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Abstract 

One of the main challenges with bioinformatics software is that the size and complexity of 

datasets necessitate trading speed for accuracy, or completeness. To combat this problem 

of computational complexity, a plethora of heuristic algorithms have arisen that report a 

‘good enough’ solution to biological questions. However, in instances such as Simple 

Sequence Repeats (SSRs), a ‘good enough’ solution may not accurately portray results in 

population genetics, phylogenetics and forensics, which require accurate SSRs to calculate 

intra- and inter-species interactions. And so, Biotechnologists took a lot of time to identify 

similar sequences on a DNA. In addition, the accuracy of the results was an important 

problem. In order to overcome this problem, biotechnologists need a modern hardware and 

equipment for the program to function efficiently. We proposed the SSRs finder application 

that detects the existing SSRs by determining the start and the stop, the min and the max 

and prepares a comparison between the old SSRs with the new SSRs then records the 

results and shows them in the quarry with high accuracy and speed. 
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1. INTRODUCTION 

 Since SSRs reveal characteristic functions of DNA replication, recombination and repair, 

they are important in studying biological systems interactions, as well as studying repeat 

expansion-based diseases with next-generation sequencing data. Many different approaches 

have been used to identify SSRs. They are based on k-mer decomposition, heuristic 

treatment, and phylogenetic trees. 

k-mer decomposition technique focuses on decreasing memory usage and decreases 

execution time [1]. It is applied by storing only the newly found k-mer even if there is a 

minor difference between new k-mer and the preceding one. This leads to less accuracy 

compared to other methods and realistic phylogenetic relationship. 

Although heuristic treatment implies more biologically relevant results, its execution time is 

high compared to other techniques [2]. The reason is that the heuristic techniques focus on 

detecting SSRs with respect to biological aspects i.e. single-nucleotide mutation. 

Traditionally, the precise identification of SSRs from the DNA strand has been viewed 

as a substructure problem. There is a need to detect SSRs with less time, less memory, high 

accuracy, and biological relevant results. These features are real challenges for the 

researchers. 

To overcome these problems, we introduce a new algorithm “SSRs Finder”. In this 

approach every M pattern in the S sequence is searched and the search is at a particular 

iteration and when the repeat is found again when looking for another repeat in the same 

process on the DNA strand it is compared in terms of number of iterations and takes the 

largest number of iterations and discards At least, all SSRs can be found in a single repeat 

across the DNA strand. Furthermore, there is no need for any post filtering because this 

method avoids over-selecting the same SSR that is commonly used in many methods, most 

notably with regular expression-based methods. 

The results imply that “SSRs Finder” is efficient compared to other works. It detects 

SSRs with less time by 62s. The memory used is less than others by 600 MB. From the 

perspective of accuracy, “SSRs Finder” is more accurate compared to others. 

The rest of the paper is structured as follows. Section 2 describes the related models in 

the literature and differences between them. Section 3 describes DNA sequences, how they 

work, and Simple Sequence Repeats (SSRs). Section 4 describes the proposed model. 

Afterwards, we review the performance measures, and discuss the experimental results of 

the proposed model in section 5. Finally, section 6 concludes the work and presents the 

future work.  

 

2. RELATED WORK 

 In this section, some of other research works are discussed in detail, their algorithms, 

their features, and their weak points. 

In 2001, Temnykh et al. introduced SSRIT system which detects SSRs [3]. The system 

applies detection with low accuracy which leads to imperfection in detection. 

Another algorithm was introduced by Kolpakov et al. [2] for detection of SSRs (mreps) 

in 2003. It consists of two main parts: the first one (upper frame) collects certain repeated 

sequences through an efficient combinatorial algorithm. Those sequences serve as ‘raw 

material’ for the second part (lower frame), which applies to them an heuristic treatment in 

order to obtain biologically relevant repeats. The system implies good results however, the 

execution time and the memory usage are extremely high.  

In 2011, Jighly et al. [4] introduced a new algorithm which is based on aligning 

sequences after determining the repeated units first, and the last SSR nucleotides positions. 
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This results in a shifting process according to the inserted repeated unit type. When 

studying the phylogenic relations before and after applying the new algorithm, many 

differences in the trees were obtained by increasing the SSR length and complexity. 

However, less distance between different linage had been observed after applying the new 

algorithm. The system performs results in a more realistic phylogenic relationship however, 

the computational complexity is very high. 

Pickett et al. [1] introduced a new version of Kmer-SSR in 2017. It utilizes k-mer 

decomposition to provide an exhaustive or filtered approach to finding all SSRs in a given 

sequence. This version of k-mer decomposition works by identifying all subsequences of 

length ‘k’ while tracking the start position of each k-mer. K-mer lengths are defined by the 

user as the SSR period length. Kmer-SSR minimizes the usage of random access memory 

(RAM) by performing k-mer decomposition and only storing k-mers that are the same as 

the preceding k-mer (SSR period length). If a k-mer is not identical to a k-mer found k 

bases previously, the previously identified k-mers will be discarded and k-mer 

decomposition will occur for the rest of the sequence. This version implies less accuracy 

compared to previous research works even if the execution time is less than them. 

