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ABSTRACT  
Testing for delay and CMOS stuck-open faults requires two-pattern tests. Built-in 
self-test (BIST) schemes are required to comprehensive testing of such faults. 
BIST test pattern generators for two-pattern testing should be designed to ensure 
high transition coverage. The test pattern generator (TPG) circuits treated here are 
not limited to linear feedback shift registers (LFSRs) but include autonomous linear 
feedback shift register / shift register (LFSR/SR) circuits. It is required to increase 
the number of each subset of the state variables for complete transition coverage 
with the optimal test lengths. 
In this paper, the two-pattern test capabilities of LFSR/SRs are explored using 
transition coverage as the metric. The necessary and sufficient conditions to 
ensure complete transition coverage for LFSR/SRs are derived. The theory 
developed here identifies all LFSR/SR TPGs that determine the complete 
transition coverage under any given TPG size constraint. It is shown that LFSRs 
with primitive feedback polynomials with large number of terms are better for two-
pattern testing. Based on the necessary and sufficient conditions, two-pattern 
testing have been developed. Experiments indicate that TPGs designed using the 
procedures outlined in this paper obtain high robust path delay fault coverage with 
the optimal shortest test lengths. 

Keywords: Built-in self-test, test pattern generator, pseudo-exhaustive testing, 
two-pattern testing, linear feedback shift register. 

1. INTRODUCTION 
The pseudo-exhaustive test retains almost all benefits of an exhaustive test [1-2]. 
The choice of pseudo-exhaustive test technique depends on whether or not any 
combinational circuit outputs depend on all of the circuit inputs. If any circuit output 
depends on all of its inputs, a partitioning (or segmentation) test technique must be 
used to test these circuits [3]. For circuits with restricted output dependency, the 
pseudo-exhaustive test techniques provide an alternative test method. The combi-
national circuit with n inputs and m outputs is modelled as a direct acyclic graph. 

                                                 
1 Egyptian Armed Forces 



 

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 CRS-06 - 2 - 
 
The nodes represent gates and the interconnection signals are represented by 
edges. Each output cone of the circuit forms a sub graph need not be disjoint. The 
dependency set, Di, of the output cone i is considered the set of the primary inputs 
and the pseudo-primary inputs that feed it directly or affect it through another 
node. The dependency, |Di|, of the output cone i is the cardinality of its 
dependency set. Let k be the maximum value among the dependencies of the m 
output cones. The circuit can be characterized as an (n, m, k) circuit. The circuit is 
segmented into m output cones, and each cone is tested exhaustively. The test 
ensures detection of all irredundant combinational faults with a single pattern 
within individual cones of the circuit without fault simulation. The time required for 
pseudo-exhaustive testing depends on the sizes of the output cones. Therefore, 
pseudo-exhaustive testing reduces the testing time to a feasible workable value 
while retaining many of the advantages of exhaustive testing. Many test pattern 
generators have been proposed for pseudo-exhaustive testing. Examples are 
modified convolved LFSR/SRs [4], and permuted convolved LFSR/SRs [5]. 
A transistor stuck-open fault in a CMOS circuit can convert a combinational circuit 
under test (CUT) into a sequential one [2, 6]. Detection of these failures requires 
two-pattern tests [7-8]. Proper operation of a digital circuit requires that less 
propagation delays along paths in the circuit than a specified limit. Some defects 
often cause propagation delays to fall outside the desired limits. In this case, a 
delay fault is said to have occurred. A delay fault does not affect a circuit’s 
operation at slow speed, but may cause circuit malfunction at clock speed [9-10]. 
The application of consecutive input patterns is also effective for delay testing of 
CUTs. The analysis and synthesis of TPG circuits oriented for two-pattern testing 
are current research subjects.  
Testing for delay faults requires two-pattern tests (Vl, V2). Vl, the initialization 
pattern, is first applied to initialize the circuit to a certain state at time to. At time t1 
and after the signals in the CUT have stabilized, the second input pattern V2 is 
applied to sensitize the fault and propagate the effect of the fault to one of the 
primary outputs along the tested path. The rising or falling transition is propagated 
from the input of the path under test, along the tested path, to the output of the 
path. The output state is sampled at time t2, where t2 - t1, is the operating clock of 
the CUT to determine the existence of these faults [9-10]. In other words, to detect 
a path delay fault, a two-pattern test is applied that creates and propagates 
appropriate signal transitions along the path to be tested.  
Due to the nature of two-pattern tests, long test sequences are usually required, 
leading to high cost of testing. Built-in self-test (BIST) provides a simple, low-cost 
test solution by building test circuitry inside the very large scale integration (VLSI) 
chip. BIST has come to relieve the difficulties of the testing problems of VLSI 
circuits [2, 6]. Most BIST schemes employ linear feedback shift registers (LFSRs) 
as the test pattern generators (TPGs) [11-14]. One important issue in BIST for 
delay faults is to ensure that sufficient two-pattern tests are applied to the 
combinational CUT. The capability of a TPG to generate two-pattern tests is 
measured by the metric transition coverage for each segment. Transition coverage 
is the number of distinct two-pattern tests applied to a CUT and is less than or 
equal to 22n - 1. 
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A method to explore the two-pattern testing capabilities of LFSR circuits was 
presented in [13]. The method is very simple since it only needs to calculate ranks 
of binary matrices according to the main theorem in [13]. Based on the transition 
matrix of a TPG circuit, a method was shown to derive to what extent distinct 
transitions occur on a subset of state variables of the TPG circuits. It quantifies the 
two-pattern test capability of a TPG. For fixed value of y, the number of y-
dimensional v-spaces is a polynomial order of z. Therefore, for large z, the 
computation time, required to have the transition coverage of all the v-spaces, 
increases exponentially. The main theorems of [14] are the derivation of the 
necessary and sufficient conditions for a LFSR tap selection to ensure 
complete/maximal transition coverage. The number of possible choices of each 
type is also derived. The possibility of achieving complete/maximal transition 
coverage depends on the relative size of w (the number of TPG stages) and n (the 
number of CUT inputs). If w ≥ 2n, it is possible to obtain complete transition 
coverage. If w < 2n, only maximal transition coverage is achievable. Experimental 
results for the TPGs, designed by [14], do not generate test patterns for complete 
transition coverage with the optimal test lengths.  
This paper focuses on designing the new two-pattern test generator for pseudo-
exhaustive testing. The necessary and sufficient conditions to increase the 
complete transition coverage for the new TPG are presented in the optimal test 
lengths. It is shown that the proposed TPG can achieve high robust path delay 
fault coverage in the optimal shortest test lengths. In addition, the results 
described in this paper provide basic theory in BIST TPG design for two-pattern 
pseudo-exhaustive testing. Most practical circuits have multiple outputs and, in 
many cases, none of the outputs depends on all the circuit inputs. In such cases, 
the concept of two-pattern pseudo-exhaustive testing can help reduce the test 
lengths and TPG hardware complexity, without reducing fault coverage.  
This paper is organized into five main sections. Section 2 presents necessary and 
sufficient conditions that an LFSR satisfies complete transition coverage. Section 3 
presents the derivation of the contiguous stages of LFSR/SRs for two-pattern 
testing. The derivation of the non-contiguous stages of LFSR/SRs for two-pattern 
testing is presented in section 4. Finally, concluding remarks are presented in 
section 5. 

