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ABSTRACT 
In this paper, we propose radar system recognition approach using a HMM. We 
employ the Baum-Welsh algorithm to search for an HMM which best explains the 
observed radar signals represented by sequences of 0’s and 1’s. Deterministic 
periodic sequences (stable PRI radars) are considered. We can obtain an HMM 
which yields the globally biggest training probability. We can modify the results, to 
some degree, to create models more robust to observation errors. Preliminary results 
in combination with either the forward back-ward procedure or the Viterbi algorithm 
may be adequate for carrying out radar system recognition. 
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1.  INTRODUCTION  
 
As radar technology advances, the complexity of electromagnetic signals is growing 
[1]. Thus, conventional electronic warfare (EW) assumptions that radar signals are 
stable and correspond to emitter modes can no longer be valid. This in turn implies 
that approaches to radar system recognition based on conventional techniques are 
no longer adequate. 
 
 
In this paper, we propose radar system recognition approach using Hidden Markov 
Models (HMMs). Our motivation for using HMMs is as follows. First, HMMs provide 
flexibility for modeling dynamic behavior of radar systems. Second, HMMs are 
compatible with conventional receiver front-ends, and could be inserted into existing 
EW systems. Third, HMMs appear promising for enhancing the functions of threat 
libraries since our approach does not depend on the conventional assumptions. 
Fourth, HMMs have been extensively and successfully employed in speech 
recognition, control and communication applications [2, 3, 4].The only hardware 
requirement of the proposed approach is the availability of a fast processor with 
sufficient memory. 
 
 
Specification of an HMM involves the choice of the number of states, and the number 
of observation symbols, and the specifications of a model parameters as transition 
probability matrix, an observation symbol probability matrix and an initial state 
probability vector. Given the number of states as well as training sequences, we 
employ the Baum-welsh algorithm [2] to choose the HMM model that gives us the 
best results which explains the observed radar signals represented by sequences of 
1’s and 0’s where a ‘1’ represents a pulse transmitted by the radar and the number of 
0’s depends on the pulse repetition interval of the transmitting radars. The training 
results depend on the length of training sequences and observation errors (dropping 
and spurious pulses) in the training sequences. 
 
 
For periodic deterministic signal sequences with uncorrupted radar signals we 
determine the model size using the periodic information of signals. In this case, the 
Baum-Welsh algorithm guarantees to converge to an HMM with yields the globally 
highest training probability. When observation errors are added, the foregoing results 
can be further modified by adjusting the observation symbol probability matrix to 
enhance the model’s recognition capability. Unlike the modeling procedure in HMM 
theory for general problems, our methods to search for an appropriate model for 
radar signal recognition in the case of periodic deterministic sequence utilize the prior 
information pertaining to uncorrupted radar signals and therefore do not have to 
completely rely on trial and error. 
 
 
Based on our modeling result, we then employ either the forward-backward (F-B) 
procedure [2] or the Viterbi algorithm [4] to carry out the task of recognition radar 
systems. Given sufficient observations, preliminary results suggest that the proposed 
approach may be adequate for radar system recognition. 
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The rest of this paper is organized as follows. The F-B procedure, the Viterbi and B-
W algorithms are briefly reviewed in section 2. The training of HMMs for error-free 
and error-corrupted deterministic signal sequences are considered in Section 3. 
Radar signal recognition using HMMs is illustrated in Section 4. With an example 
consisting of three radars. Finally, we summarize this work in Section 5.      
   
 
2- ALGORITHMS 
 
Following [2], we define the parameters of discrete HMM as follows: 
N: Number of states in the model. 
M: Number of observation symbols. 

{ NqqqQ ......., 21= , set of states  
{ MvvvV ......., 21=  , set of observation symbols  
{ ToooO ......., 21=  , observation sequence  

T: length of observation sequence. 
{ }ijaA =  with ( ) ( )( )tqtqPa ijij 1+=  , state transition probability matrix.  

( ){ }lbB j=  with ( ) ( ) ( )( )tqtvPlb jlj =  , observation symbol probability matrix. 

