
Feedback Optimal Control in Low-Thrust Interplanetary
Trajectory Design

A. Owis†, F. Topputo‡, and F. Bernelli-Zazzera‡

†Dipartimento di Matematica, Università di Milano Bicocca,
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Abstract

The feedback optimal control problem in low-thrust interplanetary trajectory design
is studied in this paper. The problem is tackled by solving the Hamilton-Jacobi-Bellman
equation via a generating function technique devised for linear systems. Instead of
solving the classical optimal control problem, this technique allows us to derive closed
loop control laws in the preliminary design phase.

The idea of the work consists in applying a globally diffeomorphic linearizing trans-
formation that rearranges the original nonlinear two-body dynamics into a linear sys-
tem of ordinary differential equations written in new variables. The generating function
technique is then applied to this new dynamical system, the feedback optimal control is
solved, and the variables are back transformed in the original ones. We circumvent in
this way the problem of expanding the vector field and truncating higher-order terms
because no accuracy is lost in the undertaken approach.

This technique can be applied to any planet-to-planet transfer; it has been success-
fully tested here for the classical Earth-Mars low-thrust transfer.

Keywords: Low-Thrust Transfers, Feedback Optimal Control, Generating Func-
tion, Hamilton-Jacobi-Bellman Equation.
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1 Introduction and Statement of the Problem

The usefulness of low-thrust propulsion applied to steer spacecraft has recently been demon-
strated by two missions, the NASA’s Deep Space-1 and the ESA’s SMART-1. The high
specific impulse associated to this new technology allows a sensible reduction in the propel-
lant mass fraction needed to transfer spacecraft to a desired target; the final outcome is then
a reduced mass at launch or an increased payload mass.

Although the low-thrust propulsion gives rise to advantages from the mass standpoint,
the trajectory design for spacecraft equipped with these systems becomes less trivial than
that associated to chemical propelled spacecraft. Indeed, the chemical propulsion is usually
assumed to produce instantaneous velocity changes, while the low-thrust acts for a long time
during the transfer, and needs more refined mathematical tools to be dealt with. One of
these tools is the optimal control theory that is used to find the solution minimizing a certain
performance index rather than just a feasible solution to the transfer problem [1].

Historically, the optimal low-thrust transfers have been tackled first with indirect and then
with direct methods. The former stem from the Pontryagin’s maximum principle that uses
the calculus of variations [2]; the latter aim at solving the problem via a standard nonlinear
programming procedure [3]. Even if it can be demonstrated that both approaches lead to the
same result [4], the direct and indirect methods have different advantages and drawbacks,
but in any case they require the solution of a two-point boundary value problem.

An important characteristic of the optimal trajectories designed with these classical meth-
ods is that the nominal solution is obtained in an open loop context. In other words, the
optimal path, even if minimizing the prescribed performance index, is not able to respond
to any perturbation that could alter the state of the spacecraft. Furthermore, if the initial
conditions are slightly varied (e.g. the launch date changes), the optimal solution needs to
be recomputed again. The output of the classical problem is in fact a control law expressed
as a function of the time, u = u(t), t0 ≤ t ≤ tf , being t0 and tf the initial and final time
respectively.

This work faces the optimal feedback control applied to the low-thrust interplanetary
trajectory design. With this approach the optimal solutions minimize a certain performance
index starting from a generic initial state x0. The outcome is a control law written in terms
of the time and the initial state, u = u(x0, t0, t), t0 ≤ t ≤ tf . This represents a closed loop
solution: given any initial state x0 at the time t0, it is possible to evaluate the optimal solution
starting from such state up to the final target. If for any reason the state is perturbed and
assumes a new value x′0 = x0 + δx, t′0 = t0 + δt, we are able to compute the new optimal
solution by simply evaluating u = u(x′0, t′0, t), avoiding, in this way, the solution of another
two-point boundary value problem. Thus, a trajectory designed in this way has the property
to respond to errors that occur during the transfer.

Another important aspect of this approach is the robustness of the solution. Once the
optimal feedback control problem is solved, the solution u = u(x0, t0, t) is available. Analyz-
ing this function, the control law that is less sensitive to changes in the initial condition can
be chosen as nominal solution. This solution is said to be robust with respect to the initial
conditions.

