
 
 
 
 

SWARM ROBOT SOCIAL POTENTIAL FIELDS WITH  
INTERNAL AGENT DYNAMICS  

MABROUK* M. H. and MCINNES** C.R 
ABSTRACT 
Swarm robotics is a new and promising approach to the design and control of multi-
agent robotic systems. In this paper we use a model for a second order non-linear 
system of self-propelled agents interacting via pair-wise attractive and repulsive 
potentials. We propose a new potential field method using dynamic agent internal states 
to successfully solve a reactive path planning problem. The path planning problem 
cannot be solved using static potential fields due to local minima formation, but can be 
solved by allowing the agent internal states to manipulate the potential field. Simulation 
results demonstrate the ability of a single agent to perform reactive problem solving 
effectively, as well as the ability of a swarm of agents to perform problem solving using 
the collective behaviour of the entire swarm. 
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NOMENCLATURE 
Cai     Amplitude of attraction potential of the ith agent 
Cgi             Amplitude of goal total potential affecting the ith agent 
Coi             Amplitude of obstacle potential affecting ith agent 
Cri              Amplitude of repulsive potential of the ith agent 
lai               Range of attractive potential for the ith agent 
lgi               Range of goal potential affecting the ith agent 
loi               Range of obstacle potential affecting the ith agent 
lri               Range of repulsive potential of the ith agent 
mi               Mass of the ith agent 
Np  Number of agents 
Qi                      The ith agent internal dynamic function 
rig                              Goal – ith agent position vector 
rij              ith – jth agent position vector  
rio                    Obstacle – ith agent position vector 
rc                   Swarm centre position vector 
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U (ri)               Generalized Morse potential 
Ug(rg)                  Goal potential field 
Uij (rij)             ith – jth agent interaction potential 
vc                Swarm centre velocity vector 
vi              ith agent velocity vector 
α               Self-accelerating force coefficient 
β               Friction self-decelerating force coefficient 
 
1. INTRODUCTION 
The design and control of artificial swarms has become a topic of growing interest. 
Swarm robotics has a range of applications in both civilian and military fields from space 
and subsea exploration to the deployment of teams of interacting artificial agents in 
disposal systems [1]. Several researchers have proposed novel methods of generating 
control algorithms for individual agents, including learning and evolutionary algorithms 
[2, 3]. In addition, the design and control of agents to accomplish specific collective 
goals has drawn considerable interest in recent years [4]. True artificial swarm design 
has been largely developed through two main approaches. The first is based on a set of 
practical, algorithmic approaches [5 -8]. In contrast, the second method is based on 
artificial physics [9]. Both methods have been applied to teams of autonomous agents. 
 The study of agent-based systems begins with a definition of the term agent [10, 
11]. An individual agent may be programmed to be fully autonomous, but its abilities 
may be limited according to resource and physical constraints. On the other hand, 
swarms of self-organizing agents that exchange information may have a greater 
functionality than the individual members. Natural examples of interacting swarms of 
agents can be found in ants, bees, birds and schools of fish in the way that they create 
complex patterns with new and useful group properties [12, 13]. In recent years, an 
understanding of the operating principles of natural swarms has proven to be a useful 
tool for the intelligent design and control of artificial robotic agents [14, 15]. Many 
swarming systems have been investigated and complex behaviour such as phase 
transitions have been observed [15-18]. 
 Swarming robotic systems are often modelled as a two-dimensional collection of 
point agents in which members may interact with one another through attractive-
repulsive pair-wise interactions. Specific choices of potential field lead agents to self-
organize into coherent patterns [15, 18-20]. More recently, swarm stabilization or 
collapse with increasing constituent number in different zones of a so-called H-stability 
diagram, shown in Fig. 1, has been predicted [16, 17, 21]. Using tools from statistical 
mechanics [22] connections between the so-called H-stable nature of the interaction 
potential and resulting aggregating patterns have been found. Virtual leaders [1, 21] and 
structural potential functions [23, 24] have also been introduced to provide provable 
group behaviour to ensure vehicles can avoid obstacles or form desired patterns. The 
actual realizations of self-propelled vehicles interacting according to virtual Morse 
potentials have been reported in the robotics literature [1, 25]. These prior studies 
assume that the free parameters of the potential field are fixed a priori. While in here we  
assume the parameters to be internal states for each agent through which the agent 
can manipulate the potential field. The dynamics of these internal states is defined 
through set of first order differential equations.  