Later, Avvaru et al. [5] introduced a new algorithm PERF. In the system, the user 

specified input file is read and an iterator is applied to access all the sequence records in the 

file serially. For each sequence, the identification of repeats is performed on a position 

specified by the user to detect all possible repeats of length specified by the user. Once the 

full repeat is identified, it is printed out along with the repeat class and other details such as 

the coordinates, motif length and total repeat length. The system implies high memory 

usage where the accuracy is comparable to others. 

Some approaches, as discussed above, focus on the accuracy of the results, in contrast, 

the others’ main challenge is to perform less computation and smaller memory usage. For 

this point, applying a system that detects SSRs with high accuracy and less time and 

memory is a great challenge. 

 

3. FUNDAMENTAL KNOWLEDGE 

This section describes DNA and its structure in addition to Simple Sequence Repeats 

and their importance. 

3.1 DNA Sequence 

Deoxyribonucleic acid (DNA) is a molecule which carries genetic instructions for the 

development, functioning, growth and reproduction of all known organisms and many 

viruses  [6]. It is used in many scientific fields which are genetic engineering, DNA 

profiling, DNA enzymes or catalytic DNA, bioinformatics, DNA nanotechnology, history 

and anthropology, and information storage.  

DNA is composed of two polynucleotide chains that coil around each other to form a 

double helix. The two DNA strands are known as polynucleotides as they are composed of 

simpler monomeric units called nucleotides. Each nucleotide is composed of one of four 

nitrogen containing nucleobases (cytosine [C], guanine [G], adenine [A] or thymine [T]), a 

sugar called deoxyribose, and a phosphate group  [7]. The nucleotides are joined to one 

another in a chain by covalent bonds (known as the phosphor-diester linkage) between the 

sugar of one nucleotide and the phosphate of the next, resulting in an alternating sugar-

phosphate backbone [8].  

The nitrogenous bases of the two separate polynucleotide strands are bound together, 

according to base pairing rules (A with T, C with G), with hydrogen bonds to make double-
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stranded DNA. The complementary nitrogenous bases are divided into two groups: 

pyrimidines and purines. In DNA, the pyrimidines are thymine and cytosine; the purines are 

adenine and guanine [9].  

 

3.2 Simple Sequence Repeats (SSRs) 

 

A Simple Sequence Repeat (microsatellite) is a tract of repetitive DNA in which 

certain DNA motifs (ranging in length from two to six or more base pairs) are repeated, 

typically 5–50 times [4][5]. Microsatellites occur at thousands of locations within an 

organism's genome. They have a higher mutation rate than other areas of DNA leading to 

high genetic diversity [1].  

Microsatellites are often referred to as short tandem repeats (STRs) by forensic 

geneticists and in genetic genealogy, or as simple sequence repeats (SSRs) by plant 

geneticists. Microsatellites and their longer cousins, the minisatellites, together are 

classified as VNTR (variable number of tandem repeats) DNA. The name "satellite" 

DNA refers to the early observation that centrifugation of genomic DNA in a test tube 

separates a prominent layer of bulk DNA from accompanying "satellite" layers of repetitive 

DNA [10].  

Fig.1 shows the occurrence of SSRs in DNA sequences. Simple Sequences Repeats are 

used extensively for DNA profiling in cancer diagnosis, in kinship analysis (especially 

paternity testing) and in forensic determination. It is also used in genetic association 

analysis to locate a gene or mutation responsible for a specific trait or disease and many 

viruses. Precision satellites are also used in population genetics to measure levels of 

association between subspecies, groups, and individuals [11].  

 

Figure 1.  Example of SSRs within a DNA sequence 

 

4. MATERIALS AND METHODS 

In this paper, we compare our new algorithm for SSR alignment with the common 

alignment algorithms used in other programs. The new algorithm as shown in Fig.1 detects 
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SSRs by searching for them in the sequence with a specified repeat length in a given 

sequence and calculating the length of the SSRs. As a result, the SSR is saved in a list when 

the length exceeds 10 repeats.  

The algorithm is applied according to the following major steps: 
4.1 Sspecify Sequence and its Range. The user must specify: 

4.1.1 The file which contains the sequence needed to detect its SSRs. 

4.1.2 Search pane for SSRs whether on the whole gene or only part of it by 
specifying the start point and the stop point of searching nucleotides on 
the sequence (the start must be >= 1 and the stop must be <= length of the 
sequence).  

