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ABSTRACT 
 
To solve the problem of nonlinear non-Gaussian state space model engendered due to 
tracking high-performance targets, the particle filters were used. Obviously, a large 
number of particles provide more accurate calculations for the posterior density, which 
results in a better tracking performance, especially when tracking a high performance 
target. Unfortunately, a large number of particles results in more computation load. 
Therefore, we need a dynamic tuning of the particles number to provide a relative small 
particles number for a non-maneuverable target, and a relative large particles number to 
track a maneuverable target. In this paper, a new fuzzy logic system for dynamic tuning 
of particles number in a particle filter is introduced. The fuzzy logic system is used to 
choose the suitable number of particles based on the maneuverability of the target of 
interest. It assigns a large number of particles to track high-performance targets; 
meanwhile, a smaller number is required to track non-maneuvering targets. The 
proposed fuzzy logic system showed good performance in tracking both maneuvering 
and non-maneuvering targets when applied to track-while-scan (TWS) radar. 
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1. INTRODUCTION 
 
A hybrid estimation problem is target tracking. the future trajectory of an object is 
predicted based on its previous states. A target may thrust, roll, and pitch; which results 
in a nonlinear model due to aircraft control and turbulence; e.g. military aircraft. To solve 
such a problem, extended Kalman filter (EKF) and its higher orders are used [1]. An 
alternative to the EKF is to use the unscented Kalman filter (UKF) which was introduced 
in to offer superior performance to that of the EKF [2]. The main difficulty in tracking a 
maneuverable target is the random change in the target motion defined in the model 
used by the Kalman filter and its extensions. When the target in not maneuvering, 
including an acceleration state and using colored noise is not the perfect solution to 
track a maneuverable object because its performance is degraded. 
To solve the problem of nonlinear non-Gaussian state space model problem 
engendered due to tracking a high-performance target, particle filters are used [3]. 
However, due to the uncertain and incomplete information in case of a maneuverable 
target, the advantage of the particle filter is degraded. To overcome this weakness, a 
fuzzy logic particle filter (FLPF) is proposed in [4]. The fuzzy logic has been considered 
as the key tool to deal with uncertainty problems [5]. However, a large number of 
particles provide more accurate calculations for the posterior density, which results in a 
better tracking performance, especially when tracking a high performance target. 
Unfortunately, a large number of particles results in more computation load. Therefore, 
we need a dynamic tuning of the particles number to provide a relatively small particles 
number for a non-maneuverable target, and a larger particles number to track a 
maneuverable target. We note that when tracking a maneuvering target the smaller is 
the particles number the larger is the error between the predicted target states and its 
actual states. On the contrary when tracking a non-maneuvering target, we do not need 
a large number of particles to get reasonably good results where the error between the 
predicted states and the actual ones is within a certain threshold. 
In this paper, we introduce a new fuzzy logic system for dynamic tuning of particles 
number in a particle filter. The fuzzy logic system is used to choose the suitable number 
of particles based on the maneuverability of the target of interest. Therefore, it assigns a 
large number of particles to track a high-performance target; meanwhile, a smaller 
number is required to track a non-maneuvering target. This paper is organized as 
follows. In Section 2, different maneuvering target models are shown. We introduce 
briefly the fuzzy logic systems (FLS) in Section 3. The proposed FLPF with dynamic 
tuning of particles number is explained in Section 4. Finally, experimental results are 
shown in Section 6 followed by a conclusion. 
 