2. CONDITIONS FOR TWO-PATTERN COVERAGE 
The state transition of a w-stage autonomous LFSR type 1 and type 2 shown in 
Fig. 1 and Fig. 2 respectively can be defined by a transition matrix. (Fig. 1 and Fig. 
2 have ci ’s as binary constants, ci = 1 implies that a connection exists, while ci = 0 
implies that there is no connection.)  
Let the next state Y and current state X of the autonomous LFSR are related by 

                                        Y = T X                                                        (1) 
where, matrix T is a transition matrix. There are two forms of matrix T according to 
the type of ALFSR; T1 for the first type and T2 for the second type.  
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where, (ci ) is either 1 or 0, depending on the existence or absence of a feedback 
path. The characteristic polynomial p(x) of the transition matrix is rewritten as 

p(x) = 1 + c1 x1 + c2 x2 +  … +  cw-2 xw-2 + cw-1 xw-1 + xw                   (2) 
 

           Fig. 1. Type 1 ALFSR.    Fig. 2. Type 2 ALFSR. 
An ALFSR is a finite state machine. Each state is uniquely determined from the 
previous state by feedback connection. Thus if a state ever repeats, all the 
following states will repeat, therefore the sequence of the states is periodic. 
Consider a w-stage ALFSR initialized with any nonzero state, then the ALFSR 
sequence is periodic with a period at most 2w - 1 possible states. If the sequence, 
generated by an w-stage ALFSR, has period 2w - 1, it is called a maximum length 
sequence. The characteristic polynomial of a maximum length sequence is called 
a primitive polynomial. 
For thorough two-pattern testing, the number of TPG stages w required is normally 
larger than the number of CUT inputs n, i.e., w ≥ n. Hence, only a subset of the 
TPG outputs are connected to the CUT inputs.  
Tapped variables (or simply taps) v = {v1, v2, …, vn} are defined as the stages of 
the TPG whose outputs are connected to the CUT inputs. The remaining TPG 
stages u = {u1, u2, …, uw-n} are called untapped variables. Let Xv and Xu be the 
states of the TPG corresponding to the tapped and untapped variables. Then, the 
next state of the tapped variables, Yn, can be represented by 
                                             Yn = Tn X                                                         (3) 

                                  Yn = Xv Tv + Xu Tu                                            (4) 
where Tn is the submatrix of n rows {v1, v2, …, vn} of T of the size n × w and Tv 
and Tu are the submatrices of Tn of the sizes n × n and n × (w - n). The submatrix 
Tu is constructed from the n rows {v1, v2, …, vn} of T, with the corresponding n 
columns removed. If r is the rank of Tu, then there are 2r distinct transitions from 
each Xv state. The rank of Tu thus determines the transition coverage at the n 
tapped variables, which are connected to the n CUT inputs [13].  
To obtain maximal transition coverage, the submatrix Tu must have full rank r = 
min {n, w - n}. There are 2n possible input combinations for an n-input CUT, each 
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with 2r possible next states. Maximal transition coverage is thus given by 2n+r. A 
TPG with w ≥ 2n is needed to provide complete transition coverage, but the n-taps 
must be carefully selected to avoid dependency between consecutive stages of a 
TPG. Maximal transition coverage for a w-stage TPG is simply 2w - 1. However, 
the taps must still be carefully selected to obtain maximal transition coverage.  
One main subject of [14] is the identification of necessary and sufficient conditions 
that an n-tap selection must satisfy to obtain complete/maximal transition coverage 
for an w-stage LFSR type 2, assuming that the CUT has a single output. 
In pseudo-exhaustive testing, each cone is tested exhaustively. Assume that the 
largest cone depends on k inputs. Such a circuit can be tested two-pattern 
pseudo-exhaustively with N tests, where 22k ≤ N ≤ 22n. If k is small compared to the 
number of inputs n, then the circuit can be tested using a short sequence without 
decreasing fault coverage. The theoretical results developed in [13-14] can be 
applied to each cone of the CUT.  

2.1 Complete Conditions for Two-Pattern Coverage of a Type 2 LFSR 
In this section, necessary and sufficient conditions for a tap selection to ensure 
complete transition coverage for a type 2 LFSR were derived in [14]. For all the 
following Lemmas, it is assumed that n taps are selected and w ≥ 2n. Complete 
transition coverage for an n-input CUT is achievable only if a w-stage TPG with w 
≥ 2n is used. In this case, the n x (w - n) submatrix Tu has full rank r = n if all its 
rows are linearly independent. 
LEMMA 1 [14]: For a w-stage type 2 LFSR, if no two consecutive stages are 
tapped, then the matrix Tu has full row rank. 
LEMMA 2 [14]: For a w-stage type 2 LFSR, if stage 1 and w are both untapped, 
and there exists exactly one incidence of consecutive tapped stages ε - 1 and ε 
with cε-1 = 1, then the matrix Tu has full row rank. 

