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ABSTRACT 
 
A plane wave excitation of a periodic conducting patch-array embedded in an infinite 
multilayered dielectric cylinder, as a shielding structure, has been studied. Based on 
the Green’s functions, the integral equation is formulated for describing the current 
on a conducting patch-array. Using Galerkin's method, the surface currents on the 
conducting patches are expanded in the form of series weighted Chebyshev 
polynomials of the first kind and the unknown coefficients are obtained by solving a 
resultant system of linear equations. 
The validity of the formulation and the accuracy of the numerical solution are 
demonstrated for different array geometries. The numerical results depict the 
penetrated field, the scattered field and the shielding effectiveness for four different 
array geometries. Some of these results are compared to the simulated results using 
Zeland Fidelity Workshop (ZFW), and a good agreement was achieved. 
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I. Introduction 
 
Coupling of electromagnetic energy into electronic devices and systems can cause 
electrical overstress to their internal circuits. This leads to failure, permanent 
degradation, or temporary malfunction (upset) of electronic devices and systems. 
Electromagnetic shielding is a technique that reduces the coupling of undesired 
radiated electromagnetic energy into equipment, so as to enable it to operate 
compatibly with its electromagnetic environment. 
 
The reduction of coupling can be affected by shielding sensitive components and 
subsystems with a metallic enclosure, wherever practical. Obviously, the entire 
system cannot be shielded since antennas will not perform their intended functions 
when completely enclosed within a metallic shield. Another shielding mean to reduce 
coupling in a specified frequency band without affecting the characteristics of the 
antennas includes the shielding by using structures consisting of apertures / patches 
that acts as a filter to electromagnetic energy at frequencies outside the frequency 
band of interest for the system.  
 
Three methods for determining the field which penetrates conducting cylinders 
containing narrow axially conducting slots for both TE- and TM- polarizations have 
been introduced by Chalmers and Butler [1, 2]. Firstly, is the scatterer method that 
treats the body as a scatterer and determines the interior field as the sum of the 
incident field produced by known source and the scattered field produced by the 
current in the body. Secondly, the short – circuit current method is based upon the 
field equivalence theorem, which allows one to change the excitation of the structure 
from the known source or incident field to an equivalent surface current placed on the 
aperture. The penetrated field can be determined by a procedure similar to that of 
scatterer method. Thirdly, the equivalent current method employs the equivalence 
principle to solve the equivalent magnetic currents and determine the field by 
knowledge of these currents. In all these methods integral equations are derived, that 
when solved by using method of moments yield currents from which penetrated field 
can be determined. 
 
On the other hand, another cylindrical structure, consisting of multiple aperture 
system has been studied by Wen-Yan Yin et al [3]. They investigate the TEz- 
polarized plane wave penetrating through multilayered cylindrical cavity-backed 
apertures. The mathematical procedure is based on the direct integral equation 
technique combined with Galerkin's procedure, that can be solved numerically for the 
magnetic currents on the surround multiple apertures. More recently, they use the 
same technique to describe the near – zone field characteristics of TMz plane wave 
penetrating through cylindrical multiple apertures coated or covered with lossy or 
lossless media [4]. 
 
In our previous work [5], the shielding performance of an infinitely extended 
conducting strip-array embedded in multilayer dielectric cylindrical structure and 
excited by TMz – polarized plane wave has been considered. Based on the Green's 
functions, the integral equation is derived for describing the electric current 
distribution on the conducting strips. By using the Galerkin's procedure and taken into 
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consideration the edge effect of the conducting strips, the surface currents are 
expanded in the form of series weighted Chebyshev polynomials of the first kind. 
 
This work is devoted to the problem of TMz – polarized plane wave excitation of a 
periodic conducting patch-array embedded in an infinite multilayer dielectric 
cylindrical structure. By using the same technique as in [5], the penetrated field, 
scattered field and shielding effectiveness is studied for different array geometries. 
Some of the results are compared to the simulated results using Zeland Fidelity 
Workshop (ZFW). This paper is organized as follow. Section II includes the 
formulation of the problem to obtain the integral equations for describing the electric 
current distributions on the conducting patches. Section III presents the numerical 
solution for these integral equations. The numerical results are analyzed in section 
IV. Finally, section V summarizes the paper.  
 
