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ABSTRACT 
In real time systems, particularly control systems, delays or dropped packets may 
cause performance degradation and system destabilization. In order to consider the 
uncertainty of communication delays and packet losses, intelligent computational 
approaches such as fuzzy logic, neural networks, and genetic algorithm can be used. 
In this paper, The effect of time delay is compensated via building undelayed plant 
model based on delayed model data using the Adaptive Linear Neuron networks 
(ADALINE). In ADALINE the linear networks are adjusted at each time step based on 
new input and target vectors which can find weights and biases that minimize the 
network's sum-squared error for recent input and target vectors. The proposed works 
are applied on distributed control of a DC servo system. The network is built using 
the true time MATLAB toolbox. Several simulation examples are applied using CAN 
network to clarify the efficiency of the proposed methods. 
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INTRODUCTION 
 
Due to extensive functionality and low cost of microcontroller, many industrial control 
systems are changing into more intelligent digital systems. As a system becomes 
more intelligent and flexible, the system requires more sensors, actuators, and 
controllers, often referred to as field devices. As the number of devices in a system 
grows and the functions of a system need to be more intelligent, these devices need 
to exchange a large amount of data among them. Unlike regular control systems; in 
networked control systems the synchronization between different sensors, actuators 
and control units is not guaranteed. Furthermore, there is no guarantee for zero delay 
or even constant delay in sending information from sensors to the control units and 
control signals from the control units to the actuators. When there is overcrowding in 
the communication network, some packets are dropped to either reduce the queue 
size in the path or to inform the senders to reduce their transmission rates. In real 
time systems, particularly control systems, delays or dropped packets may cause 
performance degradation and system destabilization. In order to consider the 
uncertainty of communication delays and packet losses, intelligent computational 
approaches such as fuzzy logic, neural networks, and genetic algorithm can be used.  
 
In [1], a modified Fuzzy PID Controller is introduced to implement real-time control 
adaptively to deal with random delays in Networked Control systems. By adjusting 
the control signal dynamically, the system performance is improved.  An intelligent 
controller using fuzzy logic on top of a PI gain to adaptively compensate for the IP 
network-induced time delay in time-delay sensitive Networked Control System 
applications are proposed in [2-6]. Another approach of intelligent NCS is presented 
in [7], in which the constant time delay is estimated through the use of neural 
networks (NN), where the NNs are trained by the filtered noisy and delayed signal 
and the noise-free signal.    
In this work, The effect of time delay is compensated via building undelayed plant 
model based on delayed model data using ADALINE  [8]. The proposed works are 
applied on distributed control of a DC servo system. More details are given in the 
following sections. 
 
DELAYS IN NETWORK-BASED CONTROL SYSTEMS 
 
The network-induced delay in NCSs occurs when sensors, actuators, and controllers 
exchange data across the network. This delay can degrade the performance of 
control systems designed without considering it and can even destabilize the system. 
Major types of these communication delays, along with a block diagram of a discrete-
time model are depicted in Fig.1. and the timing diagram of delay generations with     
t < h; where, h is the sampling time; is shown in Fig.2. 
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Fig.1. Block diagram of a discrete-time model of a NCS 

 

 
Fig.2. Timing diagram of delay generations. 

 
MODELING OF NCS CONSIDERING NETWORK-INDUCED DELAY 
 
The NCS model considering network-induced delay is shown in Fig.3. The model 
consists of a continuous plant: 
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and a discrete controller: 
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Here, x∈Rn, u∈Rm, and y∈Rp  and A, B ,C ,K are of compatible dimensions.               
There are two sources of delays from the network: sensor-to-controller τsc and 
controller-to-actuator τca. Any controller computational delay can be absorbed into 
either τsc   or τca   without loss of generality [9]. For fixed control law (time-invariant 
controllers), the sensor-to-controller delay and controller-to-actuator delay can be 
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lumped together as τ= τca+ τsc   for analysis purposes. We consider the setup with: 
Clock-driven sensors that sample the plant outputs periodically at sampling instants. 
Event-driven controllers, which can be implemented by an external event, interrupt 
mechanism and which calculates the control signal as soon as the sensor data 
arrives, and Event-driven actuators, which mean the plant inputs, are changed as 
soon as the data become available.  

 
Consider the case where the delay of each sample, x(kh) is less than one sampling 
period, h. This constraint means that, at most, two control samples u((k-1)h) and 
u(kh), need be applied during the sampling period. The system equations can be 
written as 
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where u(t+) is piecewise continuous and only changes value at kh + τk. Sampling the 
system with period h, we obtain the following discrete form [10]. 
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as the augmented state vector, the augmented closed-loop system 
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If the delay is constant (i.e., ττ =k , for k=0,1,2,….) the system is still time invariant, 
which simplifies the system analysis. Thus we can envision static scheduling network 
protocols, such as token ring or token bus, which can provide constant delay. Even in 
this simplified setup, the next question is: "how much delay can the system tolerate?" 
Another observation is that the sensor-controller delay can be compensated by an 
estimator if the messages sent out by sensors are time stamped [11]. Traditional one-
step prediction estimation can compensate delays less than one sampling period, 
since the estimate of x(kh) only depends on the value of y((k-1)h).  
 
ADAPTIVE NEURAL CONTROL OF TIME DELAY NETWORKED SYSTEMS 
 
A linear neuron with R inputs is shown below [ 8,12 ] in Fig.3. 