In this paper the control function is the low-thrust per unit mass of the spacecraft and,
in agreement with the principle of the solar electric propulsion, it is assumed to depend on
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the inverse of the square distance from the Sun. This type of thrust is in fact achieved by
Sun-facing solar arrays that supply power to the engine. Since the power generated decreases
with the inverse of the square distance from the Sun, we assume that the thrust magnitude
follows the same trend.

The motion of a spacecraft is considered under the influence of the gravitational attraction
of a central body, the Sun in our case, with the following assumptions: the spacecraft is
subject only to the gravitational attraction of the central body along the entire trajectory;
the trajectories of the planets are circular and coplanar and the motion of the spacecraft
takes place in the same plane, i.e it can be described with two degrees of freedom.

The equations of motion, written in an inertial cartesian Sun-centered frame, are

r̈ +
k

r3
r = u, (1)

where k is the gravitational constant of the Sun (k = 1.3271 1020 m3/s2) and u is the ac-
celeration given by the low thrust engine. The latter is assumed to be aligned with the
Sun-spacecraft radius vector and to depend on its modulus and on the time as

u(r, t) = u(r, t)
r

r
. (2)

We now assume that the control is an explicit function of the inverse square distance from
the Sun, namely

u(r, t) =
ε(t)

r2
, (3)

where ε(t) is a generic function of the time.
The dynamics is described in polar coordinates (r, θ) with dimensionless variables: the

distances are normalized by the radius of the Earth’s orbit, the velocities by the velocity of
the Earth on its circular orbit; the times by the angular velocity of the Earth around the
Sun. With these choices, the gravitational constant of the Sun turns out to be equal to
one. In these coordinates the reference distance, velocity, and acceleration are 1.496 1011 m,
2.9785 104 m/s, and 5.9306 10−3 m/s2, respectively. The time unit turns out to be equal to
58.132 days[7].

The equations of motion in polar coordinates are

r̈ − rθ̇2 +
1− ε(t)

r2
= 0, rθ̈ + 2ṙθ̇ = 0. (4)

The second of equations (4) can be rewritten as

d

dt

(
r2θ̇

)
= 0, (5)

meaning that the angular momentum, h = r2θ̇, is constant during the motion even when
the low-thrust acts, perturbation of the motion of the spacecraft. This conservation is due
to the assumption that the control lies along the radial distance, hence its contribution to
the angular momentum is zero. Moreover, the spacecraft is assumed to be initially on the
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Earth’s orbit; thus, h = r2θ̇ = 1 during the motion. This integral can be used to lower the
order of the eqs. (4) from the fourth to the third. The new dynamical system is

r̈ − 1

r3
+

1− ε(t)

r2
= 0, θ̇ =

1

r2
. (6)

where it has been possible to decouple the dynamics of r from that of θ.
The system (6) can be rearranged into three first-order equations

ṙ = vr, θ̇ =
1

r2
, v̇r =

1

r3
− 1

r2
+

ε(t)

r2
, (7)

and rewritten in a more compact form

ẋ = f(x) + u, (8)

where the vector field and the control have been purposely separated and put in a form
suitable for the next section. The state, the vector field, and the control are

x = {r, θ, vr}T , f =
{

vr,
1

r2
,

1

r3
− 1

r2

}T

, u =
{

0, 0,
ε(t)

r2

}T

. (9)

Assume now that the following performance index must be minimized

J =

∫ tf

t0

ε2

r2
dt =

∫ tf

t0

r2u2 dt, (10)

where t0 and tf are, respectively, the initial and the final time.
The optimal control problem is stated by means of the dynamical system (8), the objective

function (10), and the two-point boundary conditions




r(t0) = r0,

θ(t0) = θ0,

vr(t0) = 0,





r(tf ) = rf ,

θ(tf ) = θf ,

vr(tf ) = 0.

