

PERFORMANCE EVALUATION OF PULSED RADAR
IDENTIFICATION USING HIDDEN MARKOV MODEL

HOSSAM E. ABOU-BAKR HASSAN*, AHMED EL-MAHDY*
AND MOHAMED ASAAD ABD-ELRAZEK*

ABSTRACT

Due to the increasing complexity in modern radar systems, it has become apparent
that new ways of classify received signals are required. In this paper, the
performance of a proposed method for radar system identification using hidden
Markov model (HMM) is evaluated. In this method, a given radar system is modeled
as a finite state automaton. In so, doing, it is possible to uncover the underlying
system processes in a probabilistic fashion using hidden Markov models. Artificial
deterministic signals are used to show that HMMs can provide adequate signal
recognition. It will be shown that a perfect exists that is directly related to the number
of symbols per period. A slightly adjusted version of this perfect model provides low
false recognition rates in a threat library consisting of three models so long as the
observation errors do not become too frequent. The simulation results show that if
the observation errors are introduced, then, it becomes necessary to retrain the HMM
with an error corrupted version of the original training sequence in order to improve
the model's robustness.

KEY WORDS

Signal processing, Radar, Hidden Markov Model.

* Egyptian Armed Forces

 11. INTRODUCTION

The growth complexity of modern and indeed, future radar design is required a new
approach to radar system identification for Electronic warfare (EW) purposes.
Conventional assumption about the nature of radar signals are provided to be less
and less valid; namely that the signal can be assumed to be stable and predictable.
Simple cross-correlation of the received signal with a library of known signals is in
adequate in some applications when the signal source transmits pulses in a pseudo-
random fashion. Instead, if the source is assumed to be a finite automaton then it is
possible to model it using a hidden Markov model (HMM). HMMs have been used
extensively in many applications requiring a signal model for practical functions such
as classification, decoding and prediction [1]. Much of the theory used in this paper
has been based on the knowledge gained about HMMs for speech recognition
problems and could be appropriately applied to radar system identification. HMMs
have been used in a host of pattern recognition application such as: inferring
grammar of simple language, relation ships between pairs of DNA sequences,
signature and face recognition [3,4].

Due to the fact that modeling a modern radar system as a cycle stationary source is
no longer justified [1], previous methods of signal classification such as histograming
of pulse arrival times and cross-correlation of received signals with known ones will
prove to be unreliable and ineffective. Two key advantages to modeling a radar as a
finite state automaton are: (1) finite state automaton are flexible and can be designed
so as to capture all the required temporal information about dynamic systems; (2)
even though the input symbols controlling state transitions in the state machine are
hidden in most EW applications, they can be uncovered probabilistically using
HMMs.

Radar system identification uses a pattern recognition as in a field that has
successfully used HMM in many applications over last twenty years [2]. They are
used to try to replicate simple (first-order) Markov process whose state (and thus
symbol outputs) at time t (the present) depends only on the last output at time t-1 [2].
Although the actual signal behind modeling may not originate from a true first order
Markov source (that is, the present output symbol may depend on more than just the
previous output), the success of HMMs have enjoyed in classification applications
over the years is evidence to the fact that the simple Markov source model is usually
a valid one.

2

The information used in this paper to characterize a given radar signal Is that of the
PRI where a pulse is represented by a '1' while a '0' signifies no received pulse. it is
assumed that any received signal has been put through a front-end-signal processing
block so that requisite functions such as sampling and deinterleaving [7] have been
accomplished. There are four main problems using HMMs as described in [1] of
which three are addressed in this paper, these are: (1) Classification: correctly
choosing he model out of a library that best represents the received signal source;
(2) Decoding: having chosen a particular model, what state sequence best describes
the observed sequence? (3) Predicates: given a model and partial observation

sequence, what is the next symbol ('0' or '1') most likely to be? (4) Training: given an
observation sequence, what are the optimal parameters for the HMM so that if it is
able to reproduce the sequence?