{ }Nii ≤≤= 1ππ  with (( 1== tqp ii ))π  , initial state probability vector 
( )πλ ,, BA=  , an HMM 

A discrete HMM works as follows: we begin with choosing an initial state  
according to the initial state distribution 

1q
π , set the clock 1=t , choose an initial 

observation symbol according to , make a state transition to  according to , 
increment the clock by one choose an observation symbol according to  and 
repeat this process until . 

1b 2q ija

jb
Tt =

 
 
2-1 Scoring 
To determine which model is most likely to have generated O, a sequence of 
observation symbols, we need to calculate the probability of O given the model λ , 
i.e., ( λOP ). This can be achieved using the F-B procedure. 
 
 
2-2 F-B Procedure 
To compute ( λOP ) we can utilize forward probabilities ( ) ( )λα itt qooPi ,........1=  
defined by 
  

(a) ( ) ( )11 obi iiπα =          Ni ≤≤1  (1) 
 

(b) 
For 1,.....,3,2,1 −= Tt   ,  Ni ≤≤1  

( ) ( ) ( )∑
=

+ =
N

i
jijt obaij

1
211 αα  (2) 
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Thus           ( ) ( )∑
=

=
N

i
T iOp

1
αλ  (3) 

 
Similarly, we consider backward probabilities ( )itβ  defined by  
 

(a)   ( ) 1=iTβ         (4) 
 

(b) 
For 1,2,.....2,1 −−= TTt   ,  Ni ≤≤1  

( ) ( ) ( )∑
=

++=
N

j
ttjijt jobai

1
11 ββ  (5) 

 

Thus  ( )( ) ( ) (∑
=

=
N

i
ii

l iobOP
1

11 βπλ )          (6) 

 
Instead of the F-B procedure, the Viterbi can yield an approximation ( λOP* ) of 

( )λOP . 
 
2-3 Viterbi algorithm 
 
Step (1) Initialization:  
 

 
( ) ( )11 obi iiπδ =  

Ni ≤≤1  
(7) 

 
 ( ) 01 =iψ  (8) 

 
Step (2) Recursion: 
 

For 
Tt ≤≤2  
Nj ≤≤1  (9) 

 

 
( ) ( )[ ] ( )11max −−= tjijtt obaij δδ  

Ni ≤≤1  
(10) 

 
 

 
( ) ( )[ ]ijtt aij 1max −= δψ  

Ni ≤≤1  
(11) 

 
Step (3) Termination:  
 

 
( ) ( )[ ]iOP Tδλ max* =  

Ni ≤≤1  
(12) 
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 ( )[ ]ii TT δmaxarg* =  
Ni ≤≤1  

(13) 

 
Step (4) Path back tracking 
 

For  
1...,,.........2,1 −−= TTt  

( )[ ]*
11

* maxarg ++= ttt ii ψ  
(14) 

  
 
2-4 B-W Algorithm 
 
The B-W iterative algorithm is utilized for estimating various probability distribution for 
HMM as follows: 
  

(a) ( )  1 ii γπ = Ni ≤≤1  (15) 

 

(b) 
( )

( )∑

∑
−

=

−

== 1

1

1

1
,

T

t
t

T

t
t

ij

j

ji
a

γ

ξ
 (16) 

 

(c) ( )
( )

( )∑

∑

=

=== T

t
t

T

lot
t

j

j

j
lb t

1

,1

γ

γ
 (17) 

 
The quantity ( jit , )ξ  is defined as the probability of being in state  at time t and 
being in state  at time t+1, given the observation sequence and the model. We can 
write 

iq

jq
( jit , )ξ  as 

 

 ( ) ( ) ( ) ( )
( )λ

βα
ξ

OP
jobai

ji ttjijt
t

11, ++=  (18) 

 
The quantity ( )itγ  is defined as the probability of being in state  at time t, given the 
observation and the model. We can write 

iq
( )itγ  as  

 

 ( ) ( ) ( ) ( )
( )∑

=

==
N

j

tt
tt OP

ii
jii

1
,

λ
βα

ξγ  (19) 
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As t increases, ( )itα  and ( )itβ  decreases and can cause numerical underflow in the 
above iterative procedure. Thus, a scaling scheme is preferable. In the following, we 
provide the steps for incorporating the scaling scheme to the B-W algorithm. 
 