(11)

2 Solving the Optimal Feedback Control Problem for

Nonlinear Dynamical Systems

Assume that we have to minimize the following performance index

J =

∫ tf

t0

T̃ (x,u) dt, (12)

subject to the nonlinear dynamics

ẋ = f(x) + u, (13)

where f(x) is a nonlinear function, x is the (n× 1) state vector, and u is the (n× 1) control
vector; the initial and final states are assumed to be given, x(t0) = x0 and x(tf ) = xf . We
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search a globally diffeomorphic linearizing transformation, y = M(x) and u = α(x) + β(x)v
such that the new state space representation for the dynamical system becomes [11]

y′ = Ay + B v, (14)

where y′ = dy/dτ , and τ is the new independent variable. A and B are both (n×n) constant
matrices, (M, α) : Rn → Rn, and β is a (n× n) matrix depending on x.

The derivative y′ can be written as

y′ = ∂M

∂x
ẋ

dt

dτ
=

∂M

∂x
(f(x) + u)

dt

dτ
, (15)

while the old state and control vectors are given by the inverse transformations

x = M−1(y), u = α(M−1(y)) + β(M−1(y))v. (16)

The performance index can be written

J =

∫ τf

τ0

T (y,v)
dt

dτ
dτ. (17)

The new optimal control problem is stated by eqs. (14) and (17). Once this problem is
solved, y(τ) and v(τ) are available; x(t) and u(t) can be computed by means of the inverse

transformations (16) with [12] t =
∫ τf

τ0

dt

dτ
dτ .

2.1 Linearized Equations of Motion

Let’s consider the nonlinear dynamical system (9). The aim is now to define a globally
diffeomorphic transformation that linearizes this dynamical system. If the state θ is chosen
as the new independent variable, the required transformation is

y =

(
y1

y2

)
=

( 1

r
− 1

−vr

)
= M(x), (18)

and the time transformation is simply
dt

dθ
= r2, where the conservation of the angular mo-

mentum has been used. The Jacobian of the transformation (19) is

∂M

∂x
=

[ −1

r2
0 0

0 0 −1

]
, (19)

and so the derivative y′ can be written as

y′ = ∂M

∂x
ẋ

dt

dτ
=

∂M

∂x
(f(x) + u)

dt

dθ

=

[ −1

r2
0 0

0 0 −1

] (



vr

1

r2

1

r3
− 1

r2


 +




0
0

ε(t)

r2




)
r2

= Ay + B v,

(20)
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where

A =

[
0 1
−1 0

]
, B =

[
0 0
0 −1

]
, v =

(
0

ε(θ)

)
. (21)

Manipulating the equation (10), the new performance index cane be defines as

J =

∫ θf

θ0

vTv dθ =

∫ θf

θ0

ε2 dθ. (22)

A linear state space representation, supplemented by a quadratic objective function, has been
derived. The optimal feedback control problem can be now solved by means of the standard
methods available for these systems.

2.2 Linear Quadratic Controller

Consider the problem of minimizing the following performance index

J =
1

2

∫ tf

t0

(yT Qy + vT Rv) dt, (23)

subject to the linear dynamics

ẏ = Ay + B v, (24)

and with the given initial and final conditions

y(t0) = y0, y(tf ) = yf . (25)

According to the classical theory, the Hamiltonian of the optimal control problem (23)-
(25) is

H =
1

2
(yT Qy + vT Rv) + λT (Ay + B v), (26)

where the set of Lagrangian multipliers λ has been introduced.
From the optimality condition

∂H

∂v
= 0, (27)

it is possible to get an explicit expression for the control in terms of the Lagrangian multipliers

v = −R−1BT λ. (28)

Substituting the expression of v given by equation (28), the Hamiltonian (26) turns out
to be

H =
1

2

(
y
λ

)T [
Q AT

A −BR−1BT

](
y
λ

)
, (29)

while the dynamics of the system and that of the Lagrange multipliers reduces to
(

ẏ

λ̇

)
=

[
A −BR−1BT

−Q −AT

](
y
λ

)
. (30)
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2.3 The Generating Function Technique

Suppose now that we have a generating function F2(y, λ0, t, t0) for the transformation be-
tween a fixed state (y0, λ0, t0) and a moving state (y, λ, t). This transformation is canonical
because it generates the identity transformation at t = t0 and preserves the area in the phase
space. Since the Hamiltonian is quadratic, F2 can be put in a quadratic form as follows [8]