 
II. Formulation 
 
Figure 1 shows a periodic conducting patch-array embedded in multilayer dielectric 
cylindrical structure at, ρ = R'3  (R2  ≤  R'3 ≤ R3).  The location of each patch is defined 
in the φ-direction by [ψ2Sφ-1, ψ2Sφ] and in the z-direction by [L2Sz-1 , L2Sz] where sφ, sz 
are the patch numbers in φ- and z-directions respectively (sφ = 1, 2…, sz = 1, 2…). 
The regions (ρ< R1) and (ρ > R3) are usually a free space with parameters εo and µo. 

 
 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Multilayered infinite dielectric cylinder with periodic  
conducting patches - array embedded at ( ). '
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For TMz–polarization, the normally incident electric and magnetic field components 
[4] is expressed as:  
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where, ooo εμω=K , ooo εμη = , φin is the angle of incidence measured from the 
x-axis, )K(Jm ρo is the cylindrical Bessel function of the first kind mth order and the 
prim denotes the derivative with respect to the argument (Kρ). 
 
A. Excitation field expansion: 
  
In the absence of the conducting patch array, the excitation field in each region can 
be described as:  
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and the unknown coefficients are all 
determined by applying the boundary conditions for tangential components of the 
electric and magnetic fields at ρ = R1 , R2 and R3 [5]. 
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B. Green’s functions formulation: 
 
Let we have a curved rectangular patches embedded at  that are uniformly 
periodic with periodicity Tφ and Tz in φ- and z-directions respectively, as shown in 
Fig.1. The Z–components of the scattered electric and magnetic fields in each region 
due to the induced surface currents Jz and Jφ on the conductor surface can be 
expressed as [6], 

'
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Once Ez and Hz are known, the scattered field components of Eρ , Eφ , Hρ and Hφ in 
each region can be obtained through the following expressions [6], 
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The continuity of the electric and magnetic fields on the inner and outer surfaces of 
the structure requires that: 
 
at (ρ = R1); 
 

 at (ρ = R2); 
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Applying the above boundary conditions, the unknown coefficients 

and (16 - unknowns) can be determined in terms of the 

unknown current densities and . Substituting by these coefficients in 
Eqn.(3), the scattered fields in the five regions can be expressed as, 

 mn,mn,mn C~ B~ A~ ννν mnD~ν

mnzJ~ mnJ~φ
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is the mnth. coefficient of the Fourier expansion of the induced current on the 
conducting patches in  and  respectively, , , ,and are 

the Green's functions for different regions, which can be calculated by applying the 
same procedures used in [5] for the two-dimensional Green’s functions, and Tφ and 
Tz are the patches periodicities in φ  and respectively [Tφ=2π/Pφ , Tz=R’3 × Tφ/2]. 
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C. Boundary conditions:  
 
Boundary conditions on the surface of the conductor at  can be written as, '
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To solve the integral equations of (6). Galerkin’s moment method is applied. To begin 
with, we first expand the unknown surface current densities on the conducting 
patches Jz and Jφ in terms of linear combinations of known basis functions as: 
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where,   and .…. are Chebyshev polynomials of  the first kind, )y(T '
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III. Numerical solution: 
 

By adopting Galerkin's procedures, both sides of Eqn. (8-a) are multiplied by the 
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is the spectral amplitude of the current basis function in φ-direction.  
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is the spatial amplitude of the current basis function in φ-direction.  
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is the spectral amplitude of the current basis function in Z-direction.  
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is the spatial amplitude of the current basis function in Z-direction. 
Equations (9-a) and (9-b) can be represented as a system of linear equations which 
can be written in matrix form as: 
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Where,  

