Journal of Food and Dairy Sciences

Journal homepage & Available online at: <u>www.jfds.journals.ekb.eg</u>

Breastfeeding Situation in Saudi Arabia and Recent Approaches in The Development of Follow-on Formula for Facing Breastfeeding Difficulties

Noura S. M. Al-Nassir¹ and Sally S. Sakr^{1,2*}

¹Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Cross Mark Buraydah 51452, Saudi Arabia

²Dairy Science Department, Faculty of Agriculture, Cairo University, Giza, Egypt

ABSTRACT

Infant formulae are an alternative to breastfeeding for many parents, despite breastfeeding providing all of the benefits for an infant. In cases where breastfeeding is not possible, infant and follow-on formulas should be recommended. It is well known that the compositions of cow milk proteins are very different from human milk and infants do not tolerate it.Unfortunately,the majority of follow-on formulae are formulated on the basis of using cow milk whey in their composition. So, many researchers suggested the use of goat or camel milk fractions as a base for making infant formulae. On the other hand, efforts made by researchers for the valorization of milk whey revealed that using camel or goat whey in infant feeding has great benefits for increasing the nutritional and biological values and digestibility of milk proteins. Also, fermented formulae are recommended for infants since they promote digestibility and tolerance and are considered safe for infants. Therefore, using lactic acid bacteria to produce fermented and/or acidified infant milk formulae has been recommended by many researchers. This review is mainly focused on the importance of using follow-on formulae for feeding newborns when breastfeeding is not an option. As well, the review presents the approaches that have been used to prepare different follow-on formulae based on the use of different milk types to provide nutritional and functional properties as close as possible to human milk. Also, proposed recent trends for improving the nutritional value of formulae to narrow the gap between using regular formulae and infant's needs are shown.

Keywords: breastfeeding, follow-on formulae, Whey, cow milk, camel milk, goat milk

INTRODUCTION

Mother's milk is known to be the best nutritional choice for a newborn. As the infant's digestive system is compatible with human milk as it contains bioactive components important for gut microbial colonization and immune maturation, it reduces the risk of gastrointestinal and respiratory infections. Human milk also has numerous factors that protect the infant against atopic disease. Nevertheless, breastfeeding cannot always be accomplished (Drapala *et al.*, 2016 and Huet *et al.*, 2016).

For children who have not received breast milk for more than six months, the follow-on formula becomes the only option for infant feeding. This was the major problem in urban areas worldwide and in Saudi Arabia as well. Consequently, in those situations there is always a strong need to develop alternative sources of mother's milk (Alyousefi *et al.*, 2017; Khresheh and Ahmed, 2018 and Alsulaimani, 2019).

Human milk has been substituted with cow milk formulas for infants and toddlers. The use of it for infant feeding has however caused many nutritional issues, especially in the form of cows' milk protein allergies and symptoms of gastrointestinal discomfort in infants. (Pescuma *et al.*, 2012; Martin *et al.*, 2016; Talarico *et al.*, 2019 and Ye *et al.*, 2019). The hydrolyzed and fermented cow milk-based infant formulae that contain live probiotic bacteria or those that do not contain live bacteria have become a good option to overcome the health problems associated with regular formula feeding (Martin *et al.*, 2016 and Szajewsk *et al.*, 2015).

Camel and goat milk is more similar to human milk in composition than cow milk, thus infant formulas that use these protein sources are healthier and more digestible for infants as they provide a suitable source of protein. (Biadała *et al.*, 2020; Galdino *et al.*, 2020; Jrad *et al.*, 2020; and Oussaief *et al.*, 2020).

Recently, cheese whey has attracted consumers as well as nutritionists because of its health benefits. Thus, the value of this highly nutritious and immune-boosting by-product was realized by using it as a base for infant feeding, helping to solve problems associated with the use of cow milk-based formulas (Galdino *et al.*, 2020 and Osman *et al.*, 2015).

Due to this, the focus of this review is on the use of infant and follow-on formula to feed newborns when breastfeeding is neither possible nor feasible. As well, the review presents the approaches that have been used to prepare different follow-on formulae that are based on the use of cow milk and other species existing in the Kingdom of Saudi Arabia (goat and camel) to provide nutritional and functional properties as close as possible to human milk. Furthermore, recent trends for improving the nutritional and biological value of formulas have been reported to narrow the gap between regular infant formulas and infant needs. **Breastfeeding**

Breastfeeding in Saudi Arabia

It was reported that only 13.7 % of infants were exclusively breastfed in a study on 322 Saudi mothers that

have been done by Alyousefi *et al.* (2017) who examined the possibility of exclusive breastfeeding for the first six months of life. Previously, data collected from some Saudi mothers by Al Juaid *et al.* (2014) showed that Insufficient breast milk, maternal or child diseases, pregnancy or lactation problems are the main reasons for the decline in breastfeeding and the use of compound formulas. In addition, it has been reported that stopping breastfeeding is a reason for low breastfeeding self-efficacy among Saudi mothers. (Khresheh and Ahmed, 2018). In addition, lack of support was cited as one of the most important reasons for low rates of exclusive breastfeeding, alongside a variety of biological (e.g., chronic disease and obesity) and cultural factors (Alsulaimani, 2019).