 ( ) ( )∏
=

∧

=
t

tt ici
1τ

ταα  (20) 

 
Where  is obtained by means of the following steps: τc
 

1. ( )
1

1
11

−

= ⎥⎦
⎤

⎢⎣
⎡= ∑

N

i
ic α  (21) 

 
 ( ) ( )ici 111 αα =

∧

 (22) 
 

2. ( ) ( ) ( )∑
=

+

∧

+ =
N

i
tjijtt obaij

1
11

"

αα  (23) 

 

 ( )
1

1

" −

= ⎥⎦
⎤

⎢⎣
⎡= ∑

N

i
tt ic α  (24) 

 
And  ( ) ( )ici ttt

"

αα =
∧

 (25) 
 

Then,  ( ) ( )ici t

t

t 1

1

1
1 +

+

=
+

∧

∏= αα
τ

τ  (26) 

 

 ( ) ( ) ( )∑
=

+

∧

++ =
N

i
tjijttt obaici

1
111

"

αα  (27) 

 

Let  ( ) ( )ici t

T

t
t 1

1
1 +

+=
+

∧

∏= ββ
τ

τ  (28) 

 

Then,  ( ) ( )ici t

T

t
t ββ

τ
τ∏

=

∧

=  (29) 

 

 ( )it

∧

β ( ) (∑
=

+

∧

+=
N

j
ttjijt jobac

1
11 β ) (30) 

 
Based on the above results, we obtain  
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 ( ) ( )
( )

∏

∑
∑

=

=

∧

=

== T

N

i
TN

i
T

c

i
iOP

1

1

1

τ
τ

α
αλ  (31) 

 

 ( )
1

1

−

= ⎥⎦
⎤

⎢⎣
⎡= ∏

T

cOP
τ

τλ  (32) 

 
Taking the logarithm for both sides gives  
 

 ( ) ∑
=

−=
T

cOP
1

)ln(ln
τ

τλ  (33) 

 

Let  ∏
=

=
T

T cC
1τ

τ  (34) 

 

 ( ) ( ) ( ) ( )
( )λ

βα
ξ

OPC
iobai

ji
T

ttjijt

t
11, +

∧

+

∧

∧

=  (35) 

 

 ( ) ( ) ( )
( )λ
βα

γ
OPCc

ii
i

Tt

tt

t

∧∧
∧

=  (36) 

 
Thus, the B-W reestimation procedure of the parameters can be rewritten as follows: 

 

(a) ( )  1 ii

∧

= γπ  (37) 

 

(b) 
( )

( )∑

∑
−

=

∧

−

=

∧

= 1

1

1

1
,

T

t
t

T

t
t

ij

i

ji
a

γ

ξ
 (38) 

 

(c) ( )
( )

( )∑

∑

=

∧

==

∧

= T

t
t

T

vot
t

j

j

j
kb kt

1

,1

γ

γ
 (39) 
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3- MODELING DETERMINISTIC SEQUENCE  
 
We consider deterministic sequence. It can be shown that there exist an HMM λ for 
an observed deterministic sequence O such that the training probability ( ) 1=λOp . We 
refer to such an HMM as a perfect model for sequences O. 
To find a perfect model for sequence O, we begin searching for a state machine that 
can track the sequence as long as its state output and transitions follow the evolution 
of the sequence. This suggests that as the length of the sequence grows, so does 
the size of the state machine to track the sequence. Fortunately, when a sequence is 
periodic, the size of the state machine only needs to be at least the length of the 
cycle of the sequence. In the following, we begin with an example to illustrate the 
existence of a perfect model for any given sequence. 
 
