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ABSTRACT 
 
Due to the increasing complexity in modern radar systems, it has become apparent 
that new ways of classify received signals are required. In this paper, the 
performance of a proposed method for radar system identification using hidden 
Markov model (HMM) is evaluated. In this method, a given radar system is modeled 
as a finite state automaton. In so, doing, it is possible to uncover the underlying 
system processes in a probabilistic fashion using hidden Markov models. Artificial 
deterministic signals are used to show that HMMs can provide adequate signal 
recognition. It will be shown that a perfect exists that is directly related to the number 
of symbols per period. A slightly adjusted version of this perfect model provides low 
false recognition rates in a threat library consisting of three models so long as the 
observation errors do not become too frequent. The simulation results show that if 
the observation errors are introduced, then, it becomes necessary to retrain the HMM 
with an error corrupted version of the original training sequence in order to improve 
the model's robustness.  
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 11. INTRODUCTION  

 



 
The growth complexity of modern and indeed, future radar design is required a new 
approach to radar system identification for Electronic warfare (EW) purposes. 
Conventional assumption about the nature of radar signals are provided to be less 
and less valid; namely that the signal can be assumed to be stable and predictable. 
Simple cross-correlation of the received signal with a library of known signals is in 
adequate in some applications when the signal source transmits pulses in a pseudo-
random fashion. Instead, if the source is assumed to be a finite automaton then it is 
possible to model it using a hidden Markov model (HMM). HMMs have been used 
extensively in many applications requiring a signal model for practical functions such 
as classification, decoding and prediction [1]. Much of the theory used in this paper 
has been based on the knowledge gained about HMMs for speech recognition 
problems and could be appropriately applied to radar system identification. HMMs 
have been used in a host of pattern recognition application such as: inferring 
grammar of simple language, relation ships between pairs of DNA sequences, 
signature and face recognition [3,4].  
 
 
Due to the fact that modeling a modern radar system as a cycle stationary source is 
no longer justified [1], previous methods of signal classification such as histograming 
of pulse arrival times and cross-correlation of received signals with known ones will 
prove to be unreliable and ineffective. Two key advantages to modeling a radar as a 
finite state automaton are: (1) finite state automaton are flexible and can be designed 
so as to capture all the required temporal information about dynamic systems; (2) 
even though the input symbols controlling state transitions in the state machine are 
hidden in most EW applications, they can be uncovered probabilistically using 
HMMs. 
 
 
Radar system identification uses a pattern recognition as in a field that has 
successfully used HMM in many applications over last twenty years [2]. They are 
used to try to replicate simple (first-order) Markov process whose state (and thus 
symbol outputs) at time t (the present) depends only on the last output at time t-1 [2]. 
Although the actual signal behind modeling may not originate from a true first order 
Markov source (that is, the present output symbol may depend on more than just the 
previous output), the success of HMMs have enjoyed in classification applications 
over the years is evidence to the fact that the simple Markov source model is usually 
a valid one. 
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The information used in this paper to characterize a given radar signal Is that of the 
PRI where a pulse is represented by a '1' while a '0' signifies no received pulse. it is 
assumed that any received signal has been put through a front-end-signal processing 
block so that requisite functions such as sampling and deinterleaving [7] have been 
accomplished. There are four main problems using HMMs as described in [1] of 
which three are addressed in this paper, these are: (1) Classification: correctly 
choosing he model out of a library that best represents the received signal source; 
(2) Decoding: having chosen a particular model, what state sequence best describes 
the observed sequence? (3) Predicates: given a model and partial observation 

 

 



sequence, what is the next symbol ('0' or '1') most likely to be? (4) Training: given an 
observation sequence, what are the optimal parameters for the HMM so that if it is 
able to reproduce the sequence? 
 