THEOREM 1 [14]: For an n-input CUT and a w-stage type 2 LFSR with w ≥ 2n, a 
tap selection provides complete transition coverage if and only if 

1) no two consecutive stages are tapped, or 
2) stage 1 and m are untapped and there exists exactly one incidence of 

consecutive tapped stages ε - 1 and ε with cε-1 = 1. 

If permutations of CUT inputs are not considered, there are totally ( )w
n  possible tap 

selections. They can be divided into three categories. The tap selections satisfying 
condition 1 of theorem 1 obtain complete transition coverage independent of the 
feedback polynomial. Such tap selections are feedback independent. Other tap 
selections satisfying condition 2 of theorem 1 are feedback dependant because 
specific coefficients of the feedback polynomial are required to be nonzero in order 
to achieve complete transition coverage. The remaining tap selections always 
have less than optimal transition coverage. Determining the number of choices in 
each category is of practical interest.  

LEMMA 3 [14]: Let Cfi (Cfd) be the number of feedback independent (dependent) 
tap selections for an n-input CUT and a w-stage LFSR with w ≥ 2n.  
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Then 

Cfi = ( ) ( )1
2

1 −−
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+− − nw
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nnw                                       (6) 

COROLLARY 1 [14]: The number of tap selections with complete transition 
coverage, C, is tightly bounded by Cfi  ≤ C ≤ Cfi + Cfd. 
Special Case w = 2n: For this case, a 2n-stage type 2 LFSR with all odd/even 
stages connected the CUT inputs can generate a two-pattern exhaustive test set 
for any n-input circuit. However, these are only the two feedback independent tap 
selections to achieve complete transition coverage in Lemma 3. The following 
result gives all possible tap selections for the special case w = 2n. 
COROLLARY 2 [14]: For an n-input CUT and a 2n-stage type 2 LFSR with the 
feedback polynomial p(x) = c0 + c1 x + c2 x2 + ... + C2n x2n, the tap selections to 
achieve complete transition coverage are 

1) Select all odd (or all even) stage outputs, or 
2) Select stages 2, ..., 2i, 2i + 1, ..., 2n- 1 for any i such that c2i = 1. 

COROLLARY 3 [14]: The number of possible ways to connect the n inputs of a 
CUT to a 2n-stage type 2 LFSR for two-pattern exhaustive testing is given by 

. ∑
=

n

i
ic

0
2

The summation in Corollary 2 is maximum if c2i = 1, for all i. Therefore, a type 2 
LFSR with many nonzero coefficients of the form c2i offers more choices of tap 
selections for two-pattern exhaustive testing. This summation can also be obtained 
by replacing w with 2n in Lemma 3. The maximum numbers of the feedback 
independent and feedback dependent tap selections that achieve complete 
transition coverage are 2 and n - 1, respectively. 

2.2 Complete Conditions for Two-Pattern Coverage of a Type 1 LFSR  
In this section, necessary and sufficient conditions for a tap selection to ensure 
complete transition coverage for a type 1 LFSR are derived in this paper. It is 
assumed that n taps are selected and w ≥ 2n.  
LEMMA 4: For a w-stage type 1 LFSR, if no two consecutive stages are tapped, 
then the matrix Tu has full row rank. 
PROOF: The condition implies that any tapped stage i must be preceded by an 
untapped stage i - 1. The unique nonzero entry in column i - 1 of the transition 
matrix is included in Tu. Hence, all rows of Tu are linearly independent.                                  

DEFINITION 1: If there exists an incidence tapped stages ε - 3 and ε with cε-2 = 1, 
then it is called 3-distance tap with connection, td3c, and if there exists an 
incidence tapped stages ε - 3 and ε with cε-2 = 0, then it is called 3-distance tap 
with no connection, td3nc.  

LEMMA 5: For a w-stage type 1 LFSR and w = 2n, if stage 1 and w are tapped, 
and there exists only one incidence 3-distance tap with connection, td3c, then the 
matrix Tu has full row rank. Also, for w > 2n, if stage 1 and w are tapped, and there 
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exists more incidences 3-distance taps with at least exactly one 3-distance tap 
with connection, td3c, then the matrix Tu has full row rank. 
PROOF: Since stage 1 and w are tapped, the row 1 and row w are included in Tn, 
and the column 1 and w are removed from Tu. Removing column w from Tn, 
removes the nonzero entry in the first row and the existence of the nonzero entry 
due to the feedback connection of the type 1 LFSR is required. Assume there are 
one incidence tapped stages ε - 3 and ε. Each of the columns in Tu has a nonzero 
entry in different rows as shown in Lemma 4 with the nonzero entries in the first 
row due to the existence of the feedback connections of the type 1 LFSR. The 
matrix Tu must have full row rank if cε-2 = 1. For w > 2n, more incidences 3-
distance tap are possible, the matrix Tu must have full row rank if at least one 3-
distance tap with connection, td3c exists.                                                                                         

