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ABSTRACT

The recurrence dispersion equation of coupled single-mode waveguides is modified by
eliminating redundant singularities from the dispersion function. A recurrence zero-
bracketing (RZB) technique is proposed in which the zeros of the dispersion function at
one recurrence step bracket those of the next recurrence step. Numerical examples
verify the utility of the RZB technique in computing the roots of the dispersion equation
of the TE and TM modes of both uniform and non-uniform arrays.

[. INTRODUCTION

Single-mode waveguide arrays are widely used in many photonic devices, including
directional couplers, modulators, switches, arrayed waveguide gratings, modal and
power splitters. In most of these applications the device functionality depends primarily
on the interaction of guided, as opposed to leaky or radiation, modes [1].

Many methods have been used to determine the modal properties of waveguide arrays
by solving for the roots of the dispersion function, e.g. in [2]-[6]. All of these methods
require initial guess for each root without specifying a rule to identify this guess, except
for the argument principle method [5], [6]. This method uses the roots of a polynomial as
initial guess and then continues to use traditional zero-search techniques [7] to get the
actual roots of the dispersion equation. However, the computer implementation of this
method is not easy as it involves numerical integration along closed contour in the
complex plane. In spite of the applicability of most of the above-mentioned methods to
general multilayer structures, it remains desirable to trade this generality in favor of
simplicity for more widely used structures such as coupled single-mode waveguides.
This simplicity implies developing an efficient zero-search technique, which enables
locating the roots of the dispersion equation without using extensive and/or complex
numerical computations. In this paper, the recurrence dispersion equation of coupled
single-mode waveguides is modified to remove redundant singularities from the
dispersion function. A recursive zero-bracketing (RZB) technique is proposed for the
computation of the roots of the modified equation.
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. RECURRENCE DISPERSION RELATION

Different recurrence approaches have been used to express the dispersion relation of
waveguide arrays, e.g. in [4] and [8]. The main advantage of these approaches is that
they are simple to implement on computers and require fewer computational steps
compared to other more complex approaches. Also, they enable monitoring the
evolution of modal spectrum with each recurrence step, which not only gives an insight
to the physics of modal formation in the array but also is the basis of the proposed RZB
technique. In this paper we follow the approach in [4] which applies for both uniform and
non-uniform arrays. According to this approach the dispersion relation of an array of M
coupled waveguides (see Fig.1) is given by,
ey =0 (1a)
where, ¢,,, is an implicit dispersion function of the modal effective index, N, and the
free-space propagation constants, k, . It satisfies the recurrence relation,
Ein =Jdin& — K&, (1b)

where, i is a recurrence index which is incremented in steps from i=1toi=M —1.

Even under single-mode condition of the isolated waveguides in the array, the
dispersion function, ¢,,, has singularities in the effective index, N . These singularities
set up a fundamental zero-bracketing problem [7]. For example, the opposite signs of
the dispersion function between two successive values of N may bracket a pole,
instead of a zero, due to the discontinuity of that function. In this case, the zero search
algorithm may end up returning incorrect roots of the dispersion equation. An example of
such an algorithm is that of the FZERO built-in function in MATLAB, which is a widely
used software package [9].

As a preliminary step to remove singularities from ¢,,, we use normalization. The

standard normalization parameters used are, b = (N2 —nf)/(n? —nf), V, =k,d./nf —nZ,
and V, ., =k.d,..,+/n7 —n: . As will be clear shortly, n, is chosen to be the minimum core

i+l oYi,i+l

refractive index in the array, while n, is the substrate refractive index, d, is the width of
the i waveguide, and d. .., is the separation between the i the (i+1)" waveguides. In

i+l

and K. ., are

i+1 i+17

terms of these normalized parameters the recurrence parameters, J
given by,

J. = (cot(®Py. )= P )+ Hj (cot(® )+ p, )e_ZVi'ﬁ]\/B (1c)
" (1+ pi+1 COt(CDiH )
csc?(®,)

K. =u.
i+l /u|,|+1 (1 + pi COt(q)i ))(1 + le COt(q)Hl ))

e*ZVi,m\/E ' (1d)

with
_ M (1e)