Importance of breastfeeding

Suboptimal nutrition or inadequate nutrition during an infant's early life has serious consequences (Martin et al., 2016). Breast milk is the exclusive natural fluid that provides the newborn with the essential nutrients and requirements for development and growth, protecting it from disease while its own immune system matures. (Zou et al., 2017). In the same regard, the World Health Organization (WHO) has recommended that the exclusive breastfeeding should be applied throughout the first six months of newborns (Owens et al., 2013 and Gallier et al., 2015). The beneficial results of breastfeeding are limitless for both infants and nursing mothers (Alyousefi et. al., 2017), the environment, economy and the entire society (Al Juaid et al., 2014) and certainly accounts for developing strong bond between the mother and her baby (Khresheh and Ahmed, 2018). The composition of breast milk is the perfect reason for minimizing the risk of gastrointestinal and respiratory infections (Drapala et al., 2016) and is compatible with the infant's digestive system as it contains bioactive components necessary for microbial colonization of the intestine are important. and immune maturation (Huet et al., 2016). In addition, gut health at a young age has been shown to have fundamental aspects of psychosocial, physical and mental well-being (Vandenplas et al., 2017) and the protective role in hypertension (Sharmin et al., 2016) in later life. Reduced risk of obesity and metabolic diseases has also been observed in children who were exclusively breastfed for the first few years of life (Gallier et al., 2015).

Difficulties facing breastfeeding

Table 1. Chemical	composition (of different	based infant	formulas
-------------------	---------------	--------------	--------------	----------

Tabe 1. Chemical composition of uncreated main formulas										
Different based infant formulas	Purpose	Energy (kcal)	Intact protein (g)	Whey protein hydrolysate (g)	Fat (g)	Lactose (g)	References			
Normal-infant										
formulas	when exclusively									
Cow milk based infant formulas	breastfeeding is not possible and for protein allergy management	66	1.4	-	3.5	7.0	Karaglani <i>et al.</i> , 2020			
Goat milk based infant formulas		66.5	1.3	-	3.5	7.5	Wood <i>et al.</i> , 2022			
Cow-whey based infant formulas	To reflect the 60:40 ratio of human milk instead of 20:80 in cow's milk	65.5	1.4	-	3.4	7.2	Wood <i>et al.</i> , 2022			
Cow-fermented infant formulas	To prevent or relieve gastrointestinal symptoms	68	1.4	-	3.1	6.5	Beghin <i>et al.</i> , 2020			
Cow-hydrolyzed infant formulas	Protein allergy management	66	-	1.6	3.5	7.0	Karaglani <i>et al.</i> , 2020			

Cow milk as a base of infant formula

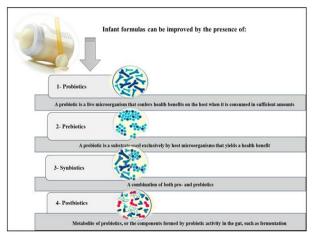
Most commercial infant formulas are made from cow's milk after it has been modified to provide quality nutrition for newborns. However, milk derived from cow's milk has a higher protein content, a different ratio of whey protein to case than human milk, and different proportions of case in and whey protein (Ye *et al.*, 2019). Due to the early introduction of cow's milk into infant diets, allergic reactions begin very early in infants' lives, as cow's milk is considered one of the most common causes of food allergies

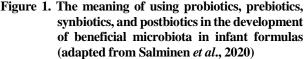
preferred food source that provides essential nutrients for growing babies (Owens et al., 2013), global breastfeeding rates are not only declining in Middle Eastern countries (Alyousefi et al., 2017) and the Arab world (Alsulaiman, 2019), but also in urban areas around the world (Sulaiman et al., 2016). Only 39% of infants under 6 months worldwide are exclusively breastfed (Mosquera et al., 2019), while no more than 15% can be continuously breastfed with complementary foods for up to two years, according to WHO recommendations (Saffari et al., 2017). Delivery mode, socioeconomic level, primiparity, early pregnancy, insufficient inter-pregnancy gaps, and lower maternal education have been reported to be the major contributors to changes in breastfeeding before the baby is six months old (Saffari et al., 2017). The same trend is also found in Arab countries and Saudi Arabia (Alsulaimani, 2019). Regarding working women in urban areas, Sulaiman et al. (2016) reported that women without the support of their families and husbands were less likely to exclusively breastfeed after returning to work than women with supportive families.