 
This paper will focus mainly on the training and classification problem, but will briefly 
touch on the decoding issue and discussing its implications for radar system 
identification. Training is by far the most important and involved problem because the 
parameter chosen to represent the received waveform necessarily dedicate the 
performance of the other three problems. That is to say, if there is poor training a 
non-optimal choice for the model's parameters, then the probability of proper 
classification degrades and prediction decreases substantially. The principle 
objective of this paper is to provide a method for choosing the optimal model 
parameters for an actual radar signal so that a library of HMMs can be created and 
used for practical EW tasks. Although the only data used in the simulations to 
characterize a radar signal is the PRI, the result learned from this paper represents a 
stepping-store for further inclusion of many the other well-known signal parameters 
such as carrier frequency, polarization and pulse duration. As a result the recognition 
performance can only increase with the addition of this information. This paper is 
organized as follows. In section 2, the training of a HMM will first be studied when 
there are no errors in the sequences and its performance is tested as a function of 
the number of states in the model. In section 3, the recognition performance will then 
be studied when errors are intentionally added into an observation sequence at a 
known rate. In section 4, a brief insight into the use of a uniform initial state vector will 
be given. Section 5 will summarize the main conclusions. 
 
 
2. NUMBER OF STATES 
 
 
The choice of number of states to be used in a HMM has a fundamental influence on 
its recognition performance. In isolated word, in recognition there are two major ways 
of tackling this issue. The first idea is to have the number of states roughly equal to 
the number of sounds or phonemes within a given word. The second is to let the 
number of states be approximately equal to the number of observations in a spoken 
version of the word [2]. The former uses a so-called left-right model which faces the 
state transitions to either loop back onto the same state to proceed to the next state, 
but never return to the previous state. Radar system identification (RSI), on the other 
hand, is interested in creating a model for an entire dynamic radar system. That is, 
the HMM must be able to recognize every possible word and combination there of 
that the radar is capable of producing. To do this, it is conceivable that we would 
create a separate HMM for each word from a particular radar and then use a state 
transition matrix whose elements dedicate the transition probabilities from one HMM 
to another. Another approach would be to consolidate all the information from the 
radar signal into one global HMM that is not left-right, but would allow for any 
possible transition. Figure 1 shows a 4-state left-right model1. Note that the model 
must begin in state 1, and will always end in state 4.  
 

31   some of the examples have been taken from Rabiner ( [2],p.266 ). Rabiner defines an ergodic model 
as one in which every aij>0. The author has used the word “global” in order to differentiate between 
a finite state network where notes represent actual HMMs of words or phonemes ([2],p.283) instead 
of just states. 

In the Figure 2 shows a fully connected or ergodic model for a radar capable of 

 



producing three words. The letters A, B and C represents the actual HMM that 
produce each of the three words. These sub-HMMs could either be left-right 
(Figure1) fully ergodic or partially ergodic. Lastly, we have a partially ergodic global 
model in Figure3. 
Isolated word recognition prefers to use the left-right model in Figure 1 because time 
can be readily associated with state progression. That is to say, time can only go 
forward so the model can not allow for transition to treat back to previous state [2]. 
Connected or multiple word recognition has successfully employed the model shown 
in Figure 2 where the transitions from one word model to the next are derived using 
either a level building approach (similar to Figure 2) or a time synchronous Viterbi 
search [2]. 
 
 
Although Figure 2 could be a promising way to proceed for modeling of radar signals 
(deterministic or otherwise), the global partial ergodic model was chosen as the best 
way to proceed due to its simplicity. That is, if all information of the source can be 
retrieved from a single HMM, why try to model the same source using several 
HMMs? The question thus arises, what physical meaning to the states have in this 
case since, in the left-right model, they could either represent the number of 
phonemes per word, or the number of observation per word. The answer is simply 
that the states do not have a physical meaning, but are simply information bins that 
we use to model the source. 
 
 
Consider that we have the following deterministic periodic training sequence 
0010100101… which is known to contain no errors. The question thus arises, what 
would be the best choice for the number of states in terms of the training 
probability ( λOP )? Figure 4 shows the training probability versus number of states for 
different length of this sequence, it can be seen that, regardless of the training 
sequence length, at 5 states and its doubles there is a perfect training probability (log 
probability equal to 0) while any thing else the log probability less than zero. The 
fewer the number of states, the smaller the training probability, with longer test 
sequence performing worse than short ones.   
 