DEFINITION 2: If there exists an incidence tapped stages ε - 4 and ε with cε-2 = 1 
or cε-3 = 1, then it is called 4-distance tap with connection, td4c, and if there exists 
an incidence tapped stages ε - 4 and ε with cε-2 = 0 and cε-3 = 0, then it is called 4-
distance tap with no connection, td4nc.  
LEMMA 6: For a w-stage type 1 LFSR and w > 2n, if stage 1 and w are tapped, 
and there exists an incidence 4-distance tap with connection, td4c, then the matrix 
Tu has full row rank.  
PROOF: Since stage 1 and w are tapped, the row 1 and row w are included in Tn, 
and the column 1 and w are removed from Tu. Removing column w from Tn, 
removes the nonzero entry in the first row and the existence of the nonzero entry 
due to the feedback connection of the type 1 LFSR is required. Assume there are 
an incidence 4-distance tap. Each of the columns in Tu has a nonzero entry in 
different rows as shown in Lemma 4 with the nonzero entries in the first row due to 
the existence of the feedback connections of the type 1 LFSR. The matrix Tu must 
have full row rank if 4-distance tap with connection, td4c exists.                                                      
THEOREM 2: For an n-input CUT and a w-stage type 1 LFSR with w ≥ 2n, a tap 
selection provides complete transition coverage if and only if Lemma 4 or Lemma 
5 or Lemma 6 is valid. 
PROOF: Since w ≥ 2n, the matrix Tu must have full row rank. The sufficiency of 
the theorem is a direct result of Lemma 4, 5, and 6. For necessity, assume that 
two stages ε - 3 and ε are tapped. The columns of ε - 3 and ε are removed from 
Tu. These removed columns have either all zero entries or nonzero entry in the 
row 1 only. In order for Tu to still have full row rank, stage 1 or w must be tapped, 
and cε-2 = 1. Otherwise, the rows of Tu are linearly dependent. Assume that two 
stages ε - 4 and ε are tapped. The columns of ε - 4 and ε are removed from Tu. 
These removed columns have either all zero entries or nonzero entry in the row 1 
only. In order for Tu to still have full row rank, stage 1 or w must be tapped, and 
either cε-2 = 1 or cε-3 = 1. Otherwise, the rows of Tu are linearly dependent. Next, if 
stage 1 and stage w are untapped, then tapping stages ε - 3 and ε introduce all 
zero columns. Also, tapping stages ε - 4 and ε introduce all zero columns. The tap 
selection does not obtain complete transition coverage.                                               
Example 1: Consider a 4-input CUT and a 8-stage LFSR with primitive polynomial 
given by p(x) = 1 + x2 + x3 + x4 + x8. The number of possible tap selections, which 
achieve complete transition coverage for type 1 LFSR according to theorem 2, is 4 
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and for type 2 LFSR according to theorem 1 is also 4. These tap selections in the 
case of type 1 LFSR are (1, 3, 5, 7), (2, 4, 6, 8), (1, 3, 6, 8), and (1, 4, 6, 8). The 
tap selections in the case of type 2 LFSR are (1, 3, 5, 7), (2, 4, 6, 8), (2, 3, 5, 7), 
and (2, 4, 5, 7).  
Let us take one tap selection that achieves complete transition coverage, for 
example, (1, 4, 6, 8). The following transition matrix T is presented with primitive 
polynomial given by p(x) = 1 + x2 + x3 + x4 + x8. 
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The following matrix Tn is submatrix of T of size 4 × 8. The submatrix Tn is 
constructed from the 4 rows {v1, v4, v6, v8} of T. The submatrix Tu is constructed 
from Tn with removing 4 columns {1, 4, 6, 8}. The rank of Tu is 4. It determines the 
transition coverage at the 4 tapped variables, which are connected to the 4 CUT 
inputs.  
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A given primitive polynomial p(x) of degree k may not exercise every output cone, 
in which case other polynomials of degree k + 1 may exercise every output cone.  
Example 2: Consider a 4-input CUT and a 9-stage LFSR with primitive polynomial 
given by p(x) = 1 + x3 + x4 + x5 + x7 + x8+ x9. The number of possible tap 
selections, which achieve complete transition coverage, is 15, for type 1 LFSR 
according to theorem 2. The tap selections based on 
Feedback 
independent 

According to 
Lemma 4 

(2, 4, 6, 8), (1, 3, 5, 7), (3, 5, 7, 9), (2, 5, 7, 9), (1, 3, 5, 
8), (1, 3, 6, 8), (1, 4, 6, 8), (2, 4, 7, 9), and (2, 4, 6, 9). 

According to 
Lemma 5 

(1, 3, 6, 9), (1, 4, 7, 9), (1, 4, 6, 9). Feedback 
dependent 

According to 
Lemma 6 

(1, 5, 7, 9), (1, 3, 5, 9), and (1, 3, 7, 9). 

The number of possible tap selections to achieve complete transition coverage is 
17 in the type 2 LFSR according to theorem 1. The tap selections based on  
Feedback 
independent 

According to 
Lemma 1 

(2, 4, 6, 8), (1, 3, 5, 7), (3, 5, 7, 9), (2, 5, 7, 9), (1, 3, 5, 
8), (1, 3, 6, 8), (1, 4, 6, 8), (2, 4, 7, 9), and (2, 4, 6, 9). 

Feedback 
dependent 

According to 
Lemma 2 

(3, 4, 6, 8), (2, 4, 5, 7), (2, 4, 5, 8), (3, 5, 6, 8), (2, 5, 6, 
8), (2, 4, 7, 8), (3, 5, 7, 8), and (2, 5, 7, 8). 
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Let us take one tap selection that achieves complete transition coverage, for 
example, (1, 4, 6, 9). The following transition matrix T is presented with primitive 
polynomial given by p(x) = 1 + x3 + x4 + x5 + x7 + x8+ x9. 
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The following matrix Tn is submatrix of T of size 4 × 9. The submatrix Tn is 
constructed from the 4 rows {v1, v4, v6, v9} of T. The submatrix Tu is constructed 
from Tn with removing 4 columns {1, 4, 6, 9}. The rank of Tu is 4. It determines the 
transition coverage at the 4 tapped variables, which are connected to the 4 CUT 
inputs.  
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3. DRIVATION OF THE CONTIGUOUS STAGES OF LFSR/SRs FOR TWO-
PATTERN TESTING 

Our goal is to design the efficient pseudo-exhaustive TPG for two-pattern testing 
that generate complete transition coverage for each output cone. It is desirable for 
the TPG to have connections from the output stages i to the input of stages i + 1 
which can significantly reduce routing overhead and each single shift gives a new 
test pattern to the CUT inputs. Simple LFSR/SR structures have the desired shift 
register configuration and therefore lead to low hardware overhead. The approach 
is compatible with scan path design [6]. Consider a (w, 2k) simple LFSR/SR 
composed of w register stages and consisting of an LFSR of degree 2k. It is 
divided into two portions, the first portion is called the LFSR portion with size 2k, 
and the second one is called shift register portion (SR) with size w - 2k.  
Fig. 3 illustrates a (15, 4) simple LFSR/SR with type 1 LFSR and Fig. 4 illustrates 
a (15, 4) simple LFSR/SR with type 2 LFSR. 
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Fig. 3. The residue for (15, 4) LFSR/SR with type 1 LFSR. 