Although it is well known that breastfeeding is the

Infant and follow-on formulae

If a mother is unable to breastfeed her baby for one or more of the above reasons, a formula should be used instead (Zou et al., 2017). As seen in Table (1), if infant formula becomes an option to replace breastfeeding, much effort must be made to closely mimic the nutritional profile of human breast milk for normal infant growth and development (Martin et al., 2016). According to Codex Alimentarius and European Commission regulations, the levels of macronutrients and micronutrients in infant formula must be specified to simulate the composition of breast milk (Oussaief et al., 2020). Formula composition and functionality must include and balance protein content and profile, i.e., predominant whey protein profile and α lactalbumin fortification; the profile of fatty acids, the content of carbohydrates, vitamins and minerals with those in breast milk (Drapala et al., 2016). Martin et al. (2016) reported that cow's milk-based formula; soy-based formulas and speciality formulas are the three main classes of infant formula, which differ in nutritional value, taste, calories, digestion, and cost.


(Martin *et al.*, 2016). The cause of allergy problems, especially when infants are fed cow's milk, is that pepsin does not break down the protein (Pescuma *et al.*, 2012 and Talarico *et al.*, 2019).


Hydrolyzed infant formula from cow milk

Milk hydrolysates have received particular attention due to the antioxidant activity of milk protein hydrolysates and their released peptides after hydrolysis which was known for its benefits to promote human health (Virtanen *et al.*, 2007). The use of enzymes in preparing pre-hydrolyzed milk has been applied as one of the important strategies to prepare protein hydrolysate formulae for infants who are unable to tolerate cow milk formulae (Martin *et al.*, 2016). **Fermented infant formula from cow milk**

The definition of fermented Infant and follow-on formulae means the formula fermented with lactic acid bacteria during the production process, with no significant amounts of viable bacteria in the final product (Heijning *et al.*, 2014). While the remaining bacterial components and the effects of bacterial metabolites after fermentation are the sources of additional benefits of such formulas (Szajewsk *et al.*, 2015). In this concern, the bacterial metabolites which have been revealed after fermintation are considered to have probiotic effects on infant health although the bacteria itself is no more available (Labuschagne *et al.*, 2013). The fermented infant formulae have been used successfully to prevent or relieve gastrointestinal symptoms in infants (Heijning *et al.*, 2014).

Infancy is a crucial time for gut development. The digestive system enables the body to absorb nutrients and fluids, encouraging growth and development. As a barrier against infectious agents as well as stimulating the immune system to establish mucosal and systemic tolerance, the gut plays a crucial role in the initiation of immunity. Also, the gut acts as a sensor for the brain to maintain its balance. The healthy development of the gut is related to the intestinal microbiota formed in the early years of human life especially when breast milk is exclusively offered as a sole source for feeding babies in the first 3 months of life. In contrast, the increase in allergy prevalence can be attributed to the early intestinal dysbiosis related to the imbalance of healthy gut microbiota. Therefore, breast milk has the potential to act as a natural synbiotic, as the bacteria in breast milk contain both prebiotics and probiotics that support the intestinal flora, intestinal barrier, and immune system. Infant formulas must offer nutritional solutions to infants unable to receive enough mother's milk, so it is without a doubt breast milk is the only acceptable model to be simulated when infant formulas are reformulation. So, infant formulas that mimic human milk must contain an array of ingredients reflecting recent developments, such as oligosaccharides, bacteria, and bacterial metabolites. Thus, scientists don't stop trying to promote the development of beneficial microbiota in infant formulas by using probiotics, prebiotics, synbiotics, and the so-called postbiotics (Fig. 1). So, to promote intestinal microflora similar to breastfeeding, probiotics related to the genera Lactobacillus and Bifidobacteria those normally found in infants' gut when breastfeeding are exclusively applied as well as prebiotics addition is added in fermented infant formulas which provide beneficial effects to the gastrointestinal system (Mugambi et al., 2012; Cukrowska et al., 2020 and Salminen et al., 2020)