This paper will focus mainly on the training and classification problem, but will briefly
touch on the decoding issue and discussing its implications for radar system
identification. Training is by far the most important and involved problem because the
parameter chosen to represent the received waveform necessarily dedicate the
performance of the other three problems. That is to say, if there is poor training a
non-optimal choice for the model's parameters, then the probability of proper
classification degrades and prediction decreases substantially. The principle
objective of this paper is to provide a method for choosing the optimal model
parameters for an actual radar signal so that a library of HMMs can be created and
used for practical EW tasks. Although the only data used in the simulations to
characterize a radar signal is the PRI, the result learned from this paper represents a
stepping-store for further inclusion of many the other well-known signal parameters
such as carrier frequency, polarization and pulse duration. As a result the recognition
performance can only increase with the addition of this information. This paper is
organized as follows. In section 2, the training of a HMM will first be studied when
there are no errors in the sequences and its performance is tested as a function of
the number of states in the model. In section 3, the recognition performance will then
be studied when errors are intentionally added into an observation sequence at a
known rate. In section 4, a brief insight into the use of a uniform initial state vector will
be given. Section 5 will summarize the main conclusions.

2. NUMBER OF STATES

The choice of number of states to be used in a HMM has a fundamental influence on
its recognition performance. In isolated word, in recognition there are two major ways
of tackling this issue. The first idea is to have the number of states roughly equal to
the number of sounds or phonemes within a given word. The second is to let the
number of states be approximately equal to the number of observations in a spoken
version of the word [2]. The former uses a so-called left-right model which faces the
state transitions to either loop back onto the same state to proceed to the next state,
but never return to the previous state. Radar system identification (RSI), on the other
hand, is interested in creating a model for an entire dynamic radar system. That is,
the HMM must be able to recognize every possible word and combination there of
that the radar is capable of producing. To do this, it is conceivable that we would
create a separate HMM for each word from a particular radar and then use a state
transition matrix whose elements dedicate the transition probabilities from one HMM
to another. Another approach would be to consolidate all the information from the
radar signal into one global HMM that is not left-right, but would allow for any
possible transition. Figure 1 shows a 4-state left-right model1. Note that the model
must begin in state 1, and will always end in state 4.

31 some of the examples have been taken from Rabiner ([2],p.266). Rabiner defines an ergodic model
as one in which every aij>0. The author has used the word “global” in order to differentiate between
a finite state network where notes represent actual HMMs of words or phonemes ([2],p.283) instead
of just states.

In the Figure 2 shows a fully connected or ergodic model for a radar capable of

producing three words. The letters A, B and C represents the actual HMM that
produce each of the three words. These sub-HMMs could either be left-right
(Figure1) fully ergodic or partially ergodic. Lastly, we have a partially ergodic global
model in Figure3.
Isolated word recognition prefers to use the left-right model in Figure 1 because time
can be readily associated with state progression. That is to say, time can only go
forward so the model can not allow for transition to treat back to previous state [2].
Connected or multiple word recognition has successfully employed the model shown
in Figure 2 where the transitions from one word model to the next are derived using
either a level building approach (similar to Figure 2) or a time synchronous Viterbi
search [2].

Although Figure 2 could be a promising way to proceed for modeling of radar signals
(deterministic or otherwise), the global partial ergodic model was chosen as the best
way to proceed due to its simplicity. That is, if all information of the source can be
retrieved from a single HMM, why try to model the same source using several
HMMs? The question thus arises, what physical meaning to the states have in this
case since, in the left-right model, they could either represent the number of
phonemes per word, or the number of observation per word. The answer is simply
that the states do not have a physical meaning, but are simply information bins that
we use to model the source.

Consider that we have the following deterministic periodic training sequence
0010100101… which is known to contain no errors. The question thus arises, what
would be the best choice for the number of states in terms of the training
probability (λOP)? Figure 4 shows the training probability versus number of states for
different length of this sequence, it can be seen that, regardless of the training
sequence length, at 5 states and its doubles there is a perfect training probability (log
probability equal to 0) while any thing else the log probability less than zero. The
fewer the number of states, the smaller the training probability, with longer test
sequence performing worse than short ones.