A (w, 2k) simple LFSR/SR can generate the required patterns in minimal test time 
for some circuits. For a (w, 2k) simple LFSR/SR based on p(x), stage i generates a 
residue xi mod p(x) denoted as Ri which is a polynomial of degree less than 2k. A 
simple LFSR/SR has fixed residues for a given p(x). The theorem presented in 
[15] indicates that these residues should be linearly independent for the test 
pattern generation stages to generate all possible combinations of test patterns.  
For p(x) of degree 2k, a (w, 2k) simple LFSR/SR in Fig.3, consisting of (w – 2k + 1) 
different contiguous LFSRs. Residues R0, R1, R2, and R3 are assigned to the 
output stages of the LFSR. The outputs assigned to residues R1, R2, R3, and R4, 
which are linearly independent, are considered the second LFSR with the same 
primitive polynomial p(x). These outputs produce the same sequences of the 
LFSR portion (all possible combinations of test patterns) with different initial seed 
and theorem 2 is applicable. The contiguous positions or the difference between 
the maximum and minimum indices of the residues that are equal to 2k, have 
identical LFSRs of degree 2k with primitive polynomial, p(x) [16], and, produce the 
same sequences of test patterns with different initial seeds. 

Example 3: For the (15, 4) simple LFSR/SR in Fig. 3, the selected primitive pol-
ynomial p(x) is 1 + x3 + x4. An initial seed for the LFSR stages is 1000 is seen to 
be shifted from the left during the initialization phase (the second column in Table 
1). The testing phase is in the third column of Table 1. The initial seed for all 
stages of the simple LFSR/SR is calculated as in Table 1. All patterns generated 
from all stages of the (15, 4) simple LFSR/SR in the initialization phase and the 
testing phase will be shown in Table 1.  

In Table 1, stage 0 is considered the left-most bit of the pattern and stage 14 is 
considered the right most bit of the pattern. In the last row of the second column of 
Table 1, the initial seed of all stages of (15, 4) simple LFSR/SR is the initial pattern 
in the testing phase which is highlighted. From Table 1, the order of the test 
pattern sequence of the twelve different contiguous LFSRs is the same with 
different initial seed. Therefore, the transition matrix for every LFSRs is the same 
and theorem 2 is valid for each LFSR.  

Table 2 illustrates this concept. 
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Table 1. Initial seed determination for type1 LFSR/SR 
Pattern number Initialization phase Testing phase 

0 1000 00000000000 1000 11110101100 
1 0100 00000000000 0100 01111010110 
2 0010 00000000000 0010 00111101011 
3 1001 00000000000 1001 00011110101 
4 1100 10000000000 1100 10001111010 
5 0110 01000000000 0110 01000111101 
6 1011 00100000000 1011 00100011110 
7 0101 10010000000 0101 10010001111 
8 1010 11001000000 1010 11001000111 
9 1101 01100100000 1101 01100100011 

10 1110 10110010000 1110 10110010001 
11 1111 01011001000 1111 01011001000 
12 0111 10101100100 0111 10101100100 
13 0011 11010110010 0011 11010110010 
14 0001 11101011001 0001 11101011001 

The initial seed 1000 11110101100 1000 11110101100 

Table 2. Twelve LFSRs generated from type1 LFSR/SR. 
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0 1000 0001 0011 0111 1111 1110 1101 1010 0101 1011 0110 1100 
1 0100 1000 0001 0011 0111 1111 1110 1101 1010 0101 1011 0110 
2 0010 0100 1000 0001 0011 0111 1111 1110 1101 1010 0101 1011 
3 1001 0010 0100 1000 0001 0011 0111 1111 1110 1101 1010 0101 
4 1100 1001 0010 0100 1000 0001 0011 0111 1111 1110 1101 1010 
5 0110 1100 1001 0010 0100 1000 0001 0011 0111 1111 1110 1101 
6 1011 0110 1100 1001 0010 0100 1000 0001 0011 0111 1111 1110 
7 0101 1011 0110 1100 1001 0010 0100 1000 0001 0011 0111 1111 
8 1010 0101 1011 0110 1100 1001 0010 0100 1000 0001 0011 0111 
9 1101 1010 0101 1011 0110 1100 1001 0010 0100 1000 0001 0011 

10 1110 1101 1010 0101 1011 0110 1100 1001 0010 0100 1000 0001 
11 1111 1110 1101 1010 0101 1011 0110 1100 1001 0010 0100 1000 
12 0111 1111 1110 1101 1010 0101 1011 0110 1100 1001 0010 0100 
13 0011 0111 1111 1110 1101 1010 0101 1011 0110 1100 1001 0010 
14 0001 0011 0111 1111 1110 1101 1010 0101 1011 0110 1100 1001 

For the (15, 4) simple LFSR/SR in Fig. 4, the LFSR portion has type 2 LFSR with 
primitive polynomial p(x) is 1 + x3 + x4. According, the invention presented in [17] 
suggested simulating the state of a type 1 LFSR by clocking a type 2 LFSR to 
produce an output sequence. This sequence is shifted through the shift register. 
Cascading a type 2 LFSR output sequence into a shift register is the exact 
equivalent of a type 1 LFSR. The shift register output will contain data 
corresponding to the state of the type 1 LFSR. Table 3 output sequence illustrates 
that the shift register output is the exact equivalent of a type 1 LFSR with the 
primitive polynomial p*(x), where p*(x) is the reciprocal primitive polynomial of p(x). 
The shift register portion has different contiguous type 1 LFSRs. Therefore, the 
transition matrix for every LFSRs is the same and theorem 2 is valid for each 
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LFSR. Theorem 1 is valid in the LFSR portion with type 2 LFSR. Table 4 illustrates 
this concept starting from stage R0 that is the first stage of the shift register portion.                      

