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ABSTRACT 
 
Design of an efficient fuzzy logic controller involves the optimization of 
parameters of fuzzy sets, denormalized gains and proper choice of rule base. 
There are several techniques reported in recent literature that use genetic 
algorithms to learn and optimize a fuzzy logic controller. This paper develops 
methodologies to learn and optimize fuzzy logic controller parameters based on 
genetic algorithm. The strategies developed have been applied to control 
integration between LQR and nonlinear Fuzzy PID of F16 aircraft pitch motion 
control and fuzzy controller developed with the help of iterative learning from 
operator experience. The results show that Genetic-Fuzzy approaches were able 
to learn rule base and identify membership function parameters accurately. 
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1. INTRODUCTION 
 
GA uses a direct analogy of natural behavior (Fig. 1), They work with a 
population of individuals, each reprinting a possible solution to a given problem. 
Each individual is assigned a fitness score according to how good its solution to 
the problem is. The highly fit individuals are given opportunities to reproduce, by 
cross breeding with other individuals in the population. This produces new 
individuals as offspring, who share some features taken from each parent. The 
least fit members of the population are less likely to get selected for reproduction, 
and will eventually die out. Adaptive GAs whose parameters, such as the 
population, size, cross over probability and mutation probability are varied during 
the GA is running thus converging to the optimum solution faster.  
 
 
2. APPLICATION OF GA FUNCTIONS FOR TUNING FUZZY PID 

CONTROLLER PARAMETERS  
 
As shown in the following figure Fig. 2, the fuzzy PID controller consists of output 
denormalized gains, input-output membership functions and rule bases, [1], [2]. 
The main objective of the pre-explained GA procedure is to optimize (minimize) 
the output performance index (maximize fitness function) of the whole integrated 
control system used in the pitch control motion of F-16 aircraft. Application of GA 
MATLAB code combined with SIMULINK control model is implemented to 
minimize the performance index as explained later [3].  
Using GA to minimize the value of the output performance index: 

∫
∞

=
0

2)_( dtsimpitcheJ                                                       (1) 

Where e(pitch_sim) is the pitch angle error to workspace. The previous index 
can be obtained from the nonlinear simulation of the pitch control model 
consequently GA can use it as the fitness function. 
 
 
2.1 Optimizing Fuzzy Output Gains  
 
2.1.1 Using binary system coding 
Coding：using 10-bit binary genes to express . Table 1 shows the 
upper and lower gain limits. For example (KP) from bit 1 , to  bit 
10 is . Then string  to 30-bit binary cluster. 

DIP KKK ,,
(0)0000000000

(1023)1111111111 DIP KKK ,,

0000100010  1 110111000 0000110111:x  express a gene，the former 10-bit 
express KP, the second portion express KI  and the third one express the KD  . 
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Decoding：Cut one string of 30-bit binary string to three 10-bit binary 

string，then converts them to decimal system values: y1, y2 and y3. Table 2 shows 
the decoding equations. 

 
2.1.2 Evaluation of fitness function 
Fitness function is the main criterion of the GA algorithm, as it represents how 
much the system is optimum and stable. The following equation describes the 
relation between the fitness function and the performance index.    

1))_((),,( −= simpitchJKKKf DIP                                                                     (2) 
 
2.1.3 Design operators 
Proportion selection operator，single point crossover operator，basic bit 
mutation operator. 
 
2.1.4 Parameters of GA 
Population size is , generation 02=M 03=G , crossover probability 

，mutation probability 0.60c =P 0.10m =P 。 
Adopting the above steps, after 100 steps iteration, we get the best individuals 
When KP=7.190, KD =2.958 and KI= -2.870 the output performance index has the 
minimum value，that is 0.9785 shown in Fig. 3. 
 
 
2.2 Tuning of Fuzzy Sets 
 
It is presented a universal algorithm for solving a very general class of 
optimization problems applied to fuzzy sets. From studying how such a GA can 
be applied to the optimization of fuzzy sets. An appropriate coding, genetic 
operators (in case that the standard variants are not sufficient), and a fitness 
measure is presented [3], [4]. 
 
