      | HPLC        | FLD              | 80% Methane,<br>Ammonium acetate                           | C <sub>18</sub> column                | [57] |
| 39   | Ergot<br>alkaloid          | Cereals                                | HPLC        | MS-ESI           | Methanol, Water,<br>Ammonium<br>carbonate                  | C <sub>18</sub> column<br>0.15mL/min  | [58] |
| 40   | Ergot<br>alkaloid          | Barley                                 | HPLC        | MS               | Ammonium<br>bicarbonate,<br>Methanol, Water                | X Bridge C <sub>18</sub> column       | [59] |
| 41   | Ergot<br>alkaloid          | Cereal & its products                  | HPLC        | MS – ESI         | Methanol,<br>Ammonium<br>carbonate,<br>Acetonitrile, Water | X Bridge C <sub>18</sub><br>column    | [60] |

# **Therapeutic Applications**

Ergot Alkaloids functions as potent drugs because of their well-built interplay with dopamine, serotonin and adrenergic receptors of CNS, also adrenergic receptors in blood vessels<sup>61</sup>.

Ergot alkaloids play a major part in the therapy of migraine. Two drugs ergotamine and dehydro ergotamine are taken for treating migraine and these two drugs vary in pharmacokinetic and pharmocodynamic features. Caffeine content in these drugs help them to absorb faster into the body specifically Dihydro-ergotamine is being the major choice to treat migraine headaches. Hence they are called "Migraine specific drugs<sup>62</sup>.

Ergot Alkaloids plays a major role in cancer therapy. In prostate cancer, chemo resistance is the major hindrance. Ergot alkaloids such as dehydroergocristine was approved to treat this chemo resistant prostate cancer. The effects of the drug were reported by quantitative PCR, Western blot analysis and reporter assay<sup>63</sup>.

These EA are also applied in ocular pharmacology. They are also used in the treatment of glaucoma<sup>64</sup>. These EA also seems to produce vasoactive effects based on the invitro studies conducted<sup>65</sup>. EA and their derivatives has been traditionally utilized in

blood pressure regulation and also aids in child birth<sup>66</sup>.

Bromocriptine, which is a dopamine D2 receptor agonist, has been widely used for patients with Parkinson's disease<sup>67</sup>.Stimulatory effect has also been observed on the motor activity of uterus by various Ergot alkaloids<sup>62</sup>.

## Conclusion

The study provides informations on sample preparation techniques on different analytical methods that are possible for estimation, determining and reporting of Ergot alkaloids from different sources such as Claviceps purpurea, cereals bread, etc along with extraction, isolation and purification procedures. The techniques focused so far include TLC, HPLC, HPTLC, UPLC, LCMS with MS, FLD detection procedures. In limited cases, Colorimetry and ELISA also provides information which is limited and hence they are used as a semi quantitative tool. According to study, the UPLC method for the estimation of alkaloids provides better results which include low solvent consumption and less analysis time.

## Abbreviations

- EA Ergot Alkaloids
- LSD Lysergic Acid Diethylamide
- TLC Thin Layer Chromatography
- **HPLC** High Performance Liquid Chromatography
- **HPTLC** High Performance Thin Layer Chromatography
- **UHPLC** Ultra High Performance Liquid Chromatography
- MS Mass Spectrometry
- **FLD** Fluorescence Detection
- ESI Electron Spray Ionization
- **HRMS** High Resolution Mass Spectrometry
- ELISA Enzyme Linked Immuno Sorbent Assay
- **PCR** Polymerase Chain Reaction
- TMS Traditional Medicine System