 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1.  H-stability phase diagram of the Morse potential. Catastrophic and 
stable behaviors are predicted as a function of the parameter ratios  (lr/la) 

and  (Cr/Ca) [adapted from reference 16] 

In this paper we use a simple model of driven, self-propelled agents which also 
experience some dissipative frictional force. The model consists of Np particles with 
mass mi, position ri and relative distance |rij| between the ith and jth agent. A self-
accelerating force with coefficient α is introduced and to prevent the particles from 
reaching large speeds, a dissipative friction force with coefficient β is added [16]. The 
agents interact by means of a two-body generalized Morse potential, which decays 
exponentially at large distances and represents a realistic description of natural and 
artificial swarming agents. The equations of motion of the Np agents are defined as: 
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This model has been used in other studies such as those reported in [16-18, 25]. The 
potential is characterized by attractive and repulsive potential fields of strength Ca and 
Cr with ranges la and lr respectively. From Eq. (2), it can be seen the velocity of the 
agents will reach βα=iv  asymptotically, where the term  vanishes. For 
simplicity we will consider unit mass agents. 
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Fig.2. Patterns of swarm of agents in different H-stability regions and with different 

interaction parameters. (a) Vortex, region VII, Np=200, lr=0.5, la=2, Cr=1, Ca=0.5, 
α=1.6, β=0.5 (b) Clumps, region I, Np=100, lr= 0.5, la=1, Cr=0.6, Ca=1, α=1, β=0.5 (c) 

Ring, region II, Np=100, lr=0.5, la=1, Cr=0.5, Ca=1, α=1, β=0.5 (d) Ring clumping, 
region III,  Np=100, lr=1.2, la=1, Cr=0.6, Ca=1, α=1, β=0.5 

 
We have developed a simulation code (using an Adams-Bashforth numerical integration 
method) to predict the swarm behaviour in different zones of the H-stability diagram, 
shown in Fig. 1, and using different parameters to test the integrity of the simulation 
according to the predicted behaviour of the swarm patterns. Fig. 2 shows results which 
match those in the literature [16, 17]. The agents were given random initial positions 
and velocities as well as fixed, identical values of the potential free parameters. 
 
2. PROBLEM DEFINITION 
In recent years new assumptions about the architecture needed for intelligence have 
emerged. These approaches attempt to emulate natural, rather than artificial 
intelligence and are based on, or at least inspired by, biology. In an attempt to build a 
control system for autonomous agents, Balkenius [26] presented a general architecture 
for behaviour-based control. He proposed a number of architectural principles which 
make it possible to combine reactive control with problem solving in a coherent way. He 
used the term behaviour to denote the system internal to the agent that is responsible 
for the externally observed behaviour.  
 The problem of local minima (trapped states), shown in Fig. 3, was discussed by 
Balkenius [26]. The reactive problem for an agent, or swarm of agents, attracted to a 
goal point at position G can be defined such that an artificial potential field at G induces 
motion towards the goal. When the agent, or swarm of agents, moves towards the goal 
the velocity of each individual agent rises, and the agents translate to the goal along the 
gradient of the potential field. However, in order prevent collision with a static obstacle, 
an additional repulsive potential field is required. These two potential fields are then 
superimposed to form a global potential field which describes the workspace of the 
problem. In general however, a local minimum may form due to the superposition of the 
goal potential and that of the obstacles, resulting in the agent, or swarm of agents, 
becoming trapped in a state other than the goal G. 