F2(y, λ0, t, t0) =
1

2

(
y
λ0

)T [
Fyy(t, t0) Fyλ0(t, t0)
Fλ0y(t, t0) Fλ0λ0(t, t0)

](
y
λ0

)
, (31)

which can be used to find the unknown boundary conditions using the given ones. From the
properties of F2 we have

λ =
∂F2

∂y
= (Fyy Fyλ0)

(
y
λ0

)
. (32)

The Hamiltonian (29) can be expressed as a function of (y,λ0) by using equation (32)

H =
1

2

(
y
λ0

)T [
I Fyy

0 Fλ0y

] [
Q AT

A −BR−1BT

] [
I 0

Fyy Fyλ0

](
y
λ0

)
. (33)

Since the Hamiltonian at the fixed state can be taken zero without any loss of generality, then
the Hamiltonian of the moving state and the generating function satify the Hamilton-Jacobi
PDE

0 =

(
y
λ0

)T [
Ḟyy Ḟyλ0

Ḟλ0y Ḟλ0λ0

]
+

[
I Fyy

0 Fλ0y

] [
Q AT

A −BR−1BT

] [
I 0

Fyy Fyλ0

](
y
λ0

)
,

(34)

whose sub-matrix components provide the following set of matrix ODEs for (Riccati equa-
tions) Fyy(t, t0), Fyλ0(t, t0) = F T

λ0y(t, t0), and Fλ0λ0(t, t0)

Ḟyy + Q + FyyA + AT Fyy − FyyBR−1BT Fyy = 0,

Ḟyλ0 + AT Fyλ0 − FyyBR−1BT Fyλ0 = 0,

Ḟλ0λ0 − Fλ0yBR−1BT Fyλ0 = 0.

(35)

The initial conditions which verify the identity transformation at t = t0 are

Fyy(t0, t0) = 0n×n,

Fyλ0(t0, t0) = In×n,

Fλ0λ0(t0, t0) = 0n×n.

(36)

The problem is now the solution of the set of ODE (35) supplemented by the initial
conditions (36). Indeed, since

y0 =
∂F2

∂λ0

= Fλ0yyf + Fλ0λ0λ0, (37)

the initial Lagrange multiplier can be evaluated through

λ0 = F−1
λ0λ0

(tf , t0)(y0 − Fλ0y(tf , t0)yf ). (38)
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3 Optimal Feedback Low-Thrust Transfers

The optimal low-thurst planet-to-planet transfer has been stated through equations (8)-(11).
The linearizing transformation has been used to derive the linear state space representation
(20) with the quadratic objective function (22). This is the case of a linear quadratic con-
troller, and the generating function technique can be applied to solve this problem. Once the
linear problem is solved, the variables can be transformed back to the original ones and the
optimal feedback low-thrust interplanetary transfer can be evaluated.

For the problem at hand, it turns out that Q = 02×2, and R = 2; moreover, the initial
and final states are assumed to be given by conditions (11). In the linearized variables, the
initial conditions become

y0 =

(
1/r0 − 1

vr0

)
, yf =

(
1/rf − 1

vrf

)
. (39)

and, for the Earth–Mars transfer case, with the normalized variables introduced in section
1, these conditions are y0 = (0, 0)T , and yf = (−0.3333, 0)T , where r0 = 1, rf = 1.5.
In agreement with the essence of the feedback control, the initial value of the independent
variable, θ0, is left free, while its final value has been assumed θf = π.

Substituting A, B, Q, and R in equation (30), and replacing the dot with the prime gives

(
y′
λ′

)
=




0 1 0 0
−1 0 0 −1/2
0 0 0 1
0 0 −1 0




(
y
λ

)
. (40)

Furthermore, substituting A, B, Q, and R in equation (35) and applying the initial conditions
(36), the solution can be found analytically

Fyy =

[
0 0
0 0

]
, (41)

Fyλ = F T
λy =

[
cos θ sin θ
− sin θ cos θ

]
, (42)

Fλλ =

[ −1/2 sin(2θ) + θ/4 1/4 sin2 θ
1/4 sin2 θ 1/2 sin(2θ) + θ/4

]
, (43)