 
It would appear that something special happens at five states in that all the 
information about the signal has been captured at this point due to the perfect 
training probability. If we look at the training sequence it is clear that it is 
composed of repeating units of the sequence 00101 which is five symbols 
long. The A, B and π parameters for a typical model with five states are: 
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We will introduce the concept of the perfect model as any HMM that is capable of 
reproducing a given training sequence with probability 1. For this training sequence 
perfect models can occur for 5=N  states. It should be clear that, in terms of 
recognition as long as the observation sequence is synchronized to the model 
(begins with 00101…) then recognition probability will be the same as the training 
probability for a given number of states. That is, a given model with training 
probability P will classify the same error-free and synchronized observation sequence 
with probability P assuming that the model had been sufficiently trained. 
 
 
Assuming we have sufficiently trained a model it is true that the perfect model for any 
deterministic sequence must contain at least as many states as the number of the 
symbols per period. Figure 5 shows the training probability of the sequence 
000100100010010001001….... Once again, a log probability of zero occurs at N=7 
which corresponds to the seven symbols in each period. 
 
 A cursory explanation of this observation can be seen through the way in which the 
forward-backward procedure computes the training probability. 
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And that the sum of the terminal forward variables over all states in the model is 
defined as the probability of producing the given sequence O given the model λ .  
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If there are any values in either A or B are on the interval (0,1) then it is clean that 
the forward variable ( )itα  will also be less than 1 due to the multiplication in equation 
(3). The longer the sequence the smaller the overall probability. This can be seen in 
Figure 4 where ( λOP
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) for the model trained on the 20-period sequence is much 
smaller than that of the 4-period sequence. 
 

 



The only way for A and B to contain only 1’s and 0’s is for the number of states in the 
model equal to the number of symbols per period. That is, only one state transition 
out of state  into state . If this is the case then the sum of the forward variables 
can only equal 1 implying a perfect model. Mathematically, we can write 
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On the other hand, if the number of states exceeds that of the number of symbols per 
period there has to be at least one state containing more than one transition and thus 
element  that is not equal to 1. Although this results in a forward variable less than 
1, the forward-backward procedure sums over all possible paths so that the sum of 
the terminal forward variables does not equal 1. The extra states can thus be viewed 
as redundant since they do not add any extra information to be model (but do not 
take any away either). 

ija

 
 
The perfect model, however, has one serious drawback when it comes to 
observation sequence recognition. Since the perfect model has a training probability 
of 1, it is only capable of reproducing one sequence. If we use the perfect model for 
recognition of test sequences that differ from the training sequences by even one 
symbol, the perfect model will collapse. The perfect model, in other words, lacks 
robustness. 
 

3. RECOGNITION PERFORMANCE WITH ERRORS 
 
Although passive ESM receiver is much less likely to receive error-corrupted radar. 
The active radar due to smaller free-space losses, an observation sequence with still 
invariably contains some errors. Therefore, it is necessary to have a model for given 
radar that is able to cope with certain error-level. In other words, it is required that our 
HMM be robust enough to counteract the effect of errors that occur from both 
spurious (extraneous) and dropped pulses. Dropped pulses are generally more 
common than spurious pulses and can occur for several reasons including: (1) 
transmitter malfunction, (2) reflecting objects that blind the receiver, (3) large 
distances between transmitter and receiver resulting in low SNR. Spurious pulses are 
rare and usually the result of internal processing at the receiver. The most common 
reason for spurious pulses is improper deinterleaving. 
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In speech recognition errors are usually interpreted as differences between the ways 
in which various speakers utter a given word [6]. Even the same person never be 
able to identically repeat a word twice, which is why training usually requires the 
person to say a given word multiple times. This use of multiple training sequences 
allows the HMM a certain robustness during recognition. It was initially thought that 
using multiple training sequences, which include a so-called perfect sequence (the 
original sequences) as-well as error corrupted versions, would also be an adequate 
way for improving recognition for RSI. However, it was observed that the multiple 
sequences might have adverse effect of removing information from a model that 