Whey as a base of infant formula

More than 180 to 190 million tons of whey are produced worldwide every year (Hausjell et al., 2019). Whey is a greenish-yellow liquid produced as a by-product produced during cheese processing in dairy and cheese processing plants. Whey is rich in valuable components like proteins, lactose or minerals (calcium, magnesium or phosphorous) which makes that the valorization and reuse of this by-product acquires a paramount importance. Whey proteins are highly functional food that shows a high protein quality and contains relatively high proportions of essential amino acids (Salami et al., 2010; Mirabella et al., 2014 and Lievore et al, 2015). Because of its nutritional value, whey became an interesting substrate for the development of fermented foods. It is a source of vitamins, minerals and high-quality proteins compared with caseins, egg and soy proteins but its proteins are differed among different human and/or animal species (Pescuma et al., 2012). Betalactoglobulin (β -Lg) is found in the whey fraction of cow milk but is absent in human milk which increases its allergenicity in infants when it used without modification in infant formula. Denaturation and proteolysis represent powerful tools for enhancing protein digestibility. Whey protein hydrolysates are physiologically better than intact proteins because their intestinal absorption appears to be more effective. Whey protein peptides released by enzyme hydrolysis or bacterial fermentation represent more important biological activities, such as antimicrobial, immunomodulatory, antioxidant, and antihypertensive activities, have been released (Osman et al., 2015).

Non-bovine milk as a base of infant formula Camel milk and its whey

Camels are raised in areas with low rainfall and long dry periods (Brezovečki *et al*, 2015). Camel milk has been used for centuries as a medicinal drink in Middle Eastern, Asian and African cultures. Its popularity is because it has become one of the most promising foods regards to its potential antioxidant and antimicrobial activities derived from caseins and whey proteins (Osman *et al.*, 2015 and Jrad *et al.*, 2020). Camel milk differs from the milk of other species and is closest to human milk, especially in terms of its lack of β -lactoglobulin and the low amounts of κ -casein, which makes it a suitable diet for people with cow's milk protein allergy (Hochwallner *et al.*, 2014; zibaee *et al.*, 2015; Jrad *et al.*, 2020 and Oussaief *et al.*, 2020). Furthermore, it was reported that camel milk is rich in vitamin C, iron and potassium contents and low in fat and lactose contents (Gopal *et al.*, 2017). It has unique bioactive peptides released during the gastrointestinal digestion of milk proteins (Oussaief *et al.*, 2020). Nevertheless, it was reported that camel whey protein is considered a strong natural antioxidant because it decreases oxidative stress, enhances immune system function, and increases glutathione levels and it is rich in lactoferrin, lactalbumin, lactoglobulins, lactoperoxidase, and lysozyme, and is rich in immunoglobulins (Badr *et al.*, 2017).

Goat milk and its whey

Goat milk is recommended as an alternative to cow milk for infants and patients who are allergic to cow milk (Hochwallner et al., 2014). Goat milk is an attractive food because of its higher nutritional values and digestibility compared to cow milk due to the formation of softer curd (Biadała et al., 2020). It has a lower level of α_{s1} -casein and its fat has higher levels of medium chain fatty acids and smaller fat globules than cow milk (Ye et al., 2019). Whey from goat milk contains approximately 55% of milk nutrients: soluble proteins, lactose, vitamins, minerals and a minimum amount of fat (Galdino et al., 2020). Previously, Zhou et al. (2014) reported that consumer demand for goat milk infant formulae is increasing. They found that goat milk formulae provide growth and nutritional outcomes in infants that did not differ from those provided by a standard whey-based cow milk formula.

CONCLUSION

Although exclusive breastfeeding is preferred for all term newborn and their mothers, human milk feeding may not always be possible. The decline in breastfeeding for infants under six months of age is in increase, especially in urban areas worldwide and in Saudi Arabia as well. Consequently, the human milk substitute is the option either as a sole feeding source or in mixed feeding systems. Therefore, the importance of developing infant's formula and follow-on formula has long been recognized by researchers a long time ago. Efforts for improving cowmilk-based formulae have no end (i.e., cow milk protein modification, hydrolyzed cow-milk based formula, prebiotic and probiotic formula and fermented formula). Latterly, involving camel and/or goat milk and their whey in the preparation of follow-on formulae as well as developing fermented follow-on formulae without live bacteria are attracted researcher's interest. In summary, there is a contentious need for evaluate and develop follow-on formulae that mimic mother's milk to be more compatible with infant digestive system, enhance immunity and reduce allergenicity.

REFERENCES

- Abd El-Fattah, A., Sakr, S., El-Dieb, S., Elkashef, H. 2018. Developing functional yogurt rich in bioactive peptides and gamma aminobutyric acid related to cardiovascular health. LWT - Food Science and Technology, 98, 390–397. doi: 10.1016 /j. lwt. 2018.09.022.
- Abou-Soliman, N. H. I., Awad, S., El-Sayed, M. I. 2020. The Impact of Microbial Transglutaminase on the Quality and Antioxidant Activity of Camel-Milk Soft Cheese. Food and Nutrition Sciences, 11, 153-171. doi: 10.4236/fns.2020.113012.