It would appear that something special happens at five states in that all the
information about the signal has been captured at this point due to the perfect
training probability. If we look at the training sequence it is clear that it is
composed of repeating units of the sequence 00101 which is five symbols
long. The A, B and π parameters for a typical model with five states are:

4

 []00001,
10100
01011

,

00001
10000
01000
00100
00010

=⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

= πBA (1)

We will introduce the concept of the perfect model as any HMM that is capable of
reproducing a given training sequence with probability 1. For this training sequence
perfect models can occur for 5=N states. It should be clear that, in terms of
recognition as long as the observation sequence is synchronized to the model
(begins with 00101…) then recognition probability will be the same as the training
probability for a given number of states. That is, a given model with training
probability P will classify the same error-free and synchronized observation sequence
with probability P assuming that the model had been sufficiently trained.

Assuming we have sufficiently trained a model it is true that the perfect model for any
deterministic sequence must contain at least as many states as the number of the
symbols per period. Figure 5 shows the training probability of the sequence
000100100010010001001….... Once again, a log probability of zero occurs at N=7
which corresponds to the seven symbols in each period.

 A cursory explanation of this observation can be seen through the way in which the
forward-backward procedure computes the training probability.

 ()() () NiobSqopi ii
L

i ≤≤=== 1,)(1111 πλα (2)

() () ()∑

=
++ =

N

i
tjijtt obaij

1
11 αα

Nj 11 −≤≤ Tt , ≤ ≤1
(3)

And that the sum of the terminal forward variables over all states in the model is
defined as the probability of producing the given sequence O given the model λ .

 () ()∑
=

=
N

i
T iOp

1
αλ (4)

If there are any values in either A or B are on the interval (0,1) then it is clean that
the forward variable ()itα will also be less than 1 due to the multiplication in equation
(3). The longer the sequence the smaller the overall probability. This can be seen in
Figure 4 where (λOP

5

) for the model trained on the 20-period sequence is much
smaller than that of the 4-period sequence.

The only way for A and B to contain only 1’s and 0’s is for the number of states in the
model equal to the number of symbols per period. That is, only one state transition
out of state into state . If this is the case then the sum of the forward variables
can only equal 1 implying a perfect model. Mathematically, we can write

iS jS

() () () () (){ 1},,{1

101
11 〈∃

≤≤+
++= tjijttjijt obaisuchthatobaisetaif

ppt j
αα

α (5)

On the other hand, if the number of states exceeds that of the number of symbols per
period there has to be at least one state containing more than one transition and thus
element that is not equal to 1. Although this results in a forward variable less than
1, the forward-backward procedure sums over all possible paths so that the sum of
the terminal forward variables does not equal 1. The extra states can thus be viewed
as redundant since they do not add any extra information to be model (but do not
take any away either).

ija

The perfect model, however, has one serious drawback when it comes to
observation sequence recognition. Since the perfect model has a training probability
of 1, it is only capable of reproducing one sequence. If we use the perfect model for
recognition of test sequences that differ from the training sequences by even one
symbol, the perfect model will collapse. The perfect model, in other words, lacks
robustness.

3. RECOGNITION PERFORMANCE WITH ERRORS

Although passive ESM receiver is much less likely to receive error-corrupted radar.
The active radar due to smaller free-space losses, an observation sequence with still
invariably contains some errors. Therefore, it is necessary to have a model for given
radar that is able to cope with certain error-level. In other words, it is required that our
HMM be robust enough to counteract the effect of errors that occur from both
spurious (extraneous) and dropped pulses. Dropped pulses are generally more
common than spurious pulses and can occur for several reasons including: (1)
transmitter malfunction, (2) reflecting objects that blind the receiver, (3) large
distances between transmitter and receiver resulting in low SNR. Spurious pulses are
rare and usually the result of internal processing at the receiver. The most common
reason for spurious pulses is improper deinterleaving.

6

In speech recognition errors are usually interpreted as differences between the ways
in which various speakers utter a given word [6]. Even the same person never be
able to identically repeat a word twice, which is why training usually requires the
person to say a given word multiple times. This use of multiple training sequences
allows the HMM a certain robustness during recognition. It was initially thought that
using multiple training sequences, which include a so-called perfect sequence (the
original sequences) as-well as error corrupted versions, would also be an adequate
way for improving recognition for RSI. However, it was observed that the multiple
sequences might have adverse effect of removing information from a model that

was just trained with perfect sequences. That is to say, a perfect model contains all
the correct PRI information about a given training sequence so it would be desirable
to some how preserve some of this information while at the same time improving the
robustness of the HMM. One way f doing this would be to train the model with the
perfect training sequence in order to obtain a perfect model and then retrain only the
B matrix (holding A and π constant) with an error corrupted sequence. This would
preserve the information in the state transition matrix while perturbing the values the
values in B a slight amount from the perfect model there by giving additional flexibility
to HMM to accommodate errors in the observation sequences. Although one could
do the reverse and retain A and π while holding B constant, B seems to be a much
more powerful component of the model[6]