 



was just trained with perfect sequences. That is to say, a perfect model contains all 
the correct PRI information about a given training sequence so it would be desirable 
to some how preserve some of this information while at the same time improving the 
robustness of the HMM. One way f doing this would be to train the model with the 
perfect training sequence in order to obtain a perfect model and then retrain only the 
B matrix (holding A and π constant) with an error corrupted sequence. This would 
preserve the information in the state transition matrix while perturbing the values the 
values in B a slight amount from the perfect model there by giving additional flexibility 
to HMM to accommodate errors in the observation sequences. Although one could 
do the reverse and retain A and π  while holding B constant, B seems to be a much 
more powerful component of the model[6]  
 
 
Figure 6 shows the results of retraining B in terms of log training probability for the 
sequence [0010100101…..] Initially, the perfect model was computed (using five 
states) and then the error level in the training sequence was varied from 0% to 100% 
to give the corresponding retrained probability ( )λOP .  
 
 
Notice that perfect training probability occurs at 0 and 100% error levels while the 
worst probability occurs at 50%. In other words, the model works best where either 
none or all of the symbols are in error where as a 50% error rate means that there is 
no information about the sequence contained with the training sequence. 
 
 
Next, a model was retrained according to fixed error level and then used to compute 
a recognition probability of an error-corrupted version of the original training 
sequence with an error level ranging from 0% to100%. In The figures 7, 8 , 9 and 10 
shows the recognition performance of these models as compared to the perfect 
model trained on error-free sequence [00101] repeated eight times. Note that the 
perfect model was faced to have a B matrix consisting not of ones and zeros, but of 
ε and 1-ε with ε  equal to 0.0001. This was done so that the simulation could 
compute recognition probability without producing “NaN” a Matlab expressions for 

operations such as 
0
0

 or 
∞
∞

. Additionally if any of the elements of the retrained 

models B matrix contained either a ‘0’ or ‘1’ then these elements were also changed 
to ε and 1-ε  respectively. 
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It is clear from the previous four figures that adjusting B to accommodate an error-
corrupted test sequence certainly, on the whole, provides a better recognition 
probability than the perfect model as would be expected. The model retrained at 50% 
error gives relatively constant performance across the range of the observation errors 
while the other models are somewhat mirror images of each other. That is to say that 
the model trained on 35% error level has better recognition for observation 
sequences containing less than 50% errors while that model trained on 85% has 
better recognition for test sequences having more than 50% errors. 
Using the recognition with multiple competing models using the retraining 

 



method described in the previous sections, the recognition performance of a HMM is 
tested with competing models. The fundamentals equation at hand is how corrupted 
can an observation sequence be before it is mistakenly classified by wrong model. In 
order to investigate this issue three different artificial radar signals are created and 
their respective perfect HMMs computed using number of states as specified in 
section2. 
The three radar sequences used are the following (each observation is 70 symbols in 
length):, (1)Radar 1: [0101…], (2)Radar 2: [0010100101…], (3)Radar 3: [0001001 
0001001…]. 
  
The error level at which each HMM is retrained is varied from small (around 5%) to 
large (up to 60%). The observation sequence used is generated from radar 2 and it 
has an error level that ranges from 0 to 100%. In other words, this experiment is 
attempting to uncover how well a model retrained at known error level would perform 
where observation sequence is error corrupted.  
 
Figure 11 shows the log recognition probabilities for each of the three HMMs. The 
error level at which each HMM is retrained is shown on the top of the figure while the 
error level of the observation sequence is shown on the x-axis. The retraining error 
level for radar 1 is abbreviated as EL-1, radar 2 as EL-2 and radar 3 as EL-3 It can 
be seen that correct recognition will occur in this case up until the error level of the 
observation sequence reaches approximately 18%. After this the highest log 
recognition scores vary between models 1 and 3, which tend to have a relatively flat 
recognition probability curve. 
 