 
2. MANEUVERING TARGET MODELS 
 
The most commonly used such models are those known as state-space models, in form 
stated in (1) and (2) with additive noise, 
 

( ) kkkkk u,xFx ν+=+1      (1) 
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kkkk xHz ω+=       (2) 

 
where uk is a control input vector. In target tracking, the control input u is usually not 
known and assumed (approximately) to be constant. The choice of the kinematic model 
is not a trivial problem, where target dynamics, accuracy of approximations, sensor 
coordinate system, among others, must be taken into account. Various kinematic 
models proposed for tracking of a target moving in the horizontal plane can be 
comprised from the following standard motion model from kinematics shown in Fig.1: 
 

ϕcosvx =&       (3) 
 

ϕsinvy =&       (4) 
 

tav =&        (5) 
 

v
an=ϕ&       (6) 

 
where (x,y) are the target Cartesian coordinates, v is the ground speed (air speed added 
to wind speed), ϕ is the velocity heading angle, and an and at are the normal and 
tangential acceleration components in the horizontal plane, respectively. 
The coordinated turn (CT) motion is characterized by an ≠ 0, at = 0; i.e., the target is 
moving in circular, constant-speed trajectory. Such motion is preferably specified in 
terms of the turn rateϕ& . In the CT model with unknown turn rate, the turn rate is included 
as a state component, to be estimated. Two models to estimateϕ&  are: 
(a) Wiener process model: 
 

kkk w+=+ ϕϕ && 1      (7) 
 
(b) first-order Markov process model: 
 

kk

T

k we +=
−

+ ϕϕ ϕτ && &
1         (8) 

 
where ϕτ &  is the correlation time constant for the turn rate, and w is a zero-mean white 
noise of a suitable level, which can be determined exactly the same way as for the 
corresponding models for acceleration. Consequently, the value of kϕ&  replaces ϕ&  in the 
transition matrix Fk. where: 
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where νk is a non-Gaussian distributed noise process with covariance matrix Qk given 
by: [6] 
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3. INTRODUCTION TO FUZZY LOGIC SYSTEMS 
 
A fuzzy logic system (FLS) is a nonlinear mapping from the input to the output space. As 
shown in Fig.2, there are three modules that characterize a FLS: fuzzifier, inference 
engine with a rule base, and defuzzifier [7]. 
A fuzzifier maps a crisp object to a membership function. Generally, fuzzifiers are 
divided into singletons and non-singletons. Even though singleton fuzzifiers are easier to 
use and commonly used, non-singleton fuzzifiers are used in case of presence of 
uncertainties (e.g., high-noise measurements). 
In fuzzy logic, there is an important inference rule called generalized modus ponens, 
defined as: 

• Premise 1: “a is A*”; 
• Premise 2: “IF a is A THEN b is B”; 
• Consequence: “b is B*.” 

where fuzzy set A* is not the necessarily the same – but similar – as rule antecedent 
fuzzy set A, and fuzzy set B* is not necessarily the same – but similar – as rule 
consequent. 
In order to be used in the real world, the fuzzy output needs to be interfaced to the crisp 
domain by the defuzzifier. This fuzzy output will be a membership function that provides 
the degree of membership of several possible crisp outputs. Hence, the point 
corresponding to the highest degree of membership in the fuzzy output has to be 
chosen, which is called max defuzzification. Unfortunately, in most practical cases the 
situation is not that simple since there might be many points having the same maximum 
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degree of membership in the fuzzy output. Moreover, choosing the maximum point of 
the membership function is an operation that discards most of the information contained 
in the membership function itself. Consequently, we need a technique that takes into 
account all the points in the support of this fuzzy output, weighing the points with high 
membership degree more than the ones with small or no membership degree. This 
corresponds to a center of gravity (COG) operation, as shown in Fi.3. 
 
 
4. FLPF WITH DYNAMIC TUNING OF PARTICLES NUMBER 
 
In the FLPF algorithm, we treat the maneuver as an abrupt change in the angular turn 
rate kϕ&  at a time k affecting the transition matrix Fk as well as the covariance matrix Qk 
given in (9) and (10), respectively. Since Fk and Qk are considered to be time varying 
due to target’s maneuver and probably nonlinear, a fuzzy logic system is used to 
estimate the angular turn rate and, thus, predict the target status xk+1 for tracking 
purposes. The key idea is to find the value of kϕ& , and hence Fk, that minimizes the 
particle filter residual at every instant k. The residual error can be seen graphically in 
Fig. 4. 
Assume the target state vector is given by: 
 

[ ]kkkkk yxyxX &&=      (11) 
 

where xk and yk represent the target’s position at time k; as well and represent the 
target’s velocity such that the velocity is constrained to some set V. The radar 
measurements are modeled as: 

kx& ky&
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where ωk is a zero mean non-Gaussian noise with covariance Rk given by: 
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which is given by: 
 

T
k ARAP 202=       (14) 

 
knowing that: 
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where A2 is the rotational matrix, 2

rσ and  are the range and azimuth measurement 
noise respectively. 