Figure 6 shows the results of retraining B in terms of log training probability for the
sequence [0010100101…..] Initially, the perfect model was computed (using five
states) and then the error level in the training sequence was varied from 0% to 100%
to give the corresponding retrained probability ()λOP .

Notice that perfect training probability occurs at 0 and 100% error levels while the
worst probability occurs at 50%. In other words, the model works best where either
none or all of the symbols are in error where as a 50% error rate means that there is
no information about the sequence contained with the training sequence.

Next, a model was retrained according to fixed error level and then used to compute
a recognition probability of an error-corrupted version of the original training
sequence with an error level ranging from 0% to100%. In The figures 7, 8 , 9 and 10
shows the recognition performance of these models as compared to the perfect
model trained on error-free sequence [00101] repeated eight times. Note that the
perfect model was faced to have a B matrix consisting not of ones and zeros, but of
ε and 1-ε with ε equal to 0.0001. This was done so that the simulation could
compute recognition probability without producing “NaN” a Matlab expressions for

operations such as
0
0

 or
∞
∞

. Additionally if any of the elements of the retrained

models B matrix contained either a ‘0’ or ‘1’ then these elements were also changed
to ε and 1-ε respectively.

7

It is clear from the previous four figures that adjusting B to accommodate an error-
corrupted test sequence certainly, on the whole, provides a better recognition
probability than the perfect model as would be expected. The model retrained at 50%
error gives relatively constant performance across the range of the observation errors
while the other models are somewhat mirror images of each other. That is to say that
the model trained on 35% error level has better recognition for observation
sequences containing less than 50% errors while that model trained on 85% has
better recognition for test sequences having more than 50% errors.
Using the recognition with multiple competing models using the retraining

method described in the previous sections, the recognition performance of a HMM is
tested with competing models. The fundamentals equation at hand is how corrupted
can an observation sequence be before it is mistakenly classified by wrong model. In
order to investigate this issue three different artificial radar signals are created and
their respective perfect HMMs computed using number of states as specified in
section2.
The three radar sequences used are the following (each observation is 70 symbols in
length):, (1)Radar 1: [0101…], (2)Radar 2: [0010100101…], (3)Radar 3: [0001001
0001001…].

The error level at which each HMM is retrained is varied from small (around 5%) to
large (up to 60%). The observation sequence used is generated from radar 2 and it
has an error level that ranges from 0 to 100%. In other words, this experiment is
attempting to uncover how well a model retrained at known error level would perform
where observation sequence is error corrupted.

Figure 11 shows the log recognition probabilities for each of the three HMMs. The
error level at which each HMM is retrained is shown on the top of the figure while the
error level of the observation sequence is shown on the x-axis. The retraining error
level for radar 1 is abbreviated as EL-1, radar 2 as EL-2 and radar 3 as EL-3 It can
be seen that correct recognition will occur in this case up until the error level of the
observation sequence reaches approximately 18%. After this the highest log
recognition scores vary between models 1 and 3, which tend to have a relatively flat
recognition probability curve.

Figure 12 increases the retraining error level for each of the models to around 25%.
The reason they are not all the same is that the number of errors in each retraining
sequence is determined randomly. That is, a uniform pseudo-random variable is
generated for every symbol in the sequence by the computer and it is below a given
threshold the symbol is inverted (a '0' changed to a '1' and vice versa). In this case
threshold is 0.25. In this simulation, correct recognition tends to occur up until
approximately 32% error level in the observation sequence- slightly than in Figure 11,
which is expected because the retraining error level is high than previously. Notice
also that the recognition probabilities for the two competing models have risen
substantially.

Finally, Figure 13 shows the recognition performance for each HMM after having
been retrained on very corrupted sequences. Notice how model 2 only begins to
have the highest recognition probability of the three when observation sequence also
contains many errors. This is similar to Figure 9 where the model has been retrained
at 85% error and whose recognition probabilities increased as the observation
sequence error level increased.

