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ABSTRACT 
The recurrence dispersion equation of coupled single-mode waveguides is modified by 
eliminating redundant singularities from the dispersion function. A recurrence zero-
bracketing (RZB) technique is proposed in which the zeros of the dispersion function at 
one recurrence step bracket those of the next recurrence step. Numerical examples 
verify the utility of the RZB technique in computing the roots of the dispersion equation 
of the TE and TM modes of both uniform and non-uniform arrays. 

I. INTRODUCTION 
Single-mode waveguide arrays are widely used in many photonic devices, including 
directional couplers, modulators, switches, arrayed waveguide gratings, modal and 
power splitters. In most of these applications the device functionality depends primarily 
on the interaction of guided, as opposed to leaky or radiation, modes [1].  
Many methods have been used to determine the modal properties of waveguide arrays 
by solving for the roots of the dispersion function, e.g. in [2]-[6]. All of these methods 
require initial guess for each root without specifying a rule to identify this guess, except 
for the argument principle method [5], [6]. This method uses the roots of a polynomial as 
initial guess and then continues to use traditional zero-search techniques [7] to get the 
actual roots of the dispersion equation. However, the computer implementation of this 
method is not easy as it involves numerical integration along closed contour in the 
complex plane. In spite of the applicability of most of the above-mentioned methods to 
general multilayer structures, it remains desirable to trade this generality in favor of 
simplicity for more widely used structures such as coupled single-mode waveguides. 
This simplicity implies developing an efficient zero-search technique, which enables 
locating the roots of the dispersion equation without using extensive and/or complex 
numerical computations.  In this paper, the recurrence dispersion equation of coupled 
single-mode waveguides is modified to remove redundant singularities from the 
dispersion function. A recursive zero-bracketing (RZB) technique is proposed for the 
computation of the roots of the modified equation.  
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II. RECURRENCE DISPERSION RELATION 
Different recurrence approaches have been used to express the dispersion relation of 
waveguide arrays, e.g. in [4] and [8]. The main advantage of these approaches is that 
they are simple to implement on computers and require fewer computational steps 
compared to other more complex approaches. Also, they enable monitoring the 
evolution of modal spectrum with each recurrence step, which not only gives an insight 
to the physics of modal formation in the array but also is the basis of the proposed RZB 
technique. In this paper we follow the approach in [4] which applies for both uniform and 
non-uniform arrays. According to this approach the dispersion relation of an array of M 
coupled waveguides (see Fig.1) is given by, 

0=Mε       (1a) 
where, Mε , is an implicit dispersion function of the modal effective index, , and the 
free-space propagation constants, . It satisfies the recurrence relation,  

N

ok

1111 −+++ Κ−= iiiii J εεε ,          (1b) 
where, i  is a recurrence index which is incremented in steps from  to 1=i 1−= Mi .  

Even under single-mode condition of the isolated waveguides in the array, the 
dispersion function, Mε , has singularities in the effective index, . These singularities 
set up a fundamental zero-bracketing problem [7]. For example, the opposite signs of 
the dispersion function between two successive values of  may bracket a pole, 
instead of a zero, due to the discontinuity of that function. In this case, the zero search 
algorithm may end up returning incorrect roots of the dispersion equation. An example of 
such an algorithm is that of the FZERO built-in function in MATLAB, which is a widely 
used software package [9]. 

N

N

As a preliminary step to remove singularities from Mε , we use normalization. The 

standard normalization parameters used are, ( ) ( )2222
sfs nnnNb −−= , 22

sfioi nndkV −= , 

and 22
1,1, sfiioii nndkV −= ++ . As will be clear shortly,  is chosen to be the minimum core 

refractive index in the array, while  is the substrate refractive index,  is the width of 
the ith waveguide, and  is the separation between the ith the (i+1)th waveguides. In 
terms of these normalized parameters the recurrence parameters,  and 
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where 10 =ε , ( )( ) ( )( )11111 cot1cot Φ+−Φ= ppε , baV iii −=Φ , and  

( ) ( )2222
sfsii nnnna −−= . Here,  is the core refractive index of the ith waveguide, and in iη , 

depends on the modal polarization. It equals ( )2
si nn for TM modes and unity for TE 

modes. By combining (1c)-(1f) with (1b), Mε  becomes a function of b and the 
parameters, , , , and iV 1, +iiV ia iη . In order to identify the singularities of Mε  it is required 
to identify the possible values of these parameters. Under single-mode condition of the 
isolated waveguides in the array, π<ii aV . The mode-polarization parameter, 1≥iη , 
and the normalized separation, ∞<< +1,0 iiV . The choice of iif nn min=  ensures that 

 for all the waveguides in the array. Also, it implies limiting b between 0 and 1 in 
most practical applications, where 

1≥ia

iis nNn min≤≤ .       