 
Figure 12 increases the retraining error level for each of the models to around 25%. 
The reason they are not all the same is that the number of errors in each retraining 
sequence is determined randomly. That is, a uniform pseudo-random variable is 
generated for every symbol in the sequence by the computer and it is below a given 
threshold the symbol is inverted (a '0' changed to a '1' and vice versa). In this case 
threshold is 0.25. In this simulation, correct recognition tends to occur up until 
approximately 32% error level in the observation sequence- slightly than in Figure 11, 
which is expected because the retraining error level is high than previously. Notice 
also that the recognition probabilities for the two competing models have risen 
substantially.  
 
 
Finally, Figure 13 shows the recognition performance for each HMM after having 
been retrained on very corrupted sequences. Notice how model 2 only begins to 
have the highest recognition probability of the three when observation sequence also 
contains many errors. This is similar to Figure 9 where the model has been retrained 
at 85% error and whose recognition probabilities increased as the observation 
sequence error level increased. 
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Of course, it is rare that observation sequences will be so corrupted that 80% of the 
sequences is in error. In radar applications common assumption for dropped and 
spurious pulse rate are 10% and 50% respectively. For example, if a transmitter 
signal contain 40 pulses ('1's) and 100 empty cycles ('0's) then one would expect 

 

 



that, an average,  pulses will be dropped (changed to '0's) and 
 empty cycles will be received pulses (changed to '1's). in this case 

there will be a total o 6 errors or 

41.040 =×
205.040 =×

%3.4%100
140

6
≅×⎟

⎠
⎞

⎜
⎝
⎛  error. 

 
4. UNIFORM INITIAL STATE DISTRIBUTION VECTOR AND LOSS OF 

SYNCHRONIZATION 
 
 
Up until this point the initial state vector π , has been of the form 
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Where the index k is arrived at using the Baum Welsh algorithm. The reason for this 
is that one of the elements in π  must exactly equal 1 in order to have perfect model. 
It has already been seen that the perfect model is in flexible in classifying error-
corrupted sequences and that its B matrix entries must be adjusted by ε−1  and ε  
to improve its recognition performance. Another way to further increase its 
robustness is to change the initial state distribution so that the model can begin in 
any of its N states with equal probability. This is essential for observation sequences 
that are not synchronized; that is, the final received symbol in the periodic 
sequences. For example, consider a model trained on the sequence [0010100101…] 
that it has the following HMM parameters and state diagram in Figure 14 
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Now we want to see the effect on the recognition probability for sequentially 
shortening the observation sequence from the left symbol by symbol. In other words, 
if the first observation sequence is 0010100101 (2 periods) then the next sequence 
would be 010100101 followed by 10100101, 0100101 and so on. This is, in effect, 
simulating receiving a signal that is in mid-transmission. Figure 15 shows the log 
recognition probability for each length of the observation sequence. 
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The oscillatory nature of Figure 15 can be explained as follows. The log recognition 
probability of the 10 symbol test sequence is very nearly equal to 0 (more 
precesizely)  because this sequence matches up exactly to the ( 101log ε− )
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training sequence the HMM is designed to track. The 9 symbol sequence 
[010100101], however, faces the HMM to use some of the ε  values in B because 
this sequence does not line up perfectly with the training sequence. Table 1 
illustrates which elements in B are hit for the 5 to 10-symbol observation sequences. 
The element in B that is used depends on whether the symbol at time t for the 
standard sequence is the same as the original training sequence (the top sequence). 
If it is then HMM will use ε−1 =0.9999 other wise it will use ε =0.0001. the total 
probability of tracking the sequence, ( )OP λ  is the product of all B element used. 

This is why the recognition probability of the 10-symbol is ( ) 9999.01 10 =− ε . The log 
probability of the 9-symbol sequence can be calculated as 

( ) 28log71log2 −=+− εε  and so on. If the model is not constrained to begin in 
state 1, but is instead, allowed to begin tracking in any state with equal probability 

⎟
⎠
⎞

⎜
⎝
⎛ == Ni

Ni ....,.........2,1;1π  then we get Figure 16. 