2
θσ

For the FLS, we use singleton fuzzification and the kth multiple-input single-output 
(MISO) rule. The inputs are the kth position residual and angular turn rate kr kϕ&  where: 
 

( ) ( )22
kkkkk y~yx~xr −+−=     (16) 

 
kx~where xk and represent the actual and estimated target’s x-coordinate, respectively. 

The same notation is used for the y-coordinates. It is easy to prove that: 
 

( )( )[ ] ( )( )[ ]
( ) ( ) ( ) ( )21

2
1

2
1

2
1

11111cos
−−−−

−−−−−

−+−×−+−

−−−−
=

kkkkkkkk

kkkkkkkk
k

yy~xx~yyxx

xy~yyxx~xxϕ&     (17) 

 
In a typical computation, the angular turn rate kϕ& can be approximated by Taylor’s 
expansion to be: 
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Now, we will partition the input space uk into seven simple partitions on the same 
interval mentioned above, and we will partition the output space kϕ&  into five 
membership functions as shown in Fig.5 and Fig.6, respectively. In these figures, we 
use the same the abbreviations refer to the linguistic variables mentioned in Table 1. 
Then, we develop six simple rules, listed in Table 2, that follow the system dynamics. 
The fuzzy associative memory (FAM) table for these rules is given in Table 3. 
Obviously, a large number of particles provide more accurate calculations for the 
posterior density, which results in a better tracking performance. Unfortunately, a large 
number of particles results in more computation load. Therefore, we need a dynamic 
tuning of the particles number to provide a relative small particles number for a non-
maneuverable target, and a relative large particles number to track a maneuverable 
target. 
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We note that when tracking a maneuvering target the smaller is the particles number the 
larger is the error between the predicted target states ( kX̂ ) and its actual states (Xk). On 
the contrary when tracking a non-maneuvering target, we do not need a large number of 
particles to get reasonably good results where the difference between kX̂  and Xk is 
within a certain threshold. 
We define the universe of discourse of the input variable, |uk|, by the interval [0,umax], 
and the universe of discourse for the output  is the interval [500,5000] particles. *

kN
First, we will partition the input space |uk| into four partitions on its interval, and we will 
partition the output space  into three membership functions as shown in Fig.7 and 
Fig.8, respectively. 

*
kN

In these figures, the abbreviations Z, S, M, and L refer to the linguistic variables “Zero”, 
“Small”, “Medium”, and “Large”. Then, we develop four rules, listed in Table 4, that 
emulate the system dynamics. The fuzzy associative memory (FAM) table for these 
rules is given in Table 5. 
For example, if the input |uk| = 0.09625, we can notice that it fires the first rule only. 
Meanwhile, if the input uk = 0.28875, the first and second rules are fired. For the case of 
the input uk = 0.14435, the first, second, and third rules are fired; meanwhile if the input 
uk = 0.48125, the second and third rules are fired. 
 