# REFERENCES

- Z. Memariani, N. Gorji, R. Moeini and M. H. Farzaei, "Traditional uses" *Phytonutrients in Food*, 23– 66(2020). doi:10.1016/b978-0-12-815354-3.00004-6.
- 2- P. Dey, A. Kundu, A. Kumar, M. Gupta, B. M. Lee, T. Bhakta, *et al.*, "Analysis of alkaloids", *Recent advances in natural products analysis*, 505-508 (2020). doi: https://doi.org/10.1016/B978-0-12-816455-6.00015-9.
- 3- R. Eguchi, N. Ono, A. H Moita, T. Katsuragi, S. Nakamura, M. Huang, Md. Altaf-UI-Amin and S. Kanaya, "Classification of alkaloids according to the starting substances of their biosynthetic pathways using graph convolutional neutral networks" **BMC** Bioinform, 20, 380-382 (2019). doi: https://doi.org/10.1186/s12859-019-2963-6.
- 4- Verpoote R, "Alkaloids: Definition, classification, chemical properties and chromatographic techniques", 56 57 (2005).
- 5- W. A. Kukula- Koch, J. Widelski, *et al.*, "Alkaloids Physicochemical properties, Classification and its derivatives", *Pharmacognosy*, Chapter 9, 165 194 (2017).

http://dx.doi.org/10.1016/B978-0-12-802104-0.00009-3.

- N. Arroyo-Manzanares, L. Gamiz-Gracia, *et al.*, "Ergot alkaloids: Chemistry, biosynthesis, Bioactivity and Methods of analysis", *Phytochemistry*, 889-891 (2017).
- P. M. Scott, "Analysis of ergot alkaloids a review", *Mycotoxin Res*, 23, 113-114, (2007).
- 8- J. R. Strickland, M. L. Looper, J. C. Matthews, C. F. Rosenkrans, M. D. Flythe, and K. R. Brown, "Board invited review: St. Anthony's fire in livestock: Causes, mechanisms and potential solutions", *J Anim Sci*, 89(5),1603 1626 (2011).
- 9- M. Flieger, M. Wurst and R. Shelb, " Ergot alkaloids – Sources, structures and analytical methods", *Folia Microbiol*, 42(1), 3 – 25 (1997).
- 10- C. L. Schardl, C. A. Young, U. Hesse, S. G. Amyotte, K. Andreeva et al., "Plantsymbiotic fungi as chemical engineers: multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci", **PLoS** Genet, 9(2):e1003323 (2013).
- C. Crews, " Analysis of Ergot alkaloids, Fera Sciene Limited", *Toxins*, 7, 2024-2050 (2015).
- 12- R. Krska and C. Crews, "Significance, chemistry and determination of Ergot alkaloids: A review", *Food Addit contam: Part A*, 25(6), 722-731 (2008).
- C. Crews, "Methods for analysis of Ergot alkaloids", *Natural Products*, 1133-1150, (2013).
- 14- E. Kowalczyk, E. Patyra, A. Grelik and K. Kwiatek, "Development and validation of an analytical method for determination of ergot alkaloids in animal feeding stuffs with high performance liquid chromatography- fluorescence detection", *J Vet Sci*, 19(3), 559-565, (2016).
- 15- D. G. Panaccione, K. L. Ryan, C. L. Schardl and S. Florea, "Analysis and modification of Ergot alkaloid profiles in fungi", *Methods Enzymol*, 515, 269-272 (2012).
- 16- C. Schummer, I. Zandonella, A. V. Nieuwenhuyse and G. Moris,

"Epimerization of Ergot alkaloids in feed", *Heliyon*, 6, e04336 (2020). doi: 10.1016/j.heliyon.2020.e04336