LFSR portion Shift Register portion 

  R0   R1   R2    R3     R4   R5    R6   R7   R8    R9    R10 

 
Fig. 4. The residue for (15, 4) LFSR/SR with type 2 LFSR. 

Table 3. Initial seed determination for type2 LFSR/SR 
Pattern number Initialization phase Testing phase 

0 1000 00000000000 1000 10011010111 
1 0100 00000000000 0100 01001101011 
2 0010 00000000000 0010 00100110101 
3 0001 00000000000 0001 00010011010 
4 1001 10000000000 1001 10001001101 
5 1101 11000000000 1101 11000100110 
6 1111 11100000000 1111 11100010011 
7 1110 11110000000 1110 11110001001 
8 0111 01111000000 0111 01111000100 
9 1010 10111100000 1010 10111100010 

10 0101 01011110000 0101 01011110001 
11 1011 10101111000 1011 10101111000 
12 1100 11010111100 1100 11010111100 
13 0110 01101011110 0110 01101011110 
14 0011 00110101111 0011 00110101111 

The initial seed 1000 10011010111 1000 10011010111 

Table 4. Twelve LFSRs generated from type2 LFSR/SR. 

Pa
tte

rn
 #

 

LF
SR

 
po

rt
io

n 

R
es

id
ue

   
   

   
 

(0
,1

,2
, 3

) 

 
R

es
id

ue
   

  
(1

,2
,3

,4
) 

 
R

es
id

ue
   

  
(2

,3
,4

 5
) 

 
R

es
id

ue
   

  
(3

 ,4
,5

,6
) 

 
R

es
id

ue
   

  
(4

, 5
,6

,7
) 

 
R

es
id

ue
   

  
(5

,6
,7

,8
) 

 
R

es
id

ue
   

  
(6

,7
,8

,9
) 

 
R

es
id

ue
   

  
(7

,8
,9

,1
0)

 

0 1000 1001 0011 0110 1101 1010 0101 1011 0111 
1 0100 0100 1001 0011 0110 1101 1010 0101 1011 
2 0010 0010 0100 1001 0011 0110 1101 1010 0101 
3 0001 0001 0010 0100 1001 0011 0110 1101 1010 
4 1001 1000 0001 0010 0100 1001 0011 0110 1101 
5 1101 1100 1000 0001 0010 0100 1001 0011 0110 
6 1111 1110 1100 1000 0001 0010 0100 1001 0011 
7 1110 1111 1110 1100 1000 0001 0010 0100 1001 
8 0111 0111 1111 1110 1100 1000 0001 0010 0100 
9 1010 1011 0111 1111 1110 1100 1000 0001 0010 
10 0101 0101 1011 0111 1111 1110 1100 1000 0001 
11 1011 1010 0101 1011 0111 1111 1110 1100 1000 
12 1100 1101 1010 0101 1011 0111 1111 1110 1100 
13 0110 0110 1101 1010 0101 1011 0111 1111 1110 
14 0011 0011 0110 1101 1010 0101 1011 0111 1111 
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Example 4: Consider a 4-input CUT and a 13-stage LFSR/SR with primitive 
polynomial given by p(x) = 1 + x2 + x3 + x4 + x8 illustrated in Fig. 5. Since the 
coefficient co, c2, c4, and c8 are 1, the number of possible tap selections to achieve 
complete transition coverage is 4 in the type 1 LFSR according to theorem 2. The 
total tap selections to achieve the complete transition coverage are 19 in a 13-
stage LFSR/SR. (There is five repeated tap selections.) The tap selections are  

LFSR 
portion  

Residues 
{1, 2, 3, 4, 
5, 6, 7, 8, 9} 

Residues 
 { 2, 3, 4, 5, 
6, 7, 8, 9,10} 

Residues 
 { 3, 4, 5, 6, 7, 
8, 9,10, 11} 

Residues 
 { 4, 5, 6, 7, 8, 
9,10, 11, 12} 

Residues 
{ 5, 6, 7, 8, 
9,10, 11, 12, 13}

(1, 3, 5, 7) (2, 4, 6, 8) (3, 5, 7, 9) (4, 6, 8, 10) (5, 7, 9, 11) (6, 8, 10, 12) 
(2, 4, 6, 8) (3, 5, 7, 9) (4, 6, 8, 10) (5, 7, 9, 11) (6, 8, 10, 12) (7, 9, 11, 13) 
(1, 3, 6, 8) (2, 4, 7, 9) (3, 5, 8, 10) (4, 6, 9, 11) (5, 7, 10, 12) (6, 8, 11, 13) 
(1, 4, 6, 8) (2, 5, 7, 9) (3, 6, 8, 10) (4, 7, 9, 11) (5, 8, 10, 12) (6, 9, 11, 13) 

 
Fig. 5. (13, 8) LFSR/SR with p(x) = 1 + x2 + x3 + x4 + x8. 