The above constraints on iη ,  and b are sufficient to eliminate any poles in  and ia ip

1, +iiμ ; see (1e) and (1f). Also the single-mode condition, π<ii aV , ensures that ( )iΦcot  
has no poles in the range, 10 << b . Further inspection of 1ε ,  and  in (1c) and 
(1d), shows that the only remaining poles are due to the zeros of 

1+iJ 1+Κ i

( )( )iip Φ+ cot1  and 
, which appear in the denominators of these parameters. It can be 

shown that neither of 
(( 11 cot1 ++ Φ+ iip ))

( )( )iip Φ+ cot11  nor ( )( )11 cot11 ++ Φ+ iip  have zeros in the range 
, under the above constraints on , 10 << b iV iη , , and b. Thus, these quantities result 

in redundant poles which may safely be removed without changing the zeros of the 
original dispersion function, 

ia

Mε . The result of removing these poles is that the dispersion 
equation reduces to,  

0=Mχ ,       (2a) 
where the modified dispersion function, Mχ , satisfies the recurrence relation, 

1111 −+++ −= iiiii ED χχχ ,              (2b) 
with, 

( )( ) ( )( ) bV
iiiiiii

iieppD 1,2
1,111 cotcot +−

++++ +Φ+−Φ= μ          (2c) 

( ) bV
iiii

iieE 1,22
1,1 csc +−

++ Φ= μ .                                (2d) 
These recurrence parameters take more simple forms compared to  and , in (1c) 
and (1d). The dispersion functions, 

1+iJ Κ 1+i

10 =χ  and ( )( )111 cot p−Φ=χ . Unlike Mε , the 
modified dispersion function, Mχ , has no singularities in the range, , in the case 
of single-mode waveguide arrays. Thus, the change of the sign of 

1<< b0

Mχ  around any point 
b in that range only implies a zero at that point. This continuity of Mχ  simplifies 
searching for the roots of the dispersion equation. 
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I. DIVERSITY OF DISPERSION FUNCTIONS  
 

ed by eliminating redundant poles from 
the original dispersion function. Further modification of the dispersion function may be 

 

II

Thus far, the dispersion function has been modifi

carried out by first writing the dispersion function (2b) in terms of the determinant of a tri-
diagonal matrix. Next by noting that 1+iE  in (2d) does not have any zeros in the entire 

10 << b  range, which allows dividing each raw of this determinant by the off-diagonal 
elements, without changing the zeros of the dispersion function. This modification allows 

ng different dispersion functions which are all continuous and share the same 
zeros in the range, 10 << b .  For example, one form of the dispersion equation is given 
by, 
   0=M

generati

δ ,           (3a) 
where the dispersion function, , satisfies the recurrence relation, Mδ

1111 −+++ −    = iiiii A B δδδ ,         (3b) 
with the following recurrence parameters, 
            ( )( ){ } ( ) b1−Φ=       V iie , +  

                  
iiiiii pA sincot 1,111 Φ++++ μ

     ( ) ( )( ) be 1 (3cV
iiiii

iip ,sincos1,
+−

+ Φ+Φ+ μ   )              

( ) ( ) ( )( ) ( ) bVV
iii

iiiie ,11,sinsin 1,1
−+ −−

− ΦΦ , 

and the dispersion functions, ( ) (( )
iiiiB 1,1 −++ = μμ        (3d) 

{ ) } bVe 2,1
2,1 and p 1111 sincos μδ Φ−Φ= 10 =δ . Indeed, 

1δ , 1χ , and 1ε  all have the same zeros in the range, 10 < <b . The p ular fo
 an advantage over other forms for uniform 

. NUMERICAL EXAMPLES 

artic rm of the 
dispersion function defined by (3b)-(3d) has

a  wher 11 =+iB  and only one recurrence parameter, i.e. 1+iA , is required to 
compute the dispersion function.  
 

arr ys e 

IV
The continuity of Mδ  in the range, 10 << b , eliminates the problem of bracketing 

 allows the zeros of the dispersion function at one 
br t the ne

meters. The substrate refractive index 

singularities in that range and
recurrence step to acket its zeros a xt recurrence step. One of the primary 
goals of this paper is to use this RZB technique to find the roots of the dispersion 
equation. The following numerical examples apply this technique to compute the 
effective indexes of the TE and TM guided modes of both uniform and non-uniform 
waveguide arrays.   
The first example uses a non-uniform array of M=4 single-mode waveguides with the 
following design para 5.1=s

indexes of the isolated waveguides are 55.11

n . The core refractive 
=n , 54.12 =n , 56.13 =n , and 53.14 =n . The 

core widths are, 3.11 =d  μm, 1.12 =d  μm, 0.13 =d  μm, and 5.14 =d , while the 
separation between the waveguides a 2,1re, 2=d 33,2 μm, =d  μm, and 14,3 =d  μm. 
Table I shows the result of computations of the effective indexes of the TE and TM 
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gth,modes of the array at a free-space wavelen 3.1 =oλ  these comp s the 
RZB technique was applied with the bisection method [7] to compute the zeros of both, 

M

μm. In utation  

δ  and Mε , given by (3b) and (1b), respectiv e results of computations are 
compared with those obtained by a beam propagation method (BPM) simulator which 

ploys a iterative technique with transparent boundary conditions [10]. The BPM 
computations used a computational window of 40 μm, a grid size, 001.0=

ely. Th

em n 
Δx  μm, a step 

size in the propagation direction, 5.0=Δz  μm, and an overall propagation length of 5 
mm. It is shown that the RZB technique is successful in computing the zeros of Mδ , and 
consequently the roots of the dispersion equation (3a), for both TE and TM modes. It 
fails to compute the roots of (1a) because of the presence of singularities  the 
dispersion function, M

 in
ε .  