- Al Juaid, D. A. M., Binns, C. W., Giglia, R. C. 2014. Breastfeeding in Saudi Arabia: a review. International Breastfeeding Journal, 9:1.
- Al Mazroea, A., Alharby, M. A., Almughathwai, A. A., Al-Remaithi, S. M., Saeed, R. M., Alharbi, A. F., Saeed, H. M. 2018. Comparison between nutritional values in cow's milk, and goat milk infant formulas. International Journal of Pharmaceutical Research & Allied Sciences, 7 (4):190-194.
- Alsulaimani, N.A. 2019. Exclusive breastfeeding among Saudi mothers: Exposing the substantial gap between knowledge and practice. J Family Med Prim Care, 8 (9), 2803-2809. doi: 10.4103 /jfmpc_jfmpc_533_19.
- Alyousefi, N. A., Alharbi, A. A., Almugheerah, B. A., Alajmi, N. A., Alaiyashi, S. M., Alharbi, S. S., Alnoumasi, Z. K. 2017. Factors Influencing Saudi Mothers' Success in Exclusive Breastfeeding for the First Six Months of Infant Life: A Cross-Sectional Observational Study. International Journal of Medical Research & Health Sciences, 6 (2), 68-78.
- Badr, G., Ramadan, N. K., Sayed, L. H., Badr, B. M., Omar, H. M., Selamoglu, Z. 2017. Why whey? Camel whey protein as a new dietary approach to the management of free radicals and for the treatment of different health disorders. Iranian Journal of Basic Medical Science, 20, 338-349. doi: 10. 22038 /JJBMS.2017.8573.
- Beghin, L., Tims, S., Roelofs, R., Rouge, M., Oozeer, R, Rakza, T., Chirico, G., Roeselers, G., Knol, J., Christophe, J., Roze, J, e Turck, D. 2020. Fermented infant formula (with Bifidobacterium breve C50 and Streptococcus thermophilus O65) with prebiotic oligosaccharides is safe and modulates the gut microbiota towards a microbiota closer to that of breastfed infants, Clinical Nutrition, https://doi.org /10.1016/j.clnu.2020.07.024.
- Biadała, A., Szablewski, T., Lasik-Kurdyś, M. Cegielska-Radziejewska, R. 2020. Antimicrobial activity of goat's milk fermented by single strain of kefir grain microflora. European food research and technology, 246, 1231–1239. doi: 10.1007/s00217-020-03483-2.
- Bocqueta, A., Briendc, A., Chouraquid, J. P., Darmaune, D., Feilletf, F., Frelutg, M. L., Guimberh, D., Hankardi, R., Lapillonnej, A., Perettik, N., Rozee, J. C., Simeonil, U., Turckm ,D., Dupont, C. 2020. The new European regulatory framework for infant and follow-on formulas: Comments from the Committee of Nutrition of the French Society of Pediatrics (CN-SFP). Archives de Pe'diatrie, 27, 351–353. doi: 10.1016/j.arcped.2020.09.002.
- Brezovečki, A., Čagalj, M., Dermit, Z. F., Mikulec, N., Ljoljić, D. B., Antunac, N. 2015. Camel milk and milk products. Mljekarstvo, 65 (2), 81-90. doi: 10.15567/mljekarstvo.2015.0202.
- Cukrowska, B., Bierła, J. B., Zakrzewska, M., Klukowski, K., Maciorkowska, E. 2020. The Relationship between the Infant Gut Microbiota and Allergy. The Role of Bifidobacterium breve and Prebiotic Oligosaccharides in the Activation of Anti-Allergic Mechanisms in Early Life. Nutrients, 12, 946. doi:10.3390/nu12040946.