4. DRIVATION OF THE NON-CONTIGUOUS STAGES OF LFSR/SRS FOR 
TWO-PATTERN TESTING  

The non-contiguous situation is not as simple as its contiguous case. A (w, 2k) 

simple LFSR/SR has 2k-subsets of w. For a (w, 2k) simple LFSR/SR based 

on p(x), stage i generates a residue xi mod p(x) denoted as Ri which is a 
polynomial of degree less than 2k. In the previous section, the determination of the 
tap selections that achieve full transition coverage from contiguous 2k-subsets 
have been presented. Let set Zi be non-contiguous 2k-subset of the LFSR/SR. 
The set Zi will be exhaustively tested when the residues assigned it is linearly 
independent. In this section, the procedure to calculate the tap selections to 
achieve the complete transition coverage in Zi.  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k

w
2

Let the current state of the non-contiguous output stages of the LFSR/SR, Z, and 
current state of the LFSR portion, X, are related by 

                                            Z = A X                                                   (7) 
where, matrix A is a matrix of size 2k × 2k, Z is a matrix of size 2k × 1, and X is a 
matrix of size 2k × 1.  
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Then, 
X = A-1 Z                                                   (8) 
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Then 
   X’ = T X                                                         (9) 

where, matrix T is a transition matrix of size 2k × 2k, X’ is a next state matrix of the 
output stages of LFSR of size 2k × 1. 
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Let the next state of the non-contiguous output stages of the LFSR/SR, Z’, then 
                                 Z’ = S X                                                                 (10) 

where, matrix S is a matrix of size 2k × 2k, Z’ is a matrix of size 2k × 1. 
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From equation (8), 
Z’ = S A-1 Z                                                                (11) 

Then, S A-1 is the transition matrix of the non-contiguous output stages of the 
LFSR/SR of size 2k × 2k. The tap selections that achieve the complete transition 
coverage in the subset {z0, z1, …, z(2k-1)} for k CUT inputs is calculated according 
the previous conditions. The matrix S A-1 will equal to the transition matrix T of the 
case of contiguous output stages. The case of contiguous output stages, derived 
in section 3, is considered special case of the non-contiguous output stages.  

Example 5: For the (8, 4) simple LFSR/SR in Fig. 6, the selected primitive pol-
ynomial p(x) is 1 + x3 + x4. Table 5 indicates the residues of each output stages of 
the (8, 4) simple LFSR/SR. Table 6 indicates the test patterns of each output 
stages of the (8, 4) simple LFSR/SR and the test patterns of the subset {0, 2, 5, 7}. 
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It is required to determine the tap selections that achieve full transition coverage of 
two CUT inputs from non-contiguous output stages of the (8, 4) LFSR/SR. 

 
Fig. 6. The residue for (8, 4) LFSR/SR. 

Table 5. The residue for (8, 4) LFSR/SR 

Residue 
number  Ri 

Xi mod p(x) Polynomial form Binary form 

0 x0 mod (1+x3+x4) 1 1 0 0 0 
1 x1 mod (1+x3+x4) x1 0 1 0 0 
2 x2 mod (1+x3+x4) x2 0 0 1 0 
3 x3 mod (1+x3+x4) x3 0 0 0 1 
4 x4 mod (1+x3+x4) 1 + x3  1 0 0 1 
5 x5 mod (1+x3+x4) 1 + x + x3 1 1 0 1 
6 x6 mod (1+x3+x4) 1 + x + x2 + x3 1 1 1 1 
7 x7 mod (1+x3+x4) 1 + x + x2 1 1 1 0 

Table 6. Test patterns for (8, 4) LFSR/SR 

Pattern number Initialization 
phase Testing phase {0, 2, 5, 7} 

0 1000 0000 1000 1111 1 0 0 0 
1 0100 0000 0100 0111 0 1 1 0 
2 0010 0000 0010 0011 1 1 0 0 
3 1001 0000 1001 0001 0 0 0 1 
4 1100 1000 1100 1000 1 1 1 0 
5 0110 0100 0110 0100 1 0 1 0 
6 1011 0010 1011 0010 1 1 0 1 
7 0101 1001 0101 1001 1 1 1 1 
8 1010 1100 1010 1100 0 1 0 0 
9 1101 0110 1101 0110 0 1 1 1 
10 1110 1011 1110 1011 0 0 1 0 
11 1111 0101 1111 0101 1 0 1 1 
12 0111 1010 0111 1010 0 0 1 1 
13 0011 1101 0011 1101 0 1 0 1 
14 0001 1110 0001 1110 1 0 0 1 

The initial seed 1000 1111 1000 1111 1 0 0 0 
The residues assigned to the subset {0, 2, 5, 7} are linearly independent and its 
output stages generate all possible combination as shown in Table 6. It is required 
to determine the tap selections that achieve full transition coverage of two CUT 
inputs from non-contiguous output stages of {0, 2, 5, 7}. 
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From Table 5, the relationship between the LFSR/SR output stages assigned for 
the subset {0, 2, 5, 7} and the main signals of LFSR output stages is follows. 

x0(t) = x0(t) 
x2(t) = x2(t) 
x5(t) = x0(t) + x1(t) + x3(t) 
x7(t) = x0(t) + x1(t) + x2(t) 

                                (12) 

Then, 
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Transition matrix and transition equations of the LFSR output stages are follows. 
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x1(t+1) = x0(t) 
x2(t+1) = x1(t) 
x3(t+1) = x2(t) 

From equations (7), the transition matrix and transition equations of the LFSR/SR 
output stages assigned for the subset {0, 2, 5, 7} are follows. 
x0(t+1) = x0(t+1)                               = x2(t) + x3(t) 
x2(t+1) = x2(t+1)                               = x1(t) 
x5(t+1) = x0(t+1) + x1(t+1) + x3(t+1) = x2(t) + x3(t) + x0(t) + x2(t) = x0(t) + x3(t) 
x7(t+1) = x0(t+1) + x1(t+1) + x2(t+1) = x0(t) + x1(t) + x2(t) + x3(t) 
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Then the transition matrix of the LFSR/SR output stages assigned for the subset 
{0, 2, 5, 7} is 
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We have  possible tap selections. The tap selections that achieve the complete 

transition coverage in the subset {0, 2, 5, 7} for two CUT inputs is five as follows. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
4