 



Considering this problem, the entire swarm, or part of the swarm will be trapped at the 

obstacle since the agents trapped inside the obstacle will experience two virtual forces; 
the first force is the attraction to the goal while the other will be the repulsion from the 
obstacle. Moreover in most cases there will be no opportunity for the swarm members 
to escape from the local minimum due to the pair-wise interaction potential - particularly 
when the goal potential is of large amplitude. This problem motivates the use of the 
collective swarm behaviour to avoid such trapping in local minima and leads to two 
specific sub-problems: 
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Fig.3. Classical reactive problem for one agent 

 
 (a) A swarm of self-propelled agents are trapped in a local minimum - when one 
 agent  escapes, it will become a leader for the rest of the trapped agents 
 
 (b) A single agent is trapped in a local minimum - it must be then be able to 
 escape depending only on its own internal states to manipulate the potential field 
 

3. SWARM LEADER 
In order to investigate the concept of the swarm leader, and how it affects the global 
swarm behaviour, the motion of a swarm whose individuals experience attraction to a 
goal point will now be considered. Assuming that the agents are maneuvering such that 
|vi|~ βα , the agents’ equation of motion is defined from Eq. (2) as:  
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where Ug is the goal potential field. This can then be expanded to form: 
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where, . Considering now the aggregate motion of the swarm through 

the swarm centre, defined such that 
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Therefore, it can be seen that the swarm center accelerates toward the goal G. In 
principle, the agents can therefore be attracted to any swarm member which is 
considered to be a temporary goal, if it has a large attractive potential parameter Ca.  
Consider Np identical self-propelled agents which are trapped behind a barrier that 
consists of No identical obstacle points as shown in Fig. 4. G is a goal point which has 
an attraction potential of low interaction range lg. The challenge in this situation 
(problem (a)) is that the agents are stuck inside a trap whose only exit is located away 
from the goal position. In this situation, we define a condition that if one of the agents 
finds its way through the exit, through random motion, it will gain a higher attraction 
potential coefficient Ca, higher attraction potential range la and higher dissipation 
coefficient β to lower its speed, increasing the opportunity for the rest of the agents to 
follow. These conditions now make any succeeding agent a temporary goal for the rest 
of the agents and the swarm center therefore accelerates to the leader position, leading 
them out of the trap. Subsequently the swarm is then attracted to the goal.  
The simulation result in Fig. 4 shows that after escaping from the trap the swarm is 
attracted to the goal point G and so the entire swarm escapes from the trap and moves 
towards the goal as required. We now consider problem (b) which is how an individual 
will be able to escape from a local minimum depending only on its own self potential. 
This will raise another question of how an agent can sense that it is trapped at a 
location other than the goal. 
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Fig.4. Escape from local minima using a swarm leader 

 
4. SWARM SQUEEZE EFFECT 
Escape from complex workspaces can be seen in many natural systems in which the 
system consists of a number of agents enclosed in a trap. An example is a system of 
gas molecules which are enclosed in a single-exit container while the molecules 
experience a change in their state, due to a rise in temperature for example. Let (a, b) 
be two points each of which represents two adjacent regions (A, B) respectively. 
Assume that both have the same potential and let the center of a swarm of agents be at 
point (a) enclosed in a trap of obstacles. Due to some change of state, the region A is 
then forced to become a region of maximum potential while the adjacent region B 
remains unchanged. 
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Fig.5. Squeeze effect 

 
Therefore, the swarm center moves from (a) towards (b). The change of the internal 
state of the system simply changes the trap region from a local minimum into a region of 
maximum potential from which all the agents are emitted as if squeezed out [22], as 
shown in the simulation result Fig. 5. Here the repulsive interaction potential of each 
agent has been increased, leading both to an increase in repulsion between agents and 
between the walls of the trap. The use of agent internal states (potential field free 
parameters) will now be considered as a means of allowing agents to manipulate the 
potential field in which they are maneuvering in order to escape from local minima. 
 
5. AGENT INTERNAL STATE MODEL 
The previous section has demonstrated that a change in the internal state of the agents 
can lead to escape from a trap (manipulating a local minimum into a local maximum). 
This concept will now be used for a single agent maneuvering towards a goal in a 
potential field which contains a local minimum. The agent internal states (potential field 
free parameters) will now be defined through a set of differential equations which will 
allow the agent to manipulate the potential field in which it is maneuvering.  
For a fixed obstacle, the repulsion potential range affecting the ith agent (loi) can be 
represented as a function of an obstacle constant (lo), which characterizes the physical 
nature of the obstacle, and the particle repulsion potential range (lri) which characterizes 
the agent internal state. The attraction potential range of the goal affecting the ith agent 

 