- Drapala, K. P., Auty, M. A. E., Mulvihill, D. M., O'Mahony, J. A. 2016. Improving thermal stability of hydrolysed whey protein-based infant formula emulsions by protein–carbohydrate conjugation. Food research international, 88, 42–51. doi: 10.1016/j.foodres.2016.01.028.
- Elsaim, M. H. Abdelrhaman, A. 2018. Atomic absorption spectrophotometry detection of microelement in some animal products from various of Merowe–Sudan. American Journal of Physical Chemistry, 7(2), 29-36. doi: 10.11648/j.ajpc.20180702.14
- Fay, B., Madani, H. El-Rouili, S. A. H. 2014. Camel milk value chain in Northern Saudi Arabia. Emir journal of food and agriculture, 26(4), 359-365. doi: 10.9755/ejfa.v26i4.17278.
- Galdino, I. K. C. P. O., Salles, H. O., sos Santos, K. M. O., Veras, G. Alonso Buriti, F. C. 2020. Proximate composition determination in goat cheese whey by near infrared spectroscopy (NIRS). PeerJ, 8, e8619. Doi: 10.7717/peerj.8619.
- Gallier, S., Vocking, K., Post, J., Heijning, B., Acton, D., Beek, E., Baalen, T. 2015. A novel infant milk formula concept: Mimicking the human milk fat globule structure. Colloids and Surfaces B: Biointerfaces, 136, 329–339. doi: 10. 1016 /j. colsurfb.2015.09.024.
- Gopal, K., Kalla. A. M., Manthani, V., Keerthi, S. 2017. Camel milk a white gold of dessert- A Review. International archive of applied sciences and technology, 8(3), 74-83. doi: 10.15515/iaast.0976-4828.8.3.7483.
- Ha, M., Bekhit, A. E., McConnell, M., Mason, S. Carne, A. 2014. Fractionation of whey proteins from red deer (Cervus elaphus) milk and comparison with whey proteins from cow, sheep and goat milks. Small Ruminant Research, 120 (1), 125-134. doi: 10.1016 /j. smallrumres.2014.04.012.
- Hausjell, J., Miltnera, M., Herzigb, C., Limbeck, K., Saracevic, Z., Saracevic, E., Weissensteiner, J., Molitor, C., Halbwirth, H. Spadiut, O. 2019. Valorisation of cheese whey as substrate and inducer for recombinant protein production in E. coli HMS174(DE3). Bioresource Technology Reports, 8, 100340. doi.org/10.1016/j.biteb.2019.100340.
- Heijning, B. J. M., Berton, A., Bouritius, H. Goulet, O. 2014. GI symptoms in infants are a potential target for fermented infant milk formulae: A review. Nutrients, 6(9), 3942–3967. doi: 0.3390/nu6093942.
- Hochwallner, H., Schulmeister ,U., Swoboda, I., Spitzauer, S. Valenta, R. 2014. Cow's milk allergy: From allergens to new forms of diagnosis, therapy and prevention. Methods, 66, 22–33. doi: 10.1016/j. ymeth.2013.08.005.
- Huet, F., Abrahamse-Berkeveld, M., Tims, S., Simeoni, U., Beley, G., Savagner, C., Vandenplas, Y. Hourihane, J. 2016. Partly fermented infant formulae with specific oligosaccharides support adequate infant growth and are well-tolerated. JPGN, 63(4), e43-e53. doi: 10.1097/MPG.00000000001360.
- Jrad, Z., Oussaief, O., Khorchani ,T., El-Hatmi ,H. 2020. Microbial and enzymatic hydrolysis of dromedary whey proteins and caseins: techno-functional, radical scavenging, antimicrobial properties and incorporation in beverage formulation. Journal of food measurement and characterization, 14, 1–10.

- Karaglani, E., Thijs-Verhoeven, I., Gros, M., Chairistanidou, C., Zervas, G., Filoilia, F., Kampani, T., Miligkos, V, Matiatou, M., Valaveri, S., Sakellariou, A., Babilis, G., Bos, R., Manios, Y. 2020. A Partially Hydrolyzed Whey Infant Formula Supports Appropriate Growth: A Randomized Controlled Non-Inferiority Trial. Nutrients, 12, 3056; doi:10.3390/nu12103056.
- Khresheh, R. M., Ahmed, N. M. 2018. Breastfeeding selfefficacy among pregnant women in Saudi Arabia. Saudi Medical Journal, 39 (11), 1116-1122. doi: 10.15537/smj.2018.11.23437.
- Labuschagne, I. L., Dietitian, D. P., van Niekerk, E., Lombard, M. J. 2013. Acidified infant formula explained. South African Family Practice, 55 (4), 354-356. doi: 10.1080/20786204.2013.10874376.
- Lievore. P., Simoes, D. R. S., Silva, K.M., Drunkler, N. L., Barana, A. C., Nogueira, A., Demiate, I. M. 2015. Chemical characterisation and application of acid whey in fermented milk. Journal of Food Science and Technology, 52, 2083-2092.
- Martin, C. R., Ling, P., Blackburn, G. L. 2016. Review of Infant Feeding: Key Features of Breast Milk and Infant Formula. Nutrients, 8,279. doi: 10.3390/nu8050279.
- Mirabella, N., Castellani, V. Sala, S. 2014. Current options for the valorisation of food manufacturing waste: a review. Journal of Cleaner Production, 65, 28-41. doi: 10.1016/j.jclepro.2013.10.051
- Mosquera, P. S., Lourenco, B. S., Gimeno, S. G. A., Malta, M. B., Castro, M. C., Cardoso, M. A. 2019. Factors affecting exclusive breastfeeding in the first month of life among Amazonian children. PLoS ONE, 14 (7), e0219801. doi: 10.1371/journal.pone.0219801.
- Mugambi, M. N., Musekiwam A., Lombard M., Young, T., Blaauw, R. 2012. Synbiotics, probiotics or prebiotics in infant formula for full term infants: a systematic review. Nutrition Journal, 11:81
- Osman, A., Goda, H. A., Abdel-Hamid, M., Badran, S. M. 2015. Antibacterial peptides generated by Alcalase hydrolysis of goat whey. LWT - Food Science and Technology, 65, 480-486. doi: 10.1016/j.lwt.2015.08.043.
- Oussaief, O., Jrad, Z., Adt, I., Khorchani, T., El-Hatmi, H. 2020. Dromedary Milk Protein Hydrolysates Show Enhanced Antioxidant and Functional Properties. Food Technology and Biotechnology, 58 (2), 147. doi: 10.17113/ftb.58.02.20.6337.
- Wood, E. L., Gartner, S. N., Klockars, A., McColl, L. K., Christian, D. G., Jervis, R. E., Prosser. C. G., Carpenter, E. A., Olszewski. P. K. 2022. Whey-Adapted versus Natural Cow's Milk Formulation: Distinctive Feeding Responses and Post-Ingestive c-Fos Expression in Laboratory Mice. Foods, 11, 141. https://doi.org/10.3390/foods11020141.
- Owens, C. J. W., Labuschagne, I. L., Lombard, M. J. 2013. The basics of prescribing infant formulas. South African Family Practice, 55(2), 123-131. doi: 10.1080/20786204.2013.10874321.