{0, 2} {0, 5} {2, 7} {0, 7} {3, 4} 

⎥
⎦

⎤
⎢
⎣

⎡
=

1011
1100

nT  

⎥
⎦

⎤
⎢
⎣

⎡
=⇒

10
11

uT  

⎥
⎦

⎤
⎢
⎣

⎡
=

1111
1100

nT

⎥
⎦

⎤
⎢
⎣

⎡
=⇒

11
10

uT  

⎥
⎦

⎤
⎢
⎣

⎡
=

0110
1011

nT

⎥
⎦

⎤
⎢
⎣

⎡
=⇒

10
01

uT  

⎥
⎦

⎤
⎢
⎣

⎡
=

0110
1100

nT  

⎥
⎦

⎤
⎢
⎣

⎡
=⇒

11
10

uT  

⎥
⎦

⎤
⎢
⎣

⎡
=

0110
1111

nT

⎥
⎦

⎤
⎢
⎣

⎡
=⇒

10
11

uT  

The tap selections that do not achieve the complete transition coverage in the 
subset {0, 2, 5, 7} is one that is {2, 5}.                     
□ 

The next example will present the efficiency of our approach to get a two-testing 
pseudo-exhaustive test pattern generator with optimal test set lengths. 
Example 6: Consider the (7, 5, 3) CUT with its dependency sets according to the 
following: 

D0 = {1, 2, 3} D1 = {1, 2, 4} D2 = {2, 4, 6} D3 = {3, 5, 6} D4 = {3, 5, 7} D5 = {1, 5, 7} 

The dependency, k, of this CUT is 3. It is required to select a TPG with w ≥ 2k. 
Select a LFSR with degree 6 and primitive polynomial p(x) = 1 + x + x2 + x5 + x6. 
The number of possible tap selections,which achieve complete transition coverage 
for type 1 LFSR according to theorem 2, is 3 and for type 2 LFSR according to 
theorem 1 is also 3. These tap selections in the case of type 1 LFSR are (1, 3, 5), 
(2, 4, 6), and (1, 4, 6). The tap selections in the case of type 2 LFSR are (1, 3, 5), 
(2, 4, 6), and (2, 3, 5). These tap selections are not enough to test the CUT.  
By using (7, 6) LFSR/SR and according to the design steps presented in section 3, 
and section 4, the number of possible tap selections, which achieve complete 
transition coverage is 7. These seven tap selections are generating from the 
following table: 

Residue assignment 
to the selected subset Approach Tap selections 

R0, R1, R2, R3, R4, R5 According to section 3 (1, 3, 5), (2, 4, 6), (1, 4, 6) 
R1, R2, R3, R4, R5, R6 According to section 3 (2, 4, 6), (3, 5, 7), (2, 5, 7) 
R0, R1, R3, R4, R5, R6 According to section 4 (1, 4, 6), (2, 5, 7), (1, 5, 7), 

(2, 4, 6), (1, 4, 7) 
R0, R2, R3, R4, R5, R6 According to section 4 (1, 3, 5), (3, 5, 7), (1, 5, 7), 

(1, 4, 7) 
R0, R1, R2, R3, R4, R6 According to section 4 (1, 3, 5), (2, 5, 7), (1, 5, 7), 

and (1, 4, 7) 



 

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 CRS-06 - 18 -
 
By reducing the repeated tap selections, these tap selections in this case are (1, 3, 
5), (2, 4, 6), (1, 4, 6), (3, 5, 7), (2, 5, 7), (1, 5, 7), and (1, 4, 7). 
Fig. 7 illustrates the assignment of the output stages of the presented TPG to the 
CUT inputs. The generated test patterns achieve complete transition coverage for 
each output cone. The test time required for two-pattern pseudo-exhaustive testing 
is 26 – 1 which is the optimal test set lengths. The design in Fig. 5 requires three 
extra XOR gates at the location 1, 2, and 5.  
To solve this problem using the type 2 LFSR presented in [14], it is required to 
increase the order of the primitive polynomial to 7. The test length according to the 
design approach in this paper is shorter (26 vs. 27 in this example). Even though 
the transition coverage in the exhaustive case for the two TPG designs are 
identical, we conjecture that the fault coverage for a TPG designed in this paper 
should rise faster with test length than a TPG designed by [14].  

LFSR Portion SR Portion 

D1 D2 D3 D4 D5 D6 D7 

CUT inputs

d1 d6 d7 d2 d5 d4 d3 
 

Fig. 7.  (7, 6) LFSR/SR design for example 6. 

5. CONCLUSIONS AND FUTURE WORK 

Testing for delay and CMOS stuck-open faults requires two-pattern tests. This 
paper presents the designing of the new two-pattern test generator for pseudo-
exhaustive testing. BIST test pattern generators for two-pattern testing are 
designed to ensure complete transition coverage. The TPG circuits treated here 
are LFSR/SR circuits. It is required to increase the number of possible tap 
selections to achieve complete transition coverage with the optimal test lengths. In 
this paper, the two-pattern test capabilities of LFSR/SRs were explored. The 
necessary and sufficient conditions to ensure complete transition coverage for 
LFSR/SRs were derived. The theory developed here determines the complete 
transition coverage under any given TPG size constraint. Primitive polynomials of 
the LFSRs with large number of terms are better for two-pattern testing.  
Simple examples indicate that TPGs designed using the procedures outlined in 
this paper obtains complete transition coverage with the optimal shortest test 
lengths. In addition, the results described in this paper provide basic theory in 
BIST TPG design for two-pattern pseudo-exhaustive testing. Most practical circuits 
require the concept of two-pattern pseudo-exhaustive testing that reduces the test 
set lengths and TPG hardware complexity, without reducing fault coverage.  
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In this paper, the problem of selecting the proper output stages of the (w, 2k) 
LFSR/SR to the CUT inputs that maximize the transition coverage is not 
addressed. Application of the theory derived in this paper to utilize circuit specific 
information is the topic of ongoing research. 
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