[LHS] …is one column-array with dimension   1×  [Pz×Pφ×(Qz1×Qφ1+ Qz2×Qφ2)], 

[RHS]…is a matrix with dimensions 

                               [Pz×Pφ×(Qz1×Qφ1+ Qz2×Qφ2)]×[Pz×Pφ×(Qz1×Qφ1+ Qz2×Qφ2)],   and 

(a, b)… is the current amplitude coefficients which can be determined as: 
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(11) 

 
IV. Numerical results: 
 
Based on the above mathematical treatment, computer codes have been developed 
for calculating the shielding characteristics of the structure in Fig.1. Let R1=0.2m, 
R2=0.25m, R′

3=0.27m and R3=0.3m, while the constitutive parameters are εr1=1.5, 
εr2=2.5 and μr1=μr2=1. Consider the case of plane wave excitation with φin=90° and 
frequency f = 100 MHz. The array embedded at R'3, have angular width (Tφ/2) and 
length (Tz/2) for the conductors.  
 
The validity of the formulated and written codes including the accuracy of the 
numerical solution has been fulfilled by computing the current and field distributions 
on the surface containing the conducting patches. According to numerical 
experiments and convergence study, Qz1=Qφ2=30 and Qz2=Qφ1=10 are employed for 
expanding the currents, and the field modes are truncated to M=N=20, (m=-M:M,    
n=-N:N). 
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Figure 2 depicts a three dimensional patterns of the penetrated electric fields for the 
cases of one, two, three and four patch-arrays. It shows that the penetrated field 
satisfy the boundary conditions at the conductor surface and the penetration of the 
cross component |Eφ| is much smaller than that of the copolar one |Ez|. It also shows 
that |Ez| gives a considerable high level of the penetrated fields near the center of the 
cylindrical structure for all cases. This gives a good estimation for a low shielding 
performance at such frequency (f=100 MHz).  
 
The normalized amplitudes of the far zone scattered fields for the same cases are 
illustrated in Fig.3. The calculated results (the case of infinitely extended structure) 
are compared with the simulated one (structure with length 5λ) using Zeland Fidelity 
Workshop (ZFW) and a good agreement was found. The figure also shows the 
simulation result for complete conducting cylinder, embedded at R′

3, as an ideal 
shielding case. We can see that the results are far from the ideal case at 100MHz 
which agree with the penetrated field results that the structure at this frequency gives 
low shielding performance. 
 
One of the very important parameters that are used to determine the shielding 
performance of any shielding structure is the shielding effectiveness (SE). The SE is 
defined as the ratio of the field strength in the presence and absence of the shielding 
structure. However, for cylindrical nature of the structure one has to expect a 
variation in the (SE) with the transversal angle (φ), longitudinal length (z) and radial 
distance (ρ). In this work the variation with ρ is presented for the case of normal 
incidence, at fixed position in z and φ. The variation of SE with the frequency is also 
studied. The SE is calculated for the electric field (SEe), the magnetic field (SEh) and 
the power density (SEp). 
 
Figures 4, 5 depict the SEe, SEh and SEp for the four studied structures near the 
center (ρ=0.05 m) and at the boundary containing the conducting surface (ρ=0.27 m) 
respectively. For each location two cases are presented, the free-standing structure 
(εr1=εr2=1), the left hand side of the figures, and structure with supporting dielectric 
layers (εr1=1.5, εr2=2.5), the right hand side of the figures. 
 
 In Fig.4.a, the case of free-standing structure, a low shielding performance is 
obtained for the electric field (SEe) in the frequency range below 300 MHz at the 
center with SEh (-18 to -37dB)  and SEp (-9 to -19dB). At 677 MHz there is an 
obvious structure resonance at which one can notes narrow peaks in the three 
quantities that can be used for communication through the shielding structure.  With 
increasing the number of patches, for the free-standing cases illustrated in    
Figs.4.b-d,  where the length of the patch becomes shorter and the angular width 
becomes narrower, we can notice that the variation in the characteristic curves is 
reduced while the structure resonance (at 677 MHz) is shifted. It worth, noting that 
there is an increase in SEe at some frequencies above 0dB that is mainly due 
multiple reflections inside the structure and the diffraction at edges. Also, the power 
shielding effectiveness (SEp) at these frequencies does not exceed the 0 dB. In the 
presence of supporting layers with (εr1=1.5, εr2=2.5), the right hand side curves of 
Fig.4, the structure shows different shielding characteristics where the SEe becomes 
more weak, the effect of multiple reflection and edges diffraction increases and the 
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variations in characteristic curves increases. Also, there is a lower shift in the 
resonance due to the effect of supporting dielectric layers of higher permittivity to be 
at 620 MHz for the case of one patch-array in Fig.4.a. This resonance is shifted up by 
increasing the number of patches as shown in Figs. 4.b-d  
 