8

Of course, it is rare that observation sequences will be so corrupted that 80% of the
sequences is in error. In radar applications common assumption for dropped and
spurious pulse rate are 10% and 50% respectively. For example, if a transmitter
signal contain 40 pulses ('1's) and 100 empty cycles ('0's) then one would expect

that, an average, pulses will be dropped (changed to '0's) and
 empty cycles will be received pulses (changed to '1's). in this case

there will be a total o 6 errors or

41.040 =×
205.040 =×

%3.4%100
140

6
≅×⎟

⎠
⎞

⎜
⎝
⎛ error.

4. UNIFORM INITIAL STATE DISTRIBUTION VECTOR AND LOSS OF

SYNCHRONIZATION

Up until this point the initial state vector π , has been of the form

kiNi

kii

≠≤≤=
==

10
1π

 (6)

Where the index k is arrived at using the Baum Welsh algorithm. The reason for this
is that one of the elements in π must exactly equal 1 in order to have perfect model.
It has already been seen that the perfect model is in flexible in classifying error-
corrupted sequences and that its B matrix entries must be adjusted by ε−1 and ε
to improve its recognition performance. Another way to further increase its
robustness is to change the initial state distribution so that the model can begin in
any of its N states with equal probability. This is essential for observation sequences
that are not synchronized; that is, the final received symbol in the periodic
sequences. For example, consider a model trained on the sequence [0010100101…]
that it has the following HMM parameters and state diagram in Figure 14

[]00001
11

111

00001
10000
01000
00100
00010

=

⎥
⎦

⎤
⎢
⎣

⎡
−−

−−−
=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

π
εεεεε

εεεεε
B

A

(7)

Now we want to see the effect on the recognition probability for sequentially
shortening the observation sequence from the left symbol by symbol. In other words,
if the first observation sequence is 0010100101 (2 periods) then the next sequence
would be 010100101 followed by 10100101, 0100101 and so on. This is, in effect,
simulating receiving a signal that is in mid-transmission. Figure 15 shows the log
recognition probability for each length of the observation sequence.

9

The oscillatory nature of Figure 15 can be explained as follows. The log recognition
probability of the 10 symbol test sequence is very nearly equal to 0 (more
precesizely) because this sequence matches up exactly to the (101log ε−)

10

training sequence the HMM is designed to track. The 9 symbol sequence
[010100101], however, faces the HMM to use some of the ε values in B because
this sequence does not line up perfectly with the training sequence. Table 1
illustrates which elements in B are hit for the 5 to 10-symbol observation sequences.
The element in B that is used depends on whether the symbol at time t for the
standard sequence is the same as the original training sequence (the top sequence).
If it is then HMM will use ε−1 =0.9999 other wise it will use ε =0.0001. the total
probability of tracking the sequence, ()OP λ is the product of all B element used.

This is why the recognition probability of the 10-symbol is () 9999.01 10 =− ε . The log
probability of the 9-symbol sequence can be calculated as

() 28log71log2 −=+− εε and so on. If the model is not constrained to begin in
state 1, but is instead, allowed to begin tracking in any state with equal probability

⎟
⎠
⎞

⎜
⎝
⎛ == Ni

Ni,.........2,1;1π then we get Figure 16.

These sequences with 3 or more symbols have recognition probability equal to

 () ()T
N

OP ελ −= 11
 (8)

Which in logarithm form, is

 () () NTOP log1loglog −−= ελ (9)

Where T is the length of the sequence. In this case each of these probabilities is
roughly equal to -0.6990. the remaining two sequences can follow two different state
sequences so their respective log recognition probabilities are larger by log 2 or
0.301 since the forward backward procedure sums over all possible state sequences.
That is

 () () ()

2
log1log211loglog NT

N
OP T −−=⎟

⎠
⎞

⎜
⎝
⎛ ×−= εελ (10)

Regardless of whether a given observation sequence is able to follow more than one
state sequences it is clear that a uniform initial state vector will provide overall better
recognition performance then if it is constrained to beginning I only one state. If we
assume that an unsynchronized observation sequence of length T can only follow
one state sequence then it is possible to define the following improvement factor for
using a uniform π .