- 17- D. Hudson, W. Mace, A. Popay, J. Jensen, C. Mckenzie, C. Cameron and R. Johnson, "Genetic manipulation of ergot alkaloid pathways in Epichloe festucae var. lolii and its effects on black beetle feeding deterrence", *Toxins*, 13(76) 1-10 (2021).
- 18- S. A. Tittlemier, D. Drul, M Roscoe, D. Turnock, D. Taylor and B. X. Fu, "Fate of ergot alkaloids during laboratory scale durum processing and pasta production" *Toxins*, 11(195), 1-11 (2019).
- 19- R. Krsk, F. Berthiller, R. Schuhmacher, K. F. Nielsen and C. Crews, "Determination of Ergot alkaloids: Purity and Stability assessment of standards and optimization of extraction conditions for cereal samples", J AOAC Int, 91(6), 1363-1371 (2008).
- 20- P. Mantle, "Comparative ergot alkaloid elaboration by selected plectenchymatic mycelia of *Claviceps purpureathrough* sequential cycles of axenic culture and plant parasitism", *Biology*, 9(41), 1-14 (2020).
- 21- J. L. Mclaughlin, J. E. Goyan and A. G. Paul, "Thin layer chromatography of ergot alkaloids", *J Pharm Sci*, 53(3), 306-310 (1964) doi: 10.1002/jps.2600530313
- 22- M. Wurst, M. Flieger and Z. Rehacek, "Analysis of ergot alkaloids by high performance liquid chromatography", *J Chromatogr A*, 477-483, (1978).
- 23- R Krska and C. Crews, "HPLC/MS/MS Method for the determination of ergot alkaloids in cereals", *FLN 8306*, 1-139, (2007)
- 24- M. Kokkonen and M. Jestol, "Determination of ergot alkaloids from grains with UPLC-MS/MS", *J sci*, 33: 2322-2327, (2010).
- 25- J. Zhang, Q. Guo, B. Shao, Z. Du, N. Meruva and S. Hird, "Analysis of ergot alkaloids in cereal samples by liquid chromatography tandem quadrapole mass spectrometry", *Water Corporation*, (2017).
- 26- D. Smith, L. Smith, W. Shafer, J. Kltoz and J. Strickland, "Development and validation of an LC- MS method for

quantitation of ergot alkaloids in lateral saphenous vein tissue", *J Agric Food Chem*, 57, 7213-7220, (2009).

- 27- Q. Guo, B. Shao, Z. Du and J. Zhang, "Simultaneous determination of 25 ergot alkaloids in cereal samples by Ultra performance liquid chromatography tandem mass spectrometry", *J Agric Food Chem*, 64, 7033-7039, (2016).
- 28- A. Tkachenko, K. Benson, M. Mostrom, J. Guag, R. Reimschuessel and B. Webb, "Extensive evaluation via blinded testing of an UHPLC-MS/MS method for quantitation of ten ergot alkaloids in rye and wheat grains", *J AOAC Int*, 104(3), 546-554, (2021).
- 29- N. Arroyo- Manzanares, V. Rofriguez, A. M. Gracia-Campana, E. Casellon-Rrndon and L. Gamiz-Gracia, "Determination of principal ergot alkaloids in swine feeding", *J Sci Food Agric*, 101(12), 5214 5224 (2021). doi.org/10.1002/jsfa.11169
- 30- L. Carbonell-Rozas, F. J. Lara, L. Gamiz-Gracia and A. M. Garcia-Capana, "Validation of a method for the control of ergot alkaloids in oat based functional foods", *Toxins*, 16-31 (2021). doi.org/10.3390/IECT2021-09151
- 31- L. Carbonell-Rozas, C. K. Mahdjoubi, N. Arroyo- Manzanares, L. Gamiz-Gracia and A. M. Garcia-Campana. " Determination and occurance of ergot alkaloids in cereal samples from Algeria". *Toxins*, (2021). https://doi.org/10.3390/IECT2021-09148.
- 32- C. E. Leadmon and J. K. Sampson, "Several Metarhizium species produce ergot alkaloidsin a condition specific manner", *App. Environ. Microbiol*, 86 (14), e00373-20 (2020).
- 33- A. Versilovskis, P. P. J. Mulder, D. P. K. H. P. Fauw, J. de Stoppelaar and M. de Nijs, "Simultaneous quantification of ergot and Tropane alkaloids in bread in the Netherlands by LC-MS", *Food Addit. Contam*, 13, 215-223 (2020).
- 34- A. Kodisch, M. Oberforster, A. Raditschnig, B. Rodemann, A. Tratwal, J. Danielewicz *et al.*, "Covariation of ergot severity and alkaloid content measured by HPLC and one ELISA method in inoculated winter Rye across three isolates

and three European countries" Toxins, 12(676), 1-18 (2020).