From equation (38) we get

λ10 = α1(y10, y20, θ0)β(θ0)
−1 cos(θ − θ0) + α2(y10, y20, θ0)β(θ0)

−1 sin(θ − θ0),

λ20 = −α1(y10, y20, θ0)β(θ0)
−1 sin(θ − θ0) + α2(y10, y20, θ0)β(θ0)

−1 cos(θ − θ0),
(44)

with

α1(y10, y20, θ0) = −4y10 cos θ0 sin θ0 + 1.3332θ0 cos θ0 − 1.3332π cos θ0+

4πy10 + 1.3332 sin θ0 + 4y20 − 4y20 cos(θ0)
2 − 4y10θ0,

α2(y10, y20, θ0) = 4y20 sin θ0 cos θ0 − 4y20θ0 + 4πy20+

1.3332π sin θ0 + 4y10 − 4y10 cos(θ0)
2 − 1.3332θ0 sin θ0,

β(θ0) = 8.8696 + θ2
0 + cos(θ0)

2 − 2πθ0,

(45)
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Finally, integrating equations (40), the feedback solution for the linearized problem can
be achieved

y1 = α1(y10, y20, θ0)β(θ0)
−1(y10 cos(θ − θ0) + y20 sin(θ − θ0)+

(−θ/4 cos(θ − θ0) + θ0/4 cos(θ − θ0) + 1/4 sin(θ − θ0))+

α2(y10, y20, θ0)β(θ0)
−1(sin(θ − θ0) + θ0/4 sin(θ − θ0)),

y2 = −α1(y10, y20, θ0)β(θ0)
−1(y10 sin(θ − θ0) + y20 cos(θ − θ0)+

(θ/4 sin(θ − θ0)− θ0/4 sin(θ − θ0)) + α2(y10, y20, θ0)β(θ0)
−1

(−θ/4 cos(θ − θ0) + θ0/4 sin(θ − θ0)− 1/4 sin(θ − θ0)).

(46)

A nominal solution is chosen having θ0 = 0, r0 = 1, vr0 = 0, and θf = π, rf = 1.5,
vrf = 0. This solution corresponds to the classic Earth–Mars transfer. In figures 1, 2, and
3, the initial conditions of the nominal solution have been perturbed in terms of r0, vr0, and
θ0, respectively. The new optimal feedback solution corresponding to these perturbed initial
conditions is simply obtained by evaluating the solution (46).

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x (AU)

y 
(A

U
)

r
0
 − δ r

r
0
 + δ r

nominal solution
r
0
 = 1

Figure 1: Nominal solution (θ0 = 0, r0 = 1, vr0 = 0) and two perturbed solutions with initial conditions
r′0 = r0 ± δr0, δr0 = 0.1 adimensional units.
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U
)
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r0

 − δ v
r0

v
r0

 + δ v
r0

nominal solution
v

r0
 = 1

Figure 2: Nominal solution (θ0 = 0, r0 = 1, vr0 = 0) and two perturbed solutions with initial conditions
v′r0 = vr0 ± δvr0, δvr0 = 0.1 adimensional units.
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0
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nominal solution
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0
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θ
0
 = π/2

θ
0
 = π/3

θ
0
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Figure 3: Nominal solution (θ0 = 0, r0 = 1, vr0 = 0) and three perturbed solutions with θ′0 = θ0 + i δθ,
δθ = π/6, i = 1, 2, 3.
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4 Conclusions

The optimal feedback control problem has been solved for low-thrust orbital transfers between
two circular coplanar orbits. The nonlinear problem has been transformed into a classic
linear quadratic regulator problem by means of a diffeomorphic transformation. In these
new variables, the dynamics is represented by a linear system while the objective function is
generally a quadratic form of the states and the controls. The accuracy is totally preserved in
this process since the transformation does not represent a Taylor linearization of the original
nonlinear vector field. Once the problem is stated in these new variables, the optimal feedback
control problem is solved by virtue of the generating function technique. The solution to this
problem is back transformed into the original variables and so the optimal solution to the
original problem is available in terms of generic initial and final conditions.

The effectiveness of the solution found has been tested numerically by taking perturbed
initial conditions around the nominal solution. Ongoing work is focused on the generalization
of the control direction along both the radial and tangential directions.
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