4.2 Check Sequence Range. The system checks that the data file contains DNA 
sequence in addition to the start and stop points to ensure that start point doesn’t lie 
before start of sequence and stop point doesn’t exceed the end of the sequence. If it 
is found that the range contains a problem, the system informs the user. 

4.3  Check for Presence of SSRs in Database. The system searches for the pre-entered 
gene with the same search pane and SSR length. If it is found in the database, the 
system ignores step 4 and 5 and performs step 6. 

4.4 Determine the Simple Sequence Repeats. The system searches for the repeats in 
the specified range according to the following steps: 

4.4.1 The system iterates on the sequence from start to stop – (min * 4) to 
detect SSRs to the last one can be found.  

4.4.2 The system starts searching for SSRs at each nucleotide starting with min 
length of SSR till reaching max. 

4.4.3 If the nucleotides is repeated, a counter starts counting the number of  
times the repeat is found till reaching the end of the repeat. 

4.4.4 If the number of detecting of the repeat in follow is between 5 to 50 times, 
the repeat is recorded in a list with its position and length.  

4.4.5 If more than one SSR is found in the same region, they are compared to 
each other and the largest SSR (in terms of number of repeats) is 
recorded. 

4.5 Save the Determined SSRs. The system saves the list of SSRs with their gene ID, 
position on the gene, length of repeat, and the number of repetitions of the repeat 
in the database to be easily detected later. 

4.6 Display the Results. The system displays SSRs to the user and their gene ID, 
position on the gene, length of repeat, and the number of repetitions of the repeat 
in a table. 

 

5 EXPERIMENTS 

We implemented the system by C# programming language on PC with Processor: 

Intel® Core™ i5-6200U CPU @ 2.30 GHz 2.40 GHz, RAM: 8.00 GB, Windows Version: 

Windows 10 Pro. The system is composed of desktop application and web application. The 

data is applied to the system for 400 times. The system is compared to other systems which 

are Kmer-SSR [1], MISA [4], MREPS [2], and SSRIT [10]. 
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Figure 2.  SSRs Finder Algorithm 
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5.1  Data Gathering 

The data needed for testing the system can be obtained from various websites, such as: 

evoltree [12], SSRome [13], Sequence Read Archive [14], and NCBI [15]. We obtained the 

data from NCBI website. The file format is FASTA files (.FASTA). the file begins with a 

single-line description, followed by lines of sequence data. The description line begins with 

a greater-than (“>”). Sequence file in FASTA format can contain several sequences. This is 

an example of ..FASTA file with single sequence: 

 

 >NG_016623.1 Homo sapiens syntax in binding protein 1 (STXBP1), RefSeqGene on 

chromosome 9 

AAAAAAAAAAAATCCATTGCTGGCCTGGCGCAGTGGCTCATGCCTGAAATCCC

AGCACTTTGGGAAGCCGAGGCGGGAGGATCAGTTGAGGTCAGGAGTTTGAGAC

CAGCCTAGCCAACCACATGGTGAAACCCTGACTCTACTGAAAATACAAAAATT

AGCCAGGTGGCACACACCTGTAATCCCAGCTACTCGGGAGGCTGAGGCAGGAG

AATCGGTTGAACCCGGGAGGCAGAGCTTGCAGTGAGTAGAGATCATGCTTCTG

CACTCCAGCCTGGGCGACAGAGTGAGACTCTGACTCAAAAAAAAAAAAAAAA

AAATCCATTGCAACACCTAAACATTGGGAGAT 

 
 We downloaded files with single sequence. We selected Oryza sativa genes and the 

number of sequences we collected for this gene was 400 and extracted SSRs for each of its 

sequences. 

 
5.2 Evaluation Criteria 

In this paper, the system is evaluated using system features analysis, accuracy, and 

runtime which will be described in this section. 

 

5.2.1 System Features Analysis 

 

System features differs from each system. To ensure the evaluation, we compared the 

features in the systems in the comparison. We check: 
5.2.1.1 Operating Features including the operating system the system runs on, the 

programming language used to implement the system, and applying multi-
threading. 

5.2.1.2 Input-Output Features including the input format of the data files, the output 
format of the result, and if the system prepares analysis report on the usage of 
the algorithm monthly.  

5.2.1.3 Functionality Features including detecting perfect repeats (which is repeated 
without any single mutation), detecting partial repeats (which the repeat is 
not completed in the last one), detecting imperfect repeats (which is repeated 
with single mutation), detecting length cut-off (the length of the SSR), 
detecting unit cut-off (the length of one repeat in the SSR), and search 
specific SSRs. 

5.2.2 Accuracy 

We check the accuracy of detection in two parts: The accuracy of the SSR detected, 

and the accuracy of the number of SSRs detected. 