 
The sequence 00101 denoted as O is non-periodic. One of its periodic counter parts 
for example, is the sequence 0010100101 with period 2. To track the sequence 
00101, it suffices to use a state machine with 5 state depicted in the following figure 
where the first state is the initial state. 
 
 
In Figure 1, if the states are labeled in the ascending order 1, 2, 3, 4 and 5 then the 
parameters of the perfect model for the non-periodic sequence 00101 and its periodic 
counter parts are given as follows. 
 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

00001
10000
01000
00100
00010

A  (40) 

                       

 ⎥
⎦

⎤
⎢
⎣

⎡
=

10100
01011

B  (41) 

 
 [ ]00001=π  (42) 

 
To verify that the HMM λ, given in Figure 1, is a perfect model for O we ran the 
Baum-Welsh algorithm using some 5-state initial guesses A, and B. Indeed, the 
Baum-Welsh algorithm yield the HMM given Figure 1 such that ( ) 1=λOP . Even if a 
perfect model exists, the training process with respect to different initial guesses was 
perfectly chosen. As there are 5! Permutations for state labels 1, 2, 3, 4 and 5, there 
are 5! 5-state perfect models that is independent of c to one another. Also note that 
there exist many n-state (n≥6) perfect models for the sequence 00101. This is shown 
in Figure2.  
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The following proposition essentially states that any perfect model for non-periodic 
sequence is also a perfect model for its periodic counterparts. 
 
 
Given a non-periodic sequence S with length N and a perfect model λ for S 
(i.e., ( ) 1=λsP ), λ  is a perfect model for sequence O with length kN where k > 1 
whenever O is a sequence with S periodically k times. 
 
 
In practice, a radar signal may be corrupted due to observations errors. When a 
perfect model is used for recognizing any erroneous set sequences, it yields a zero 
recognition probability. This means that a perfect model cannot tolerate any error in 
the testing sequence. To recognize erroneous sequence to some extent we need to 
use an HMM robust to errors to obtain such an HMM. We use some erroneous 
sequence as a training sequence and take the parameters π , A and B of a perfect 
model as initial guesses. It turns out that the training simply adjusted the matrix B of 
the perfect model to accommodate errors.  
This phenomenon is illustrated in the following. 
 
 

Let O be the error-free sequence 0010100101 it's length is 10, thus there are          

x-symbol error sequence for O. A perfect model O is given in Figure1 we use the 
vector 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
x

10

π , the matrix A of the perfect model and take the matrix B  
 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

9999.0
0001.0

0001.0
9999.0

9999.0
0001.0

0001.0
9999.0

0001.0
9999.0

B  (43) 

 
 as initial guesses π , A, B to conduct the training of an HMM robust to errors. Using 

 x-symbol error sequence as observation sequences for training, we obtain that 

the vector 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
x

10

π , the matrix A of the perfect model were unaltered. But the matrix B of 
the perfect model was adjusted to accommodate errors and became 
  

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

−

−

−−
=

10
1

10

10

10
1

10
1

10

10

10
1

10

10
1

x

x

x

x

x

x

x

x

x

x

B  (44) 

 
In this case, the elements  and ( jB ,1 ) ( )jB ,2  of the perfect model, were 

adjusted linearly with respect to the ratio 

51 ≤≤ J

10
x  . 
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)

4- RECOGNITION   
 
In this section, we illustrate with an example that modeling using HMM given in 
section 3 may be appropriate for recognition of pulsed radars. Assume the 
uncorrupted sequence 1011 is repeatedly emitted by radar 1, and so are 01011 by 
radar 2 and 011101 by radar 3. Based on the results in section 3 we can obtain a 
perfect model for error-free periodic sequence emitted by each radar. Assume 10% 
dropping pulses and 5% spurious pulses may occur in a given error-free sequence. 
In this case we trained robust HMMs in order to ensure that the recognition task can 
be performed adequately. First, the length of the training sequences was fixed at 
120. Second, twenty erroneous training sequences were randomly generated each 
time with respect to a given periodic error-free sequence using B-W algorithms yield 
HMMs. ( iiii BA πλ ,,=  corresponding to radars, i= 1, 2, 3 
 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0001
1000
0100
0010