 
5. EXPERIMENTAL RESULTS 
 
We assume a TWS radar system assigned to track a high performance target flying with 
expected ground speed of 250 m/sec and its maneuverability can reach 13g. Calculating 
the corresponding angular turn rate, we find it to be in the range [-30°,30°]. Therefore, 
we can define the range of ek/Rk (=uk)to be [-0.5774,0.5774] where Rk is the distance 
that a target can fly during one scan period T. For a TWS radar system, the antenna 
scan rate varies from 12 to 20 rpm; i.e., the scan period can be defined in the range [3,5] 
seconds. For a high-performance target flying with a speed 250 m/sec, the error ek can 
be defined as shown in Table 6. 
Applying the FLPF, we get the defuzzified results shown in Table 7, where the empty 
cells define a membership function that was not triggered. Moreover, applying the 
dynamic tuning of the particles number explained in the previous section, we get the 
defuzzified output using centroid method shown in Table 8. When we combine the 
results using union operator, we get an aggregated result as summarized in graphically 
in Figure 9 using union operator and in Fig.10 using intersection operator. 
Fig.11 shows the performance of the proposed tracking a high-performance target 
moving with constant speed for a while then performing a maneuver with 13g. It can be 
seen from the figure that our proposed algorithm tracked the target successfully. 
Moreover, using the appropriate particles number reduces the computational load in 
case of tracking the target while moving with a constant speed. 
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6. CONCLUSION 
 
In this paper, we introduced a new technique to tune particles number dynamically using 
a fuzzy-logic-based framework. Membership functions have been chosen to include the 
whole angular turn rate of interest assuming a TWS radar tracking a high-performance 
target. Instead of choosing a fixed number of particles, the dynamic tuning of particles 
number provide a small particles number for a non-maneuvering target; meanwhile it 
assigns a larger number for a maneuvering target according to the measured residual 
error. 
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Fig.1. Geometry of 2-D target motion trajectory 
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Fig.2. Fuzzy logic system block diagram 
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Fig.3. COG defuzzifier 

 

 
Fig.4. Graphical representation of residual error between expected and actual target 

position 
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Fig.5. Fuzzy membership functions for the input space with seven partitions for the input 

variable, uk 
 

 
 

Fig.6. Fuzzy membership functions for the output space with five partitions for the input 
variable, kϕ&  

 
 

 
 

Fig.7. Fuzzy membership functions for the input space with four partitions for the input 
variable, |uk| 
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Figure 8. Fuzzy membership functions for the output space with four partitions for the 
input variable,  *

kN
 

 
 

Fig.9. Graphical representation of defuzzified results using union operator 
 

 
 

Fig.10. Graphical representation of defuzzified results using intersection operator 
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Fig.11. Tracking a high-performance target using FLPF with dynamic tuning of particles 
number 

 
 

Table 1. Qualitative statement quantization 
 

PL: Positive Large 
PM: Positive Medium 
PS: Positive Small 
Z: Zero 

NS: Negative Small 
NM: Negative Medium 
NL: Negative Large 

 
 

Table 2. Rule Base 
 

1 IF uk is Z or PL, THEN kϕ&  
is Z 

2 IF uk is PM, THEN kϕ&  is 
PL 

3 IF uk is PS, THEN kϕ&  is 
PM 

4 IF uk is NS, THEN kϕ&  is 
NM 

5 IF uk is NM, THEN kϕ&  is 
NL 

6 IF uk is Z or NL, THEN kϕ&  
is Z 
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Table 3. FAM for the rule base in Table 2 
 

NL NM NS Z PS PM PLuk 
kϕ&  Z NL NM Z PM PL Z 

 
Table 4. Rule Base 

 
1 IF |uk| is Z or S, THEN  is S*

kN

2 IF |uk| is M, THEN  is M *
kN

3 IF |uk| is L, THEN  is L *
kN

 
 

Table 5. FAM for the rule base in Table 4 
 

Z S M Luk 
S S M Lkϕ&  

 
 

Table 6. Scan periods and corresponding residual error 
 

Antenna scan rate max (ek) Rk 
12 rpm 1250 m 721 m 
20 rpm 750 m 433 

 
 

Table 7. Defuzzified output using centroid method 
 

-0.4812 -0.2887 -0.0962 0.0962 0.2887 0.4812 uk 
  0 0  0 
    25 25 
   15 15  
 -15 -15    

-25 -25     
kϕ  &

0  0 0   
 
 

Table 8. Defuzzified output for dynamic tuning of particles number 
 

|uk| 0.09625 0.28875 0.48125
1000 1000  

 2000 2000 *N  k
  4000 
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