 

 
Fig.3. Linear neuron model 

 
This network has the same basic structure as the perceptron. The only difference is 
that the linear neuron uses a linear transfer function, which we name “purelin”, see 
Fig.4. and described by 
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Fig.4.  Linear transfer function 

 
 

This neuron can be trained to learn an affine function of its inputs, or to find a linear 
approximation to a nonlinear function. A linear network cannot, of course, be made to 
perform a nonlinear computation. 
 
The Adaptive Linear Network (ADALINE) architecture is  shown in Fig.5. has one 
layer of S neurons connected to R inputs through a matrix of weights W. 
 
This network is sometimes called a MADALINE for Many ADALINES. Note that the 
figure on the right defines an S-length output vector a. The Widrow-Hoff rule can only 
train single-layer linear networks. This is not much of a disadvantage; however, as 
single-layer linear networks are just as capable as multilayer linear networks. For 
every multilayer linear network, there is an equivalent single-layer linear network. 
 
Like the perceptron, the ADALINE has a decision boundary that is determined by the 
input vectors for which the net input n is zero, see Fig.6. For n=0 the equation Wp+ b 
=0 specifies such a decision boundary as shown below. Input vectors in the upper 
right gray area lead to an output greater than 0. Input vectors in the lower left white 
area lead to an output less than 0. Thus, ADALINE can be used to classify objects 
into two categories.  

 
 

Fig.5. the ADALINE network 
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Fig.6.  ADALINE decision boundary 

 
The learning rule, is the least mean square error (LMS) algorithm for the desired 
network behavior which is  described by where is an 
input to the network, and  is the corresponding target output. As each input is 
applied to the network, the network output is compared to the target. The error is 
calculated as the difference between the target output and the network output. We 
want to minimize the average of the sum of these errors. 
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The LMS algorithm adjusts the weights and biases of the ADALINE so as to minimize 
this mean square error.  
 
NCS TIME DELAY COMPENSATION BASED ON ADALINE 
 
We assume that the update time h is larger than the delay time kτ , and both are 
constants. At times )( τ−hk the sensor transmits the state data to the 
controller/actuator. This data will arrive kτ . So, at times kh the controller/actuator 
receives the state vector value x(kh −k kτ ). The main idea is to use the plant model in 
the controller/actuator to calculate the present value of the output state. The 
approximate output state obtained can be used to update the controller’s input. The 
ADALINE (Adaptive Linear Neuron networks) model  uses the plant model and the 
past values of the control input u(t) to calculate an estimate of actual output state 
y(kh) from the received data y(kh −τk). This estimate is then used to update the 
model that, with the controller, will generate the control signal for the plant. 
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SIMULATION RESULTS 
 

Consider the SIMULINK model  NCS of distributed DC servo system shown in Fig.7. The 
system contains four computer nodes connected by one network block. The time-driven 
sensor node contains a periodic task, which at each invocation samples the process and 
transmits the sample package to the controller node. The controller node contains an event-
driven task that is triggered each time a sample arrives over the network from the sensor node. 
Upon receiving a sample, the controller computes a control signal, which is then sent to the 
event-driven actuator node, where it is actuated. The model also contains an interference node 
with a periodic task generating random interfering traffic over the network. We assume a 
CAN network where transmission of simultaneous messages is decided based on package 
priorities. 
 

 

Fig.7.  SIMULINK model NCS of distributed DC servo system 

 
The step respons of the system is obtained using digital PID controller and neural 
network with CAN networks for different network-induced time delays (0.1,0.15, 0.2) 
are shown in Fig.8.  
 
From simulation results, it was observed that the applied neural network (ADALINE) 
performed relatively better than the conventional digital PID controller; neural network 
(ADALINE) for NCS is a very appropriate choice due to its robustness in terms of 
system parameters. Especially, the measurement of network delay may become very 
difficult, if not impossible, because the delay varies with many factors including 
implementation method of the network communication process, communication traffic 
of the network, and the number of stations. 
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(a) 

 
(b) 

(c) 
 

(d) 
 

Fig.8.  Step response of NCS DC servo system for different network-induced time 
delays (0.1, 0.15,0.2, 0.25) without and with applying NN. 

 
9 CONCLUSION 
 
The change of communication architecture from point-to-point connection to the 
common-bus approach, however, introduces different forms of time-delay uncertainty 
and in closed-loop system dynamics. These time delays come from time sharing of 
the communication medium as well as the computation time required for physical 
signal coding, communication processing. The time delays in a control application 
can degrade a system's performance and even cause system instability. In order to 
guarantee the stability and performance of an NCS, the time delays due to networked 
communications should be characterized, the impact of network-induced delays on 
control performance should be analyzed, and a methodology to compensate or 
minimize these effects should be investigated. In this work the effect of time delay is 
compensated via building undelayed plant model based on delayed model data using 
ADALINE. In ADALINE the Linear networks are adjusted at each time step based on 
new input and target vectors via which the weights and biases can be obtained that 
minimize the network's sum-squared error for recent input and target vectors. The 
proposed works are applied on distributed control of a DC servo system using CAN 
network. The network is built using the TrueTime MATLAB toolbox.  The simulation 
result reflects the efficiency of the proposed method of network induced delays 
compensation. 
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