- 35- J. Babic, G. Tavcar-kalcher, F. A. Celar, K. Kos, M. Cervek and B. Jakovac-Strajn", Ergot and ergot alkaloids in cereal grains intended for animal feeding collected in Solvenia: Occurance, Pattern and correlations", *Toxins*, 12, 730-748 (2020).
- 36- D. C. Kemboi, P. E. Ochieng, G. Antonissen, S. Croubels, M. Scippo *et al.*, "Multi- Mycotoxin occurrence in dairy cattle and poultry feeds and feed ingredients from Machakos Town Kenya", *Toxins*, 12, 762-778 (2020).
- 37- F. Debegnach, S. Patriarca, C. Brera, E. Gregori, E. Sonego, G. Moracci and B. De Santis. "Ergot alkaloids in wheat and Rye derived products in Italy", *Foods*, 8 (150), 1-9 (2019).
- 38- I. Holderied, M. Rychlik and P. W. Elsinghorst, "Optimized analysis of ergot alkaloids in Rye products by liquid chromatography fluorescence detection applying lysergic acid diethylamide as an internal standard", *Toxins*, 11, 184-193 (2019).
- 39- R. Rollando, S. D. Tansil, E. Monica, Y. Yuniati and L. Yuliati, "Validation of TLC densitometry method for the quantitative determination of alkaloid in fermented endophytic fungi extracts *Phyllantus niruri* Linn", *Pharmaciana*, 9 (1), 47-58 (2019).
- 40- C. Schummer, L. Brune and G. Moris, "Development of a UHPLC-FLD method for the analysis of ergot alkaloids and application to different types of cereals from Luxembourg", *Mycotoxin Res*, 34, 279-287 (2018).
- 41- N. A. Manzanares, K. De Ruyck, et al., "In-house validation of a rapid and efficient procedure for simultaneous determination of ergot alkaloids and other mycotoxins in wheat and maize", *Anal Bioanal Chem*, 410(22), 5567-5581(2018).
- 42- P. E. Bragg, M. D. Maust and D. G. Panaccione, "Ergot Alkaloid Biosynthesis in the Maize (Zea mays) Ergot Fungus *Claviceps gigantean*", *J Agric Food Chem*, 65(49), 10703-10710 (2017).

- 43- T. Grusie, V. Cowan, J. Singh, J. McKinnon and B. Blakley, "Proportions of predominant Ergot alkaloids (Claviceps purpurea) detected in Western Canadian grains from 2014 to 2016", World Mycotoxin J, 11 (2), 259-264 (2018).
- 44- C. Oellig, " Lysergic acid amide as chemical marker for the total ergot alkaloids in rye flour-Determination by high-performance thin-layer chromatography-fluorescence detection", *J Chromatogr A*, 1507, 124-131 (2017).
- 45- B. Kniel, M. Meibner, P. Koehler and C. Schwake-Anduschus, "Studies on the applicability of HPLC-FLD and HPLC-MS/MS for the determination of ergot alkaloids in rye-containing breads", *J C F*, 13, 69-78 (2018).
- 46- I. Mercurio, P. Melai, D. Capano, G. Ceraso, L. Carlini and M. Bacci "GC/MS analysis of morning glory seeds freely in commerce: can they be considered herbal highs", *Egypt J Forensic Sci*, 7(16), 1-6 (2017).
- 47- D. G. Panaccione and S. L. Arnold "Ergot alkaloids contribute to virulence in an insect model of invasive aspergillosis", *Sci Rep*, 7, 8930-8939 (2017).
- 48- J. I. Bauer *et al.*, "Detection of the tremorgenic Mycotoxin paxilline and its desoxy analog in ergot of rye and barley: a new class of Mycotoxins added to an old problem", *J Anal Bioanal Chem*, 409, 5101-5112 (2017).
- 49- D. Topi, B. Jakovac-Strajn, K. Pavšič-Vrtač and G. Tavčar-Kalcher, "Occurrence of ergot alkaloids in wheat from Alania", *Food Addit Contam*, 34, 1333-1343 (2017).
- 50- M. F.Abdallah, G. Girgin, T. Baydar, R. Krska and M. Sulyok "Occurrence of multiple Mycotoxins and other fungal metabolites in animal feed and maize samples from Egypt using LC-MS/MS",J Sci Food Agric, 97(13), 4419-4428 (2017).
- 51- C. Oellig and T. Melde, "Screening for total ergot alkaloids in rye flour by planar solid phase extraction-fluorescence detection and mass spectrometry", J chromatogr A, 144, 126-133 (2016).