()
()

()
() xxT

T

nouniform

uniform

NOP

OP
I

εε
ε

λ

λ
−−

−
==

1
1

 (10)

After some simplification and taking the logarithm becomes

 NxI log1loglog −⎟
⎠
⎞

⎜
⎝
⎛ −

=
ε
ε

 (11)

Where x is the number of symbols in the sequence that hit the ε elements in the B
matrix during the recognition. As an example, using 9-symbol sequence 010100101
that has 7=x we get a log improvement equal to 27.3007.Because a uniform π is
so much flexible for sequence recognition.

5. CONCLUSIONS

The performance of HMMs with deterministic sequences has been investigated. It
was found that a perfect model can readily found for any HMM trained on a
deterministic sequences by choosing the number of states to be at least as long as
the period of the sequence. Significant robustness can be added if the elements in
the symbol distribution matrix B, are changed from '1's to '0's to ε−1 and ε
respectively where ε is a small value. Additionally, the actual recognition probability
of error-corrupted sequence can be increased if the HMM is retrained on a sequence
which also contain a known number of errors. The sequences used in this paper,
however showed that the recognition performance of a HMM with competing models
may degrade after retraining if the error rate of the observation sequence significantly
exceeds that of the retraining sequence. This is due to the fact that the recognition
probabilities of the competing models increase substantially more than those of the
correct model.

Finally, it was shown that one can further increases a model's robustness by using a
uniform initial state distribution vector. The log improvement factor was determined. If
x=0 then the recognition probability decreases proportionally to the logarithm of the
number of states, N, however, it is very rare that the observation sequence will be
completely error-free and synchronized.

11

6. REFERENCES

[1] Rabiner, L.R., "A Tutorial on Hidden Markov Models and Applications in

Speech Recognition," Proc. IEEE, Vol.77, NO.2 February. pp 257-285, 1989.

[2] Roe,D.B., Wilpom,J.G."whither speech recognition: the next 25 years", IEEE

comm. Magazine pp. 54-62 November, 1993

[3] Baker, J.K., "the dragon system- an overview", IEEE trans. On Acustics,

speech, and signal processing, vol. Assp-23 NO.1,pp 24-29, February, 1975.

[4] Picone, J.W., "signal modeling techniques in speech recognition", proc. IEEE,

vol.81,No.9 p 1261 September, 1993

[5] Matsui, T., Nishitani, T., Firui, S., "Robust methods of updating model and a

priori threshold on speaker verification",proc.21st IEEE Int. conference on

Acustics, speech and signal processing, Atlanta, GA,7-10 May, 1996.

[6] Levinsons, S.E., rabiner, L.R.Sondhi,M.M., "An introduction to the application

of probabilistic functions of a Markov process to automatic speech recognition",

the Bell system technical journal, vol.62 No.4,pp.1041-1050 April, 1983.
[7] Mardia, H.K., " New techniques for deinterleaving repetitive sequences," IEE

proc. F, comm., Radar& signal processing 136, (4), pp. 149-154,1989.

 12

Figure 1. 4-state left-right HMM Figure 2. 3-state ergodic HMM

Figure 3. 4-state partially ergodic HMM

13

2 3 4 5 6 7 8 9 10

10-200

10-150

10-100

10-50

100

Training Probability Vs number of states

Number of states

Lo
g

Tr
ai

ni
ng

 P
ro

ba
bi

lit
y

4-periods
10-periods
20-periods

10
0

2 3 4 5 6 7 8 9 10
10

-40

10
-30

10
-20

10
-10

Number of states

Lo
g

tra
in

in
g

pr
ob

ab
ili

ty

Figure 4. Training probability Vs number
of states

Figure 5. Training probability Vs number
of states

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-10

10-8

10-6

10-4

10-2

100

Training probability for different error levels[(A,)are constant]

Error-level

Lo
g

tra
in

in
g

pr
ob

ab
ili

ty

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10-160

10-140

10-120

10-100

10-80

10-60

10-40

10-20

100
Recognition probabiity for [00101]

Observation sequence error level

Lo
g

re
co

gn
iti

on
 p

ro
ba

bi
lit

y

Model retrained at 10% error level
Perfect model -adjusted

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10-160

10
-140

10
-120

10
-100

10
-80

10-60

10-40

10-20

100
Recognition probabiity for [00101]

Observation sequence error level

Lo
g

re
co

gn
iti

on
 p

ro
ba

bi
lit

y

Model retrained at 35% error level
Perfect model - adjusted

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-160

10
-140

10
-120

10
-100

10
-80

10
-60

10
-40

10
-20

10
0

Recognition probabiity for [00101]