Noura S. M. Al-Nassir and Sally S. Sakr

- Pescuma, M., Hébert, E. M., Bru, E., Valdez, G. F., Mozzi, F. 2012. Diversity in growth and protein degradation by dairy relevant lactic acid bacteria species in reconstituted whey. Journal of Dairy Research, 79, 201–208. doi: 10.1017/S0022029912000040.
- Saffari, M., Pakpour, A. H., Chen, H. 2017. Factors influencing exclusive breastfeeding among Iranian mothers: A longitudinal population-based study. Health Promotion Perspectives, 7 (1), 34-41. doi: 10.15171/hpp.2017.07.
- Salami, M., Moosavi-movahedi, A. A., Ehsani, M. R., Yousefi, R., Haertle, T., Chobert, J., Razzavi, S. H., Henrich, R., Balalaie, S., Ebadi, S. A., Pourtakdoost, S., Niasari-naslaji, A. 2010. Improvement of the Antimicrobial and Antioxidant Activities of Camel and Bovine Whey Proteins by Limited Proteolysis. Journal of Agriculture and Food Chemistry, 58, 3297–3302. doi: 10.1021/jf9033283.
- Salminen, S., Stahl, B., Vinderola, G., Szajewska, H. 2020. Infant Formula Supplemented with Biotics: Current Knowledge and Future Perspectives. Nutrients, 12, 1952. doi:10.3390/nu12071952.
- Sharmin, L., Chowdhury, M. A. K. A., Khatun, S., Ahmed, N. 2016. Barriers to Exclusive Breastfeeding among Urban Mothers. Journal of Enam Medical College, 6(2), 88–92. doi: 10.3329/jemcv6i2.27763.
- Sulaiman, Z., Liamputtong, P., Amir, L. H., 2016. The enablers and barriers to continue breast milk feeding in women returning to work. Journal of Advanced Nursing, 72(7):1711. doi: 10.1111/jan.12884.
- Szajewsk, H., Skórka, A., Pieścik-Lech, M. 2015. Fermented infant formulas without live bacteria: a systematic review. Eur J Pediatr, 174, 1413–1420. doi: 10.1007/s00431-015-2629-y.
- Talarico, V., Mazza, G., Rubino, M., Monti, G., Giancotti, L., Bua, A., Mohamed, A. M., Miniero, R. 2019. Camel milk: A possible alternative for children with cow's milk allergy? Minerva Pediatrica. doi: 10.23736/S0026-4946.19.05632-9.