The second example uses a uniform array of M=8 single-mode waveguides each of core 
refractive index 1.55 ub, s strate r fractive index 1.5, core width 1 m, and waveguide e μ
separation 3 μm. As before, the effective indexes of TE and TM modes were computed 
using the RZB at a free-space wavelength, 3.1=oλ  μm, with both the modified and 
conventional dispersion functions, Mδ  and Mε . In computing the zeros of Mδ  only one 
recurrence parameter was used; see section I r sults of Table II show excellent 
agreement between the modal in es co puted by the RZB technique using the 
modified dispersion function, M

II. The e
dex m

δ , and those obtained by the iterative BPM technique. 
However, the RZB technique fails in computing the zeros of Mε  due to the discontinuity 
of this function. The BPM computations used a computational window of 70 μm, 

01.0=Δx  μm, 1=Δz  μm, and the same propagation length of  previous example. The 
small difference between the modal indexes of the successive modes verify the utility of 
t techni  n finding closely spaced roots of the dispersion equation. 
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Fig.1. Schematic of an array of M-coupled waveguides (bottom) with the corresponding 
refractive index profile (top).  
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TABLE I 

COMPUTED VALUES OF MODAL EFFECTIVE INDEXES OF TE AND TM MODES AT  λο=1.3 μm FOR A NON-
UNIFORM ARRAY OF M=4  SINGLE-MODE WAVEGUIDES  

 

1.529000 
1.527431 
1.516727 
1.513259

TE0  
TE1  
TE2  
TE3 

 
 
 
 
 
 
 
 
 
 
 

 
 

1.529001 
1.527431 
1.516728 
1.513257 

1.528142 
1.521509 
1.511549 
1.500719

N

TM0 
TM1 
TM2 
TM3 

١٫٥٢7733 
١٫٥٢٦٥٨٢  
١٫٥١٦٠٦٦  
١٫٥١٢٨٠٤ 

1.528142 
1.521174 
1.512809 
1.502936

1.527734 
1.526587 
1.516068 
1.512808

mode 
BPMRZB + Eq.(3a) RZB + Eq.(1a) 

 
TABLE II 

COMPUTED VALUES OF MODAL EFFECTIVE INDEXES OF TE AND TM MODES AT  λο=1.3 μm FOR A 
UNIFORM ARRAY OF M=8 SINGLE-MODE WAVEGUIDES 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

١٫٥٤٩٨٠٢ 
١٫٥٤٨٦١٦ 
١٫٥٤٢٣٣٠ 
١٫٥٣٢٣٣٩ 
١٫٥٢٠٨٤٨ 
١٫٥٠٧٨٤٦ 
١٫٥٠٠٨٧٢ 
١٫٥٠٠٠٤٦

TM0 
TM1 
TM2 
TM3 
TM4 
TM5 
TM6 
TM7 

١٫٥٢٧٩٩٠ 
١٫٥٢٧٧٣٨ 
١٫٥٢٧٣٣٧ 
١٫٥٢٦٨١٩ 
١٫٥٢٦٢٢٩ 
١٫٥٢٥٦٣٣ 
١٫٥٢٥١١١ 
١٫٥٢٤٧٤٩ 

1.527974 
1.527751 
1.527345 
1.52٦٨٢٥ 
1.52٦٢٣٤ 
1.52٥٦٣٦ 
1.52٥١١١ 
1.52٤٧٦٩

١٫٥٤٩٦٦٤ 
١٫٥٤٦٦٥٨ 
١٫٥٢٨٧٧٨ 
١٫٥٢٥٧٠٣ 
١٫٥٠٤٦٢٧ 
١٫٥٠١٨٤٣ 
١٫٥٠٠٤٤٨ 
١٫٥٠٠٠٥٠ 

TE0 
TE1 
TE2 
TE3 
TE4 
TE5 
TE6 
TE7 

١٫٥٢٨٧٧٤ 
١٫٥٢٨٥٣٣ 
١٫٥٢٨١٥١ 
١٫٥٢٧٦٥٨ 
١٫٥٢٧١٠٠ 
١٫٥٢٦٥٣٧ 
١٫٥٢٦٠٤٧ 
١٫٥٢٥٧١٠ 

1.528751 
1.528٥٤١ 
1.528١٥٤ 
1.52٧٦٥٩ 
1.52٧٠٩٩ 
1.52٦٥٣٥ 
1.52٦٠٤١ 
1.52٥٧٢٥ 

 
Nmode 

BPMRZB + Eq.(3a) RZB + Eq.(1a) 
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