Near the surface of the conductor (at ρ=0.27 m), Fig.5.a illustrates the case of free-
standing one patch-array. There is wide dip in the frequency range (450-850 MHz) 
compared to that near the center shown in Fig.4.a which is followed by surface 
resonance at 900 MHz. Increasing the number of patches has an effect on the width 
and position of this dip as illustrated in Figs.5.b-d. In the case of four patch-array, 
shown in Fig.5.d, a SEp below -10 dB can be obtained at frequencies greater than 
250 MHz and reaches -37 dB at 924 MHz. Figure 5 also depicts the SE curves near 
the conductor surface with the presence of supporting layers (εr1=1.5, εr2=2.5). We 
can see that the variations in characteristic curves increases due to the presence of 
the dielectric layers. Also, there are frequency regions that are convenient for 
shielding applications. In Fig.5.d, the four patch-array, there is a frequency region 
(220 MHz – 615 MHz) at which the power shielding (SEp) is below -10 dB and 
reaches -35 dB at 392 MHz. The three patch-array, illustrated in Fig.5.c, the SEp is 
below -10 dB in the frequency region (250 MHz - 550 MHz) and reaches -28 dB at 
411 MHz. Also, in the case of two patch-array depicted in Fig.5.b, there is shallow dip 
at frequencies grater than 645MHz where the SEp is less than -10 dB.   
 
V. Conclusion: 
 
In this paper, we have investigated the penetrated field, the scattered field and the 
shielding characteristics of a TMz plane wave excitation of one, two, three and four 
periodic conducting patch-arrays embedded in an infinite multilayer dielectric 
cylindrical structure. The applied technique, based on the Green's function combined 
with the Chebyshev polynomial with edge effect, is very efficient for such structures. 
Numerical results give a very good contribution which can be used for actual 
applications. It shows that the shielding operating bandwidth increases by increasing 
the number of conducting patches in the embedded array. It also shows that the 
shielding effectiveness near the surface containing the conductor is better than that 
at the center of the structure. A region in which SEp is below -10 dB and reaches       
-35 dB in the frequency range from 220 MHz to 615 MHz is obtained near the 
conductor surface with the presence of supporting dielectric layers. Finally, the 
presence of dielectric layers causes shift to the resonance frequency and increase 
the multiple reflections inside the structure.  
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(d) Four patch-array. 
 
 

Fig. 2 The penetrated fields distributions |Ez| and |Eφ|  

for different array geometries.  



 
Proceeding of the 12-th ASAT Conference, 29-31 May 2007 MCV-01 14 

 

 ١٤

                       

φin=90ο

x 

y 

                                        (a) One patch-array.  
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                                        (b) Two patch-array. 
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                                        (c) Three patch-array. 
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                                        (d) Four patch-array. 
 
 
 

Fig. 3 The far zone scattered field for different array geometries.  
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(a) One patch-array.  

  
(b) Two patch-array. 

  
(c) Three patch-array.                                              

  
(d) Four patch-array. 

 
 

Fig. 4 Shielding effectiveness (SE) with and without the presence  

of dielectric layers for different array geometries at ρ=0.05 m.  
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(a) One patch-array.  

  
(b) Two patch-array. 

  
(c) Three patch-array. 

   
(d) Four patch-array. 

 
 

Fig. 5 Shielding effectiveness (SE) with and without the presence  

of dielectric layers for different array geometries at ρ=0.27 m.  
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