(lgi) can also be represented as a function of a goal constant (lg), which characterizes 
the physical nature of the goal, and the particle attraction potential range (lai) which 
characterizes the agent internal state such that: 
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When an agent approaches an obstacle it suffers an elastic collision which pushes the 
agent away from the goal. The goal then attracts the agent back and the agent will 
never attempt to maneuver around the obstacle simply because it never knows it’s 
trapped.  
 A function Qi is now defined, inspired from the learning by reward or punishment 
[27, 28], and applied to the agent and its ability to perceive the environment in which it 
exists. The internal dynamic function is defined as the change of the modulus of the 
agent’s velocity measured in some interval of time interval. If the agent is repulsed from 
an obstacle Qi will have a negative value which is punishment, because the agent is 
moving away from the goal. If the agent is moving towards the goal Qi will have a 
positive value which is the reward as the agent senses it is moving to the goal. The 
following set of differential equations are used to express the internal states of the 
agents defined as: 
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Equations (13-16) express the repulsion amplitude and range and the attraction 
amplitude and range of the ith agent, according to the use of the function Qi. For Qi<0 it 
can be seen that the agent will experience repulsion (section 4), leading to motion away 
from obstacles, while for Qi>0 the agent experiences attraction (section 3) and motion 
towards the goal (or other lead agent). Moreover, Eq. (17) ensures a smooth maneuver 
around the obstacle by slowing the agents which are moving away from the obstacle. 
The damping terms in Eq. (13-16) ensure that the deviation of the agent internal state is 
minimized in the absence of external forcing from the function Qi. The benefit of the 
function Qi is that when the agents are repelled (Qi < 0), loi takes high a value which 
turns the workspace in the neighborhood of the obstacles into a zone of maximum 
potential. This then leads to escape from the local minima (section 4), with the potential 

 



field relaxing after escape due to the damping terms in the differential equations for the 
internal states. 

The simulation shows that using the swarm model, Eqs. (1-3), along with the 
dynamic internal states, Eqs. (13-17), the potential field around the obstacle is 
converted from a local minimum into a local maximum. This will ensure the agent is 
pushed from the obstacles and will maneuver around them. After the agent is squeezed 
away it will follow the gradient of the potential field around the obstacles and approach 
the goal G.  

First, the case of an agent with fixed internal states will be considered. Here the 
free parameters describing the potential field, and so the potential field itself, are 
constant. The contour map shown in Fig. 6 is static and so the agent becomes trapped 
in the local minimum of the potential field. This is typical of conventional 
implementations of the artificial potential field method to path planning problems. 

 For dynamical internal states the contour map in Fig. 7 shows that the agent 
enters the local minimum, and when repelled (Qi<0) the repulsion potential of the agent 
increases in a way that converts the obstacle to be a zone of maximum potential to the 
agent. As the agent escapes from the local minimum the potential field relaxes due to 
the damping terms in Eqs. (13-16). The goal potential field then drags the agent away 
from the obstacle zone and defines a gradient path that the agent follows directly to the 
goal. The comparison between the contour maps in Fig. 6 and Fig. 7 shows clearly the 
effect of using the function Qi and internal state dynamics to solve the reactive problem 
effectively.  

Finally, the simulation results shown in Fig. 8 show the use of the swarm leader 
concept. The agents at the front of the swarm are repelled (Qi<0) so that their internal 
states are modified such that their own repulsive potential increases. This in turn 
pushes the rest of the swarm away from the obstacle. The agents which are then 
moving towards to goal (Qi>0) act as leaders and so attract the remainder of the swarm. 
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Fig. 6. Behaviour of a conventional agent with fixed internal states 
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Fig. 7. Behaviour of an agent using the internal state model  
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Fig. 8. Behaviour of a swarm using the internal state model 

 
6. CONCLUSIONS 
A new potential field method has been presented which uses the concept of an agent 
internal state to allow agents to manipulate the potential field in which they maneuver. 
The method allows a swarm of agents to escape from and maneuver around a local 
minimum in the potential field to reach a goal. Rather than moving in a static potential 
field, the agents are able to manipulate the potential according to their estimation of 
whether they are moving towards or away from the goal. Using the function Qi along 
with the use of the concepts of the swarm leader and the squeeze effect, simulation 
results show that a swarm of agents can indeed escape from a local minimum. 
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