2.2.1 Coding fuzzy subsets of an interval 
A reasonable resolution for encoding the membership degrees is n = 8. Such an 
8-bit coding is used in several software systems, too. For most problems, 
however, simpler representations of fuzzy sets are sufficient. Many real-world 
applications use triangular and trapezoidal membership functions Fig. 4. 
Not really surprising, a triangular fuzzy set can be encoded as 

 
where δ  is an upper boundary for the size of the offsets, for example δ  = (b − 
a)/2. The same can be done analogously for trapezoidal fuzzy sets: 
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In specific control applications, where the smoothness of the control surface 
plays an important role, fuzzy sets of higher differentiability must be used. The 
most prominent representative is the bell-shaped fuzzy set whose membership 
function is given by a Gaussian bell function: 
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The “bell-shaped analogue” to trapezoidal fuzzy sets are so-called radial basis 
functions: 
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Fig. 5 shows a typical bell-shaped membership function. Again the coding 
method is straightforward, i.e. 

 
where ε  is a lower limit for the spread u. Analogously for radial basis functions: 

 
The final step is simple and obvious, In order to define a coding of the whole 
configuration, i.e. of all fuzzy sets involved, it is sufficient to put coding of all 
relevant fuzzy sets into one large string. This type of membership functions were 
used in describing the fuzzy PID controller denormalized gains ( ) as it 
has better representation of system uncertainty. 

DIP KKK ,,

 
2.2.2 Coding whole fuzzy partitions 
In this work a simple example of an increasing sequence of trapezoidal-triangular 
fuzzy sets has been presented. Such a “fuzzy partition” is uniquely determined by 
an increasing sequence of 2N points, where N is the number of linguistic values 
we consider. The mathematical formulation is the following: 
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Fig. 6 shows a typical example with N = 3 that was used to represent (error, 
error change) in the proposed fuzzy PID controller. It is not wise to encode 
the values xi as they are, since this requires constraints for ensuring that xi 
are non-decreasing. A good alternative is to encode the offsets: 

 
2.2.3 Genetic operators 
Since this GA can only deal with binary representations of fuzzy sets and 
partitions, all the GA operators that mentioned before are also applicable 
here. However, that the offset encoding of fuzzy partitions is highly epistemic. 
More specifically, if the first bit encoding x1 is changed, the whole partition is 
shifted. If this results in bad convergence, the crossover operator should be 
modified. A suggestion can be found in [5]. Fig. 6 shows an example what 
happens if two fuzzy partitions are crossed with normal one-point crossover. 
Fig. 7 shows the same for bitwise mutation. 
 
2.2.4 Rescaling process (Decoding of all fuzzy partitions)  
Using the following simple equation to normalize the membership variables 
(error, error change) by: 

1020/)10202( −×= yx  
Therefore the optimum (normalized) membership functions can be obtained 
for both (error, error change). The following figures (Fig. 8a, Fig. 8b, Fig. 8c, 
Fig. 8d, Fig. 8e) illustrate the optimum input-output membership functions that 
obtained from the adaptive genetic algorithm for 40 samples and 20 
generations at some operating point of (250 ft/s speed and 1000 ft altitude).    
 
 
2.3 Rule Base Weight Optimization 
 
The genetic algorithm has been applied to 100 samples of input-output 
simulation data obtained from fuzzy PID controller. The rules obtained by the 
algorithm are shown below. The values in parentheses after each rule 
represent the firing strength of the corresponding rule. 
 
1. if (e is NB) and (ec is NB) then (kp is PB)(Ki is NB)(Kd is PS)(.5811) 

: : : : : : : : : : 
49. if (e is PB) and (ec is PB) then (kp is NB)(Ki is PB)(Kd is PB)(.3121) 
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2. THE LQR INTEGRATED FUZZY CONTROL (LQRIFC) 
 
The LQR integrated fuzzy control utilizes both advantages from the LQR 
controller and fuzzy logic controller as LQR controller can easily satisfies the 
flying qualities and pilot rating requirements and fuzzy control can cope with the 
nonlinearity of the system introducing a smart way to modify the output gains 
according to the actual performance blending the dynamic response that 
generating better performance than using LQR alone [6], [7]. Fig. 9 describes the 
LQR integrated fuzzy control (LQRIFC) for pitch controller.      
The states and outputs of the plant plus the compensator are:  
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System dynamics is described by the following state space through LQR design 
algorithm at several trimmed points for pitch control; Table 3 shows the linearized 
matrices of F-16 model at different operating points (different altitudes). The LQR 
closed loop system poles satisfy the flying qualities specifications [8] such as the 
damping ratio and the natural frequencies. The tuned fuzzy logic controller copes 
with the LQR output error thus enhancing the net output system performance. 
Membership functions could be sliding back and forth so that it suppress low 
frequencies disturbance on the other hand the low pass filter introduced will cope 
with high frequencies noise that produce a robust and optimal control system, as 
the integrated control system utilizes both advantages of the LQR and FLC 
techniques (optimal and robust design). Fig.10 shows the difference between 
both cases with the optimized fuzzy controller and without fuzzy controller as the 
additional FLC enhances the performance index (PI) more than 8.5%. Table 4 
shows the different optimized LQRIFC gains at different altitude. The following 
linear equations describe the dynamics of the longitudinal motion of the aircraft at 
velocity 250 (ft/s). 