P 217.+fb(a, —b)’
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_ & -b a, +(77i2+1 _l)b
Hin = MTia V@, —b & +(77i2 _l)b ’ an

where g =1, g, = (cot(®d,)-p,)/(1+ p, cot(d,)), ®, =V, /a, -b, and
a, = (ni2 — n§)/(n§ — nf) Here, n, is the core refractive index of the i waveguide, and 7,,

depends on the modal polarization. It equals (ni/ns)2 for TM modes and unity for TE
modes. By combining (1c)-(1f) with (1b), ¢,, becomes a function of b and the
parameters, V;, V,.,;, &, and 7;. In order to identify the singularities of &, it is required
to identify the possible values of these parameters. Under single-mode condition of the
isolated waveguides in the array, Vi\/a_i<7r. The mode-polarization parameter, r, >1,

and the normalized separation, 0<V,,,, <. The choice of n, =minn, ensures that
I

i,i+1

a, 21 for all the waveguides in the array. Also, it implies limiting b between 0 and 1 in
most practical applications, where n, < N < miin n;.

The above constraints on 7,, a, and b are sufficient to eliminate any poles in p, and
t::.; see (Le) and (1f). Also the single-mode condition, V,/a, <z, ensures that cot(®,)
has no poles in the range, 0 <b <1. Further inspection of ¢, J,,, and K, in (1c) and
(1d), shows that the only remaining poles are due to the zeros of (1+ p, cot(®,)) and
(1+ p,,, cot(®,,,)), which appear in the denominators of these parameters. It can be
shown that neither of 1/(1+ p, cot(®;)) nor 1/(1+ p,, cot(®,,,)) have zeros in the range

0<b <1, under the above constraints on V,, 7,, a,, and b. Thus, these quantities result

in redundant poles which may safely be removed without changing the zeros of the
original dispersion function, &,,. The result of removing these poles is that the dispersion

equation reduces to,

Iw =0, (2a)
where the modified dispersion function, y,,, satisfies the recurrence relation,

Xin =Dinxi — Bz, (2b)
with,

Di., = (COt((Dm)_ pi+1)+ﬂi,i+1 (cot(®, )+ pi)e_ZVi’W/E (2¢)

Eii =t CSCZ(CDi )e—zvm,ﬁ - (2d)

and K.

i+17

These recurrence parameters take more simple forms compared to J,,, in (1c)
and (1d). The dispersion functions, y,=1 and z, =(cot(®,)-p,). Unlike &, the
modified dispersion function, y,,, has no singularities in the range, 0 <b <1, in the case
of single-mode waveguide arrays. Thus, the change of the sign of y,, around any point

b in that range only implies a zero at that point. This continuity of y,, simplifies
searching for the roots of the dispersion equation.
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[ll. DIVERSITY OF DISPERSION FUNCTIONS

Thus far, the dispersion function has been modified by eliminating redundant poles from
the original dispersion function. Further modification of the dispersion function may be
carried out by first writing the dispersion function (2b) in terms of the determinant of a tri-
diagonal matrix. Next by noting that E,,, in (2d) does not have any zeros in the entire

0<b<1 range, which allows dividing each raw of this determinant by the off-diagonal
elements, without changing the zeros of the dispersion function. This modification allows
generating different dispersion functions which are all continuous and share the same
zeros in the range, 0 <b<1. For example, one form of the dispersion equation is given

by,

5, =0, (3a)
where the dispersion function, J,, , satisfies the recurrence relation,
Oin = AL — B0, (3b)

with the following recurrence parameters,

Ai+1 = {(COt |+1 p|+1 /\/H}sm

f11 (cos(@, )+ p sin(@, e ™ (3c)

(\/ﬂl i+l //uu Li Xsm D, /Sm ))e Hhin 2 ll)ﬁ, (3d)
and the dispersion functions, &, :{(cos(CD — p, sin(® /1//,112}«3\"2 and &, =1. Indeed,

o,, 1,,» and g, all have the same zeros in the range, 0 <b <1. The particular form of the
dispersion function defined by (3b)-(3d) has an advantage over other forms for uniform
arrays where B,, =1 and only one recurrence parameter, i.e. A, , iS required to
compute the dispersion function.

IV. NUMERICAL EXAMPLES

The continuity of &,, in the range, 0<b<1, eliminates the problem of bracketing
singularities in that range and allows the zeros of the dispersion function at one
recurrence step to bracket its zeros at the next recurrence step. One of the primary
goals of this paper is to use this RZB technique to find the roots of the dispersion
equation. The following numerical examples apply this technique to compute the
effective indexes of the TE and TM guided modes of both uniform and non-uniform
waveguide arrays.