Observation sequence error level

Lo
g

re
co

gn
iti

on
 p

ro
ba

bi
lit

y

Model retrained at 50% error level
Perfect model -adjusted

ε ε

ε

Π

Figure 6. Training probability with
different training sequence error levels

Figure 7. Recognition probability for
HMM retrained at 10% error level

Figure 8. Recognition probability for
HMM retrained at 35% error level

Figure 9. Recognition probability for
HMM retrained at 50% error level

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-160

10
-140

10
-120

10-100

10
-80

10
-60

10-40

10-20

10
0

Recognition probabiity for [00101]

Observation sequence error level

Lo
g

re
co

gn
iti

on
 p

ro
ba

bi
lit

y

Model retrained at 85% error level
Perfect model -adjusted

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-120

10-100

10-80

10-60

10-40

10-20

100
EL-1=5.7% EL-2=7.1% EL-3=14%

Observation sequence error level

Lo
g

re
co

gn
iti

on
 p

ro
ba

bi
lit

y

Radar 1
Radar 2
Rradar 3

ε

 Figure 11. Recognition probabilities with
multiple HMMs (low-error retraining/ radar2

sequence generator)

Figure 10. Recognition probability for
HMM retrained at 85% error level

100

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-50

10-40

10-30

10-20

10-10

EL-1=27% EL-2=20% EL-3=27%

Observation sequence error level

Lo
g

re
co

gn
iti

on
 p

ro
ba

bi
lit

y

Radar 1
Radar 2
Radar 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-30

10-25

10-20

10-15
EL-1=57% EL-2=60% EL-3=47%

Observation sequence error level

Lo
g

re
co

gn
iti

on
 p

ro
ba

bi
lit

y

Radar 1
Radar 2
Radar 3

Figure 12. Recognition probabilities with multiple

HMMs (medium error retraining/ radar 2 sequence
generators)

Figure 13: Recognition probabilities with multiple
HMMs (higher error retraining / radar 2 sequence

generator)

100

1 2 3 4 5 6 7 8 9 10
10

-30

10-25

10-20

10-15

10-10

10-5

Recognition probability Vs unsynchronized test sequence

length of the test sequence

Lo
g

re
co

gn
iti

on
 p

ro
ba

bi
lit

y

Figure 14. state perfect HMM Figure 15. Effect of loss of synchronization on

recognition probability

1 2 3 4 5 6 7 8 9 10

10
-0.7

10
-0.6

10
-0.5

10
-0.4

Recognition probability Vs unsynchronized test sequence (uniform pi)

length of the test sequence

Figure 16. Improvement in recognition probability with
uniform

pr
ob

ab
ili

ty
re

co
gn

iti
on

Lo
g

π

Table 1. Recognition probability calculation

Sequence 0 0 1 0 1 0 0 1 0 1
B element

used ε−1 ε−1 ε−1 ε−1 ε−1 ε−1 ε−1 ε−1 ε−1 −ε1

Sequence 0 1 0 1 0 0 1 0 1
B element

used ε−1 ε ε ε ε ε−1 ε ε ε

Sequence 1 0 1 0 0 1 0 1
B element

used ε ε−1 ε−1 ε−1 ε ε ε−1 ε−1

Sequence 0 1 0 0 1 0 1
B element

used ε−1 ε ε ε−1 ε−1 ε−1 ε

Sequence 1 0 0 1 0 1
B element

used ε ε−1 ε ε ε ε

Sequence 0 0 1 0 1
B element

used

16

ε−1 ε−1 ε−1 ε−1 1−ε

	ABSTRACT
	INTRODUCTION
	NUMBER OF STATES
	RECOGNITION PERFORMANCE WITH ERRORS
	UNIFORM INITIAL STATE DISTRIBUTION VECTOR AND LOSS OF SYNCHRONIZATION
	CONCLUSIONS
	REFERENCES