 
x. =Ax + Bu + Gr                                                      (8) 

y=Cx + Fr                                                                (9) 

z=Hx                                                                        (10) 
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3. APPLICATION METHODOLOGY  
 
Applying the integrated control system of the previous technique on the F-16 
nonlinear model during descending slope phase during the landing process with 
input of °−= 5.2dθ , with applying DRYDEN vertical gust model, therefore verifying 
the output performance with applicable flying qualities [4] that results in satisfied 
performance for the fuzzy PID controller. Fig. 11 and Fig. 12 illustrate the whole 
system control effort and the fuzzy controller contribution output to the elevator 
actuator. Fig. 13 and Fig. 14 illustrate the output performances of the integrated 
control system with optimized fuzzy PID controller such as the altitude 
descending rate and the descending angle. It is clear now from these figures that 
the combination of both LQR and fuzzy logic produces stable and robust control 
system.  

 
 

5. CONCLUSION 
 
In this paper an optimization technique (GA) was presented to tune fuzzy logic 
controller parameters. A new MATLAB code was used to perform the GA 
operations for the proposed application. The optimized output parameters from 
the GA algorithm were used to tune the fuzzy logic controller in order to achieve 
robust and stable output performance of the aircraft control system (longitudinal 
motion).  Moreover the proposed integration utilizes both advantages of LQR and 
fuzzy PID controller such as the verification of the flying qualities issues and 
introducing variable gains that can cope with the different uncertainty during the 
actual flight regimes according to the nature of flexible fuzzy controller output 
gains. Besides introducing such nonlinear fuzzy PID controller makes up some of 
the disadvantages of using linear controller (LQR) with aircraft nonlinear 
modeling such as pre-calculated constant gain matrix at each operating points. 
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Fig. 1. The flow of GA functions and process 

 
 



 

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 GUD-03 9 
 

 
Fig. 2. Nonlinear fuzzy PID controller 

 

 
Fig.3. Objective function J and Fitness function F  

 
 

 
Fig. 4. Triangular and trapezoidal membership functions 

 
Fig. 5. Bell-shaped membership functions 
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Fig.6. Example for one-point crossover of fuzzy partitions 

 
Fig. 7. Mutating a fuzzy partitions 

 
Fig. 8a Input variable “error”  

 
Fig. 8b Input variable “error change” 
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Fig. 8c Output variable “Kp” 

 

 
Fig. 8d Output variable “Ki” 

 
Fig. 8e Output variable “Kd” 

 
Fig. 9. LQR integrated fuzzy control (LQRIFC) for pitch controller  

 



 

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 GUD-03 12 
 

 
Fig. 10. Integrated system step response in both cases with optimized fuzzy 

controller and without fuzzy controller 
 

  
Fig. 11. Total elevator angle (deg)         Fig.12. Fuzzy controller contribution output 
(deg) 

 
Fig. 13. Descending angel (deg)                          Fig. 14. Descending altitude (ft) 

Table 1 Gain Limits 
 

Denormalized 
Gain 

Minimum 
limit 

Maximum 
limit 

KP 1 10 
KD -.1 -2.5 
KI .05 1.8 

  
Table 2 Decoding Equation  

 
Denormalized gains Decoding equation 

KP 
1

1023
9 1 +×

y
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KD 
1.

1023
4.2 2 −×−

y
 

KI 
05.

1023
75.1 3 +×

y
 

 
Table 3 Linearized Matrices 

 
Alt 
(ft) ααA~  qAα

~  eBαδ
~  αqA~  qqA~  eqB δ

~  

1000 -0.8972 0.9502 -0.0019 -3.6241 -1.2147 -0.2650
1500 -0.8325 0.9533 -0.0017 -3.3307 -1.1265 -0.2438
2000 -0.7716 0.9562 -0.0017 -3.0570 -1.0433 -0.2235

 
Table 4 Gain values  

 
Alt 
(ft) 1000 1500 2000 

αK  0.2086 0.2104 0.2127 
qK  -0.7971 -0.8157 -0.9091 

iK  4.6106 4.5618 5.0274 
pK  7.190 8.8725 8.1053 
DK  2.958 2.754 2.333 

IK  -2.870 -2.650 -2.230 
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