1A  (45) 

 
 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

8333.08667.02000.09000.0
1667.01333.08000.01000.0

1B  (46) 

 
 [ ]00011 =π  (47) 

 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0
1

0
0

0
0

0
0

1
0

01000
00100
00010

2A  (48) 

 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

7917.0
2083.0

8333.0
1667.0

1250.0
8750.0

8750.0
1250.0

1250.0
8750.0

2B  (49) 

 
 [ ]000012 =π  (50) 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

000001
100000
010000
001000
000100
000010

3A  (51) 

 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

8500.01500.00000.18000.07500.01500.0
1500.08500.00000.02000.02500.08500.0

3B  (52) 

 
 [ ]0000013 =π  (53) 

 
We generated a testing sequence by letting 10% dropping pulses and 5% spurious 
pulses to occur in the periodic error-free sequence emitted by radar. In this way, we 
have three testing sequences as follows: 
O1: 101110111011…… 
O2: 010110101101011….. 
O3: 011101011101011101…..  
Where Oi are corrupted sequences corresponding to the error-free sequences 
emitted by radars i,   i=1, 2, 3. 
The Forward Backward procedure yielded Tables 1-3 

Table 1 
 

Results  ( )11log λOP  ( )
21log λOP  ( )31log λOP  

Without error -0.0052 -216.0029 -280.0022 
With error -72.0044 -212.8029 -264.0023 

  
Table 2 

 
Results  ( )12log λOP  ( )

22log λOP  ( )32log λOP  

Without error -216.0029 -0.0052 -224.0028 
With error -222.4028 -72.0044 -236.8026 

 
Table 3 

 
Results  ( )13log λOP  ( )

23log λOP  ( )33log λOP  

Without error -280.0022 -224.0028 -0.0052 
With error -265.6023 -233.6027 -72.0044 
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The Viterbi algorithm yields similar results to Tables 1-3. Based on these results, we 
conclude that HMM1 recognizes O1 since ( )11log λOP  is the largest in Table 1, we 

conclude that HMM2 recognizes O2 since ( )
22log λOP  is the largest in Table 2, we 

conclude that HMM3 recognizes O3 since ( )33log λOP  is the largest in Table 3  
 
 
5- CONCLUSIONS  
 
This paper presents preliminary results for recognition of radars using HMM. A 
perfect model indeed exists for any given deterministic sequences. To yield HMM 
more robust to errors, we use erroneous sequences as a training sequences and the 
parameters of a given perfect model as initial guesses. It is noted that the training 
simply adjusts the B matrix of the perfect model to accommodate errors. The 
experimental results show that using HMM may be a good approach for radar 
recognition. 
 
 
6- REFERENCES 
 
[1] Natharson, F.E., Reilly, J.P. and Cohen, M.N., Radar Design principles: Signal 

Processing and the Environment, New York: McGraw-Hill, 1991. 
[2] Rabiner, L.R., "A Tutorial on Hidden Markov Models and Applications in 

Speech  Recognition," Proc. IEEE, Vol.77, NO.2 Feb. pp 257-285, 1989. 
[3] Elliort, R.J. Aggonu, L., and Moore, J.B., Hidden Markov Models: Estimation 

and Control, New York: Springer-Verlag, 1995. 
[4] Forneg, G, D., Jr. "The Viterbi Algorithm" Proc. IEEE, Vol. 61 pp 268-278, Mar., 

1973. 
 
 
 
  

  
  
  
  
  
  
  
  
  
  
  



 
Proceeding of the 12-th ASAT Conference, 29-31 May 2007 RAD-04 13 
 

 
Fig.1 

  
  
  
  

1010

2 3 4 5 6 7 8 9 10
10-10

10-5

100

105

Number of states

Tr
ai

ni
ng

 p
ro

ba
bi

lit
y 

in
 lo

g 
sc

al
e

 
Fig.2.  Probability of perfect model 
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