- 52- J. Dopstadt, S. Vens-Cappell, L. Neubauer, P. Tudzynski, B. Cramer *et al.*, " Localization of ergot alkaloids in sclerotia of *Claviceps purpurea* by matrixassisted laser desorption/ionization mass spectrometry imaging", *Anal Bioanal Chem*, 409(5), 1221-1230 (2017).
- 53- M. Bryla, K. Szymczyk, R. Jędrzejczak and M. Roszko, "Application of Liquid Chromatography/Ion Trap Mass Spectrometry Technique to Determine Ergot Alkaloids in Grain Products", *Food Technol Biotechnol*, 53(1),18-28 (2015).
- 54- N. Leon, A. Pastor and V. Yosta, "Target analysis and retrospective screening of veterinary drugs, ergot alkaloids, plant toxins and other undesirable substances in feed using liquid chromatography-high resolution mass spectrometry", *Talanta*, 149,43-52 (2016). doi:10.1016/j.talanta.2015.11.032
- 55- A. M. Craig, J. L. Klotz and J. M. Duringer, "Cases of ergotism in livestock and associated ergot alkaloid concentrations in feed", *Front Chem*, 3(8), 1-6 (2015).
- 56- J. Xu, Y. C. Song, Y. Guo, Y. N. Mei and R. X. Tan, "Fumigaclavines D-H, New Ergot alkaloids from Endophytic Aspergillus fumigate", Planta Med, 80, 1131-1137 (2014).
- 57- H. Ji, F. Fannin, J. Klotz and L. Bush, "Tall fescue seeds extraction and partial purification of ergot alkaloids", *Front Chem*, 2(110), 1-7 (2014).
- 58- S. V. Malysheva, J. D. Di Mavungu, J. Y. Goryacheva and S. De Saeger, "A systematic assessment of the variability of matrix effects in LC-MS/MS analysis of ergot alkaloids in cereals and evaluation of method robustness", *Anal Bioanal Chem*, 405, 5595-5604 (2013).
- 59- P. Lenain, J. D. D. Mavungu, P. Dubruel, J. Robbens and S. De Saeger "Development of suspension polymerized molecularly imprinted beads with metergoline as template and application in a solid phase extraction procedure towards ergot alkaloids", *Anal Chem*, 84, 10411-10418 (2012).