The first example uses a non-uniform array of M=4 single-mode waveguides with the
following design parameters. The substrate refractive index n, =1.5. The core refractive

indexes of the isolated waveguides are n, =1.55, n, =1.54, n, =1.56, and n, =1.53. The
core widths are, d, =13 gm, d,=1.1 gm, d,=1.0 uwm, and d,=1.5, while the
separation between the waveguides are, d,, =2 gm, d,, =3 xm, and d,, =1 um.
Table | shows the result of computations of the effective indexes of the TE and TM
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modes of the array at a free-space wavelength, 4, =1.3 um. In these computations the

RZB technique was applied with the bisection method [7] to compute the zeros of both,
oy and g, , given by (3b) and (1b), respectively. The results of computations are
compared with those obtained by a beam propagation method (BPM) simulator which
employs an iterative technique with transparent boundary conditions [10]. The BPM
computations used a computational window of 40 um, a grid size, Ax=0.001 xm, a step
size in the propagation direction, Az =0.5 um, and an overall propagation length of 5
mm. It is shown that the RZB technique is successful in computing the zeros of J,, , and
consequently the roots of the dispersion equation (3a), for both TE and TM modes. It
fails to compute the roots of (1a) because of the presence of singularities in the
dispersion function, ¢, .

The second example uses a uniform array of M=8 single-mode waveguides each of core
refractive index 1.55, substrate refractive index 1.5, core width 1 zm, and waveguide
separation 3 um. As before, the effective indexes of TE and TM modes were computed
using the RZB at a free-space wavelength, 4, =1.3 um, with both the modified and

conventional dispersion functions, ¢,, and &,,. In computing the zeros of ¢,, only one
recurrence parameter was used; see section Ill. The results of Table Il show excellent
agreement between the modal indexes computed by the RZB technique using the
modified dispersion function, ¢,,, and those obtained by the iterative BPM technique.
However, the RZB technique fails in computing the zeros of &,, due to the discontinuity
of this function. The BPM computations used a computational window of 70 um,
Ax =0.01 um, Az =1 um, and the same propagation length of the previous example. The

small difference between the modal indexes of the successive modes verify the utility of
the RZB technique in finding closely spaced roots of the dispersion equation.
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Fig.1. Schematic of an array of M-coupled waveguides (bottom) with the corresponding
refractive index profile (top).
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TABLE |

COMPUTED VALUES OF MODAL EFFECTIVE INDEXES OF TE AND TM MODES AT A,=1.3 um FOR A NON-

UNIFORM ARRAY OF M=4 SINGLE-MODE WAVEGUIDES

mode N
RZB + Eq.(3a) BPM RZB + Eq.(1a)
TE, 1.529001 1.529000 1.528142
TE, 1.527431 1.527431 1.521509
TE, 1.516728 1.516727 1.511549
TE» 1.513257 1.513259 1.500719
TM, V,0Y7733 1.527734 1.528142
™, V,0YT0AY 1.526587 1.521174
™, (ELARERE 1.516068 1.512809
T™; V0 VAE 1.512808 1.502936
TABLE I

COMPUTED VALUES OF MODAL EFFECTIVE INDEXES OF TE AND TM MODES AT A,=1.3 um FOR A

UNIFORM ARRAY OF M=8 SINGLE-MODE WAVEGUIDES

mode N
RZB + Eq.(3a) BPM RZB + Eq.(1a)

TE, Y,0VAYY ¢ 1.528751 y,06911¢
TE, y,0YAoYY 1.5280¢ Y,06110A
TE, Y,0YAYO) 1.528V0¢ Y,0YAVYVYA
TE; Y,0YV10oA 1.52Vv1e4 y,oYov.Y
TE,4 ANCAR AR 1.52Vv+414 V,0.87YY
TE; AIN-A I T-A % 1.52%eYo 1,00 VALY
TEq Y,o71. 8V 1.527+¢) V,00 0 £ €A
TE, Y,oYovY. 1.520VYo 1,00 0400
™, V,0vVvad. 1.527974 V,089AY
™, Y,0YVYYA 1.527751 Y,06 AT
™, Y,0YVYYY 1.527345 V,08YYY.
T™; (A RVSR 1.521AY0 Y,o7YYY4
T™M, Y,071YYA 1.527Yyy¢ Y,0Y e AEA
TM; Y,0Y01YY 1.5207¥1 Y,0.YA£T
TM, Y, 0Y01 ) 1.5204)) Y,04 AVY
™, Y,ov8vEq 1.52¢v14 Y,00 00 £
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