- Vandenplas, Y., Ludwig, T., Bouritius, H., Alliet, P., Forde, D., Peeters, S., Hue,t F., Hourihane, H. 2017. Randomised controlled trial demonstrates that fermented infant formula with short-chain galactooligosaccharides and long-chain fructoligosaccharides reduces the incidence of infantile colic. Acta Pædiatrica, 106, 1150–1158. doi: 10.1111/apa.13844.
- Virtanen, T., Pihlanto, A., Akkanen, S., Korhonen, H. 2007. Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. Journal of Applied Microbiology, 102, 106–115. doi:10.1111/j.1365-2672.2006.03072. x.
- Ye, A., Cui, J., Carpenter, E., Prosser, C., Singh, H. 2019. Dynamic in vitro gastric digestion of infant formulae made with goat milk and cow milk: Influence of protein composition. International Dairy Journal, 97, 76-85. doi: 10.1016/j.idairyj.2019.06.002.
- Zhou, S. J., Sullivan, T., Gibson, R. A., Lönnerdal, B., Prosser, C. G., Lowry, D. J., Makrides, M. 2014. Nutritional adequacy of goat milk infant formulas for term infants: a double-blind randomised controlled trial. British Journal of Nutrition, 111, 1641–1651. doi:10.1017/S000711451300421.
- Zibaee, Z., Hosseini, S. M., Yousefi, M., Taghipour, A., Kiani, M. A., Noras, M. R. 2015. Nutritional and Therapeutic Characteristics of Camel Milk in Children: A Systematic Review. Electronic Physician, 7 (7), 1523-1528. doi: 10.19082/1523.
- Zou, Z., Ali, A. H., Abed, A. M., Guo Z 2017. Current knowledge of lipids in human milk and recent innovations in infant formulas. Current Opinion in Food Science, 16, 28–39. doi: 10.1016/ j. cofs.2017.06.010.

وضع الرضاعة الطبيعية في المملكة العربية السعودية والأساليب الحديثة في تطوير تركيبات المتابعة لمواجهة صعوبات الرضاعة الطبيعية

نوره سليمان محمد الناصر 1 و سالى سمير صقر 1,2*

1 قُسَم علوم الأغذيه و تغذية الإنسان - كلية الزراعه و الطب البيطري - جامعة القصيم - بريده 51452 - المملكه العربيه السعوديه 2 2قسم علوم الألبان - كلية الزراعه - جامعة القاهره -الجيزه - مصر

على الرغم من أن الرضاعة الطبيعية توفر جميع الفوائد للأطفال ، فإن العديد من الآباء يختارون تركيبات الرضع كبديل لأطفالهم. فعدما تكون الرضاعة الطبيعية غير ممكنة ، يجب التوصية بتركيبات المتابعة ، و من المعروف أن تكوينات بروتينات حليب البقر تختلف اختلافًا كبيرًا عن حليب الأم ولا يتحملها الرضع ، و لسوء الحظ ، تتم صياغة غالبية تركيبات المتابعة ، و من المعروف أن تكوينات بروتينات حليب البقر تختلف اختلافًا كبيرًا عن حليب الأم ولا يتحملها الرضع ، و لسوء الحظ ، تتم صياغة غالبية تركيبات المتابعة على أساس استخدام شرش اللبن البقري في التركيبته، لذلك ، اقترح العديد من الباحثين استخدام مشتقات حليب الماعز أو الإبل كأساس لصنع تركيبات الرضع، و من ناحية أخرى، كشفت الجهود التي بذلها الباحثون لتثمين شرش اللبن أن استخدام شرش لابن الإبل أو الماعز في تعذية الرضع له فوائد كبيرة في زيادة القيم الغذائية والبيولوجية و هضم بروتينات اللبن ، أيضًا، يوصى باستخدام التركيبات المتخمر ، و تركز الدامع لأنها تعزز قابلية الهضم وتعتبر آمنة للرضع، لذلك أوصى العديد من الحيثين باستخدام بروتينات اللبن ، أيضًا، يوصى باستخدام التركيبات المتخمرة للرضع لأنها تعز في الماعز المهضم وتعتبر آمنة للرضع، ذلك أوصى العديد من الباحثين باستخدام بكنيريا حمض اللاكتيك لإنتاج تركيبات لبنا لمتخمر ، و تركز الدراسه المرجعيه بشكل أساسي على أهمية استخدام تركيبات المتابعة لتغذية الأطفال حديثي الولادة عندما لا تكون الرضاعه الطبيعيه خيار امتاحا ، تركيب المائمانية والينية أقرب ما يمكن أساسي على أهمية استخدام تركيبات المتابعة لتغذين ما متخدم ما للاكتيك لإنتاج تركيبات لبنالأطفال المتخمر ، و تركز الدر اسه المرجعيه بشكل أساسي على أهمية الس منع، الترك المالمين منابعة منائم الاكتيك ولكن ما لرضاعه الطبيعيه خيار امتاده بالإضافة إلى نتك ، تعرض الدر اسه المرجعيه الأساليب التي تم استخدامها لإعدال حديثي الولادة عندما لا تكون الرضاعه الطبيعيه خيار امتادا، بالإضافة إلى المرجعي الأساليب التي تم استخدامها لإعداد من منوية مناء ما لنواع البن مختلفة مخلفه لتوفين المال ونائية أقرب ما يمكن