- 60- J. D. di Mavungu, S. V. Malysheva, M. Sanders, D. Larionova, J. Robbens, *et al.*, " Development and validation of a new LC-MS/MS method for the simultaneous determination of six ergot alkaloids and their corresponding epimers, Application to some food and feed commodities", *Food Chem*, 135, 292-303 (2012).
- 61- M. Menkovska, "Cereal alkaloids", *J Food Health Technol Innov*, 2(5), 134-153 (2019).
- 62- N. Sharma, V. K. Sharma, H. K. Manikyam and A. B. Krishna, " Ergot alkaloids: A Review on therapeutic Applications", *Eurpean J Med Plants*, 14(3), 1-17 (2016).
- 63- L. Bai, X. Li, X. Ma, R. Zhao and D. Wu "Invitro effect and mechanism of action of ergot alkaloid Dihydroergocristine in Chemoresistant prostate cancer cells", *Anticancer Res*, 40, 6051- 6062 (2020).
- 64- L Baldim, W. P. Oliveira, V. Kadian, R. Rao and N. Yadav, "Natural ergot alkaloids in occular pharmacotherapy: Known molecules for novel Nano particles based delivery systems", *Biomolecules*, 10(7), 980 (2020).
- 65- J. E. Cherewyk, S. E. Parker, B. R. Blakley and A. N. Al-Dissi, "Assessment of vasoactive effects of the (S) - epimers of Ergot alkaloids invitro", *J Anim Scie*, 98(7), 1-6 (2020).
- 66- N. Lorenz, T. Haarmann, S. Pazoutová, M. Jung and P. Tudzynski, "The ergot alkaloid gene cluster: Functional analysis and revolutionary aspects", *Phytochemistry*, 70, 1822-1832 (2009).
- 67- Y. Shirasaki, M. Sugimura and T. Sato "Bromocriptine, an ergot alkaloid, inhibits excitatory amino acid release mediated by glutamate transporter reversal", *Eur J Pharmacol*, 643, 48-57(2010).

Bull. Pharm. Sci., Assiut University, Vol. 45, Issue 1, 2022, pp. 63-74



مرجع محدث للاستخراج والفصل والتقدير الكمي لقلويدات الإرجوت ي. ثيجا – ب. سوميا – ب. راميا كوبر \*

معهد التكنولوجيا الصيدلانية ، سري بادمافاتي ماهيلا فيسفافيديالايام(جامعة النساء) ، تيروباتي ، ١٧٥٠٢ ، أندرا براديش ، الهند.

قلويدات الإرجوت هي ألفا بلوكر قوية تسبب تقلصًا مباشرًا للعضلات الملساء. إنها نتاج فطريات من جنس كلافيسبس. و الأبرز في هذه المجموعة هو كلافيسبس بوربيوريا (فطر إرجوت الذرة). تشمل مصادرها الذرة و القمح بالإضافة إلى الحبوب الأخرى. هذه تالقلويدات عبارة عن مواد مشتقة من النيتروجين – مواد طبيعية تندرج تحت قلويدات إندول. قلويدات الإرجوت هذه هي فئة متنوعة من المستقلبات الثانوية التي تم تصنيفها إلى ثلاث مجموعات مثل كلافينات ، أميدات حمض الليزرجك ، أرجوبيتينات ، لاكتام قلويدات الإرغوت بناءً على ترتيب الروابط الخاصة بهم. أنها تلوث مجموعة كبيرة ومتنوعة من الحبوب مثل الذرة والقمح والشعير.

في هذا التقرير ، تم التركيز على المعلومات الأساسية المتعلقة بالإرجوت إلى جانب الخواص الكيميائية و الاستخلاص و الفصل والتنقية لقلويدات الإرجوت ، مما يساعد على إنتاج مستخلص خام منقى يتم أخذه للتحليل الكروماتوجرافي. يوفر هذا التقرير أيضًا معلومات مفصلة عن الأساليب الكروماتوجرافية لتقديرات قلويدات الإرجوت مثل كرموماتوجرافيا الطبقة الرقيقة و استشراب السائل الرفيع الإنجاز و كرموماتوجرافيا الطبقة الرقيقة رفيع الانجاز و كرموماتوجرافيا السائل مع مطياف الكتلة و كرموماتوجرافيا السائل مع مطياف الكتلة و كرموماتوجرافيا السائل مع مطياف الكتلة مع تقنيات الكشف المختلفة مثل قياس الطيف للكتلي واكتشاف التألق الذي تم إجراؤه في العقد الماضي ويوفر أيضًا معلومات متعلق بالنشاط العلاجي للقلويدات الإرجوت مثل تطبيقها في علاج الصداع الشديد النابض مثل الصداع والصداع العنقودي وأيضًا التطبيقات العلاجية الأخرى.