 
 
These sequences with 3 or more symbols have recognition probability equal to 
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Which in logarithm form, is 
 

 ( ) ( ) NTOP log1loglog −−= ελ  (9) 
 
Where T is the length of the sequence. In this case each of these probabilities is 
roughly equal to -0.6990. the remaining two sequences can follow two different state 
sequences so their respective log recognition probabilities are larger by log 2 or 
0.301 since the forward backward procedure sums over all possible state sequences. 
That is 
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Regardless of whether a given observation sequence is able to follow more than one 
state sequences it is clear that a uniform initial state vector will provide overall better 
recognition performance then if it is constrained to beginning I only one state. If we 
assume that an unsynchronized observation sequence of length T can only follow 
one state sequence then it is possible to define the following improvement factor for 
using a uniform π . 
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After some simplification and taking the logarithm becomes  
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Where x is the number of symbols in the sequence that hit the ε  elements in the B 
matrix during the recognition. As an example, using 9-symbol sequence 010100101 
that has 7=x  we get a log improvement equal to 27.3007.Because a uniform π  is 
so much flexible for sequence recognition. 
 
 
5. CONCLUSIONS  
 
 
The performance of HMMs with deterministic sequences has been investigated. It 
was found that a perfect model can readily found for any HMM trained on a 
deterministic sequences by choosing the number of states to be at least as long as 
the period of the sequence. Significant robustness can be added if the elements in 
the symbol distribution matrix B, are changed from '1's to '0's to ε−1  and ε  
respectively where ε  is a small value. Additionally, the actual recognition probability 
of error-corrupted sequence can be increased if the HMM is retrained on a sequence 
which also contain a known number of errors. The sequences used in this paper, 
however showed that the recognition performance of a HMM with competing models 
may degrade after retraining if the error rate of the observation sequence significantly 
exceeds that of the retraining sequence. This is due to the fact that the recognition 
probabilities of the competing models increase substantially more than those of the 
correct model.  
 
 
Finally, it was shown that one can further increases a model's robustness by using a 
uniform initial state distribution vector. The log improvement factor was determined. If 
x=0 then the recognition probability decreases proportionally to the logarithm of the 
number of states, N, however, it is very rare that the observation sequence will be 
completely error-free and synchronized.   
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Figure 1. 4-state left-right HMM  Figure 2. 3-state ergodic HMM  

 
Figure 3. 4-state partially ergodic HMM  
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Figure 6. Training probability with 
different training sequence error levels 

Figure 7. Recognition probability   for 
HMM retrained at 10% error level 

Figure 8. Recognition probability for 
HMM retrained at 35% error level 

Figure 9. Recognition probability for 
HMM retrained at 50% error level  
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 Figure 11. Recognition probabilities with 
multiple HMMs (low-error retraining/ radar2 

sequence generator) 

Figure 10. Recognition probability for 
HMM retrained at 85% error level 
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Figure 12. Recognition probabilities with multiple 

HMMs (medium error retraining/ radar 2 sequence 
generators)  

Figure 13: Recognition probabilities with multiple 
HMMs (higher error retraining / radar 2 sequence 

generator)   
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Table 1. Recognition probability calculation 
 

Sequence 0 0 1 0 1 0 0 1 0 1 
B element 

used ε−1  ε−1  ε−1 ε−1 ε−1 ε−1 ε−1 ε−1  ε−1  −ε1

Sequence 0 1 0 1 0 0 1 0 1 
B element 

used ε−1  ε  ε  ε  ε  ε−1 ε  ε  ε  

Sequence 1 0 1 0 0 1 0 1 
B element 

used ε  ε−1  ε−1 ε−1 ε  ε  ε−1 ε−1  

Sequence 0 1 0 0 1 0 1 
B element 

used ε−1  ε  ε  ε−1 ε−1 ε−1 ε  

Sequence 1 0 0 1 0 1 
B element 

used ε  ε−1  ε  ε  ε  ε  

Sequence 0 0 1 0 1 
B element 

used 
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ε−1  ε−1  ε−1 ε−1 1−ε
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