 

 



A New Algorithm For Ssr Detection (Ssrs Finder) 
 

71 

 

5.2.3 Runtime and Memory Usage 

One of the main sections to check efficiency is Runtime and Memory Usage. The reason 

is that we need the results in less time and memory due to the huge amount of data. We 

check the time needed to detect the SSRs and the memory needed to save the results using 

custom time measurement and memory measurement codes. 

5.3 Results 

The results of the evaluation of the system will be described in this section. 

 
5.3.1 System Features Analysis 

Tables 1-3 show the results of the comparison between our proposed algorithm and 

previous studies with respect to system features. According to the tables, more than half of 

the features were applied in our algorithm which exceeds number of features of previous 

algorithms. On the other hand, MREPS was the only application which applied partial 

repeats and imperfect repeats. All the algorithms applied single-threading while Kmer-SSR. 

TABLE 1. SYSTEM FEATURES ANALYSIS (OPERATING FEATURES) 

 
•   is applied  ○ is not applied 

 

TABLE 2. SYSTEM FEATURES ANALYSIS (INPUT-OUTPUT FEATURES) 

 

•   is applied  ○ is not applied 

Program 
Comparisons 

Operating System Language Multi- threaded 

MREPS Linux C ○ 

SSRIT Linux Perl ○ 

SSRs Finder windows C# ○ 

Program 
Comparisons 

Input Format Output Format Analysis Report 

MREPS FASTA Text ○ 

SSRIT FASTA TSV ○ 

SSRs Finder FASTA Text • 
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TABLE 3. SYSTEM FEATURES ANALYSIS (FUNCTIONALITY FEATURES) 

 
•   is applied  ○ is not applied 

 

5.3.2 Accuracy 

The accuracy of various tools was assayed using two simulated datasets where the 

results are in Table 4. On both the simulated datasets, SSRs Finder was the only tool which 

reported 100% of the expected SSRs. By applying the same sequence to the SSRIT 

program, we found that it explored SSRs with an approximate rate of 85%, and by 

comparing the results after executing the sequence on the MREPS program, we noticed that 

it explored SSRs by 75%, with an error rate. 

 

TABLE 4. EVALUATION OF THE ACCURACY AND THE NUMBER OF SSRS REPORTED BY OF VARIOUS TOOLS ON 

RICE CHROMOSOME 1  

Program 

Comparisons 

Total SSRs reported )aSSRs in range ( 
Detected SSRs in 

)brange % ( 

MREPS 266 545 48.8 

SSRIT 515 545 94.49 

SSRs Finder 545 545 100 

 

a. SSRs in range indicate the number of identified repeats that match the evaluation criteria 

 b. The percentage calculated in relation to the number of repetitions specified by the programs used. 

 

5.3.3 Runtime and Memory Usage 

We measured time and memory needed by adding a custom time measurement and 

memory measurement codes in Table 5. The time indicates average of 5 independent runs in 

Program 

Comparisons 

Exhaustive 
Perfect 

Repeats 

Partial 

Repeats 

Imperfect 

Repeats 

Length 

cut-off 

Unit 

cut-off 

Search 

Specific SSRs 

MREPS ○ • • • • • ○ 

SSRIT ○ • ○ ○ ○ • ○ 

SSRs 

Finder 
• • ○ ○ • • • 

javascript:;
javascript:;
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seconds. Memory usage is an average of 3 independent runs in megabytes. Despite being 

100% comprehensive algorithm, SSRs Finder was faster than all the tested tools. 

 

TABLE 5. EVALUATION OF THE RUNTIME AND MEMORY USAGE OF VARIOUS TOOLS ON 

RICE CHROMOSOME 1 

Program 
Comparisons 

Time(s) Memory usage (MB) 

MREPS  84.33  2411.20  

SSRIT  120.67  778.74  

SSRs Finder 22.156 164 

 

 

6 CONCLUSION 

 With the addition of new genomes every day, efficient and comprehensive 

identification of microsatellites from DNA sequences is crucial for researchers studying 

these important elements. In spite of a wide gamut of existing tools, users currently have to 

make a trade-off between speed and exhaustiveness while choosing a tool that suits their 

requirement. We developed an algorithm that addresses both these challenges. Even when 

run on a computer with modest specifications, SSRs Finder takes less than 2 min to 

accurately identify all microsatellites from one of the largest input files—the human 

genome. SSRs Finder can be installed effortlessly and is easy to use; the only required 

parameter is the input file in FASTA format. At the same time, all search parameters can be 

configured by the user at runtime via a clean command-line interface, thereby offering full 

flexibility and control on the output. Though the evaluation reported here is performed 

using typical definition of SSRs (2–6 nt long motifs), the algorithm does not discriminate 

micro- and minisatellites, and can be used to identify repeating motifs of any length. In 

addition, SSRs Finder is OS-agnostic, and works the same on any system. 
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