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ABSTRACT  
 
The paper discusses experimental identification of one joint of a hand made, two 
degrees of freedom robot manipulator, including flexibilities, under feedback. A black 
box system model is identified from the input-output data. Both linear, OE (Output 
Error) and non-linear structure (multilayer perceptrons neural network) models are 
treated and applied. A Levenberg-Marquardt algorithm is implemented to generate 
our NNARX model. As regressors two past inputs and two past outputs are chosen. 
Furthermore network architecture is chosen with 5 hidden tanh units and one linear 
output unit. Fit criteria shows that the linear model has severe problems. Validation of 
the trained non-linear network looks quite satisfactory, and it is definitely better than 
the linear model. Experience has shown that regularization is helpful when pruning 
neural networks. A remarkable improvement in performance, when using long 
instead of short format for choosing neural network weights and Bias, is appreciated. 
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DC:    Direct Current 
NNARX:  Neural Network Auto Regressive with eXogenous input. 
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INTRODUCTION 
 
Robot manipulators are basically multi-degree-of-freedom positioning devices. The 
robot as the "plant to be controlled", is a multi-input / multi-output, highly coupled, non 
linear mechatronic system. The main challenges in the motion control problem are 
the complexity of the dynamics, and uncertainties, both parametric and dynamic. 
Parametric uncertainties arise from imprecise knowledge of the kinematics and 
dynamics, while dynamic uncertainties arise from joint and link flexibility, actuator 
dynamics, friction, sensor noise, and unknown environment dynamics. [1] 
 
The most important factors in manufacturing are quality, costs and time. When robots 
are used to meet these demands it is important to have good models of the robots. 
To reduce the building costs, the robots are built to be lighter and this results in 
weaker structures. It is therefore a need for flexible robot models instead of rigid 
models to keep the same quality and performance of the robot. 
 
We look at an experimental robot system and perform identification of the dynamics. 
Real data from this robot are used in the identification experiments. The model can 
be used to improve the control of the robot, especially by utilizing the frequencies 
around and above the resonance frequency. Another area where it is important to 
have good dynamic models is fault detection and isolation. We will concentrate the 
work on the identification part and leave the use of the acquired models to future 
work. 
 
Identification is not a new topic in the robot community, and a general discussion can 
for example be found in [2]. At the heart of any estimation problem is to select a 
suitable model structure. A model structure is a parameterized family of candidate 
models of some sort, within which the search for a model is conducted. A basic rule 
in estimation is not to estimate what you already know. In other words, one should 
utilize prior knowledge and physical insight about the system when selecting the 
model structure. It is customary to color-code, in shades of grey, the model structure 
according to what type of prior knowledge has been used: 
•  White-box models: This is the case when a model is perfectly known; it has been 

possible to construct it entirely from prior knowledge and physical insight. 
•  Grey-box models: This is the case when some physical insight is available, but 

several parameters remain to be determined from observed data.  
•  Black-box models: No physical insight is available or used, but the chosen model 

structure belongs to families that are known to have good flexibility and have been 
“successful in the past”. 

 
This paper deals with Black-box models for dynamical systems, for which inputs and 
outputs can be measured [3]. In this paper the identification of the Robot is 
performed under strong feedback. The main problem with identification from closed 
loop data is that the data contain less information about the open loop system. The 
reason for this is that the purpose of the feedback is to make the closed loop system 
less sensitive to changes in the open loop system. In Identification for control, the 



 

objective is to achieve a model that is suited for robust control design. Thus one has 
to tailor the experiment and preprocessing of data so that the model is reliable in 
regions where the design process doesn't tolerate significant uncertainties. Other 
reasons for using closed loop experiments might be that the plant is unstable, or that 
it contains inherent feedback mechanisms. Another problem that can occur is bias 
due to inaccurate noise models. The identification is made using the System 
Identification Toolbox [4]. 
 
 
DESCRIPTION OF THE ROBOT SYSTEM 
 
This section gives an overview of the physical system used in the Identification 
experiments. A picture of the manipulator is shown in Fig. 1, It has two axes 
operating in the vertical plane. Both joints of the robot are driven by permanent-
magnet DC motor. The two arms of the robot are 0.17 m in length. Adaptive control 
algorithm is implemented in a PC. Both of the joint positions are measured by digital 
optical incremented encoders [5]. 
 
In this paper, we, only, model the motion at first joint axis. That is, one electrical 
motor, with gears, and the robot arm are modeled. The structure of the robot system 
is depicted in Fig. 2. The torque generated by the electrical motor is affected only 
indirectly by the feedback control system. 
 
In this experiment, the reference signal θref, is generated. The angle of the motor 
driving the robot arm, "θm" is measured, as an output signal. Driving input signal "u" is 
produced by PC. The sampling interval is 4 ms. The goal is to identify a model of the 
robot by using u as an input, and θm as an output (measured arm angular joint). 
 
 
DESIRED TRAJECTORY 
 
The Test trajectory is a circular task space. The corresponding angular joint position 
θref1 and θref2 are shown in Fig. 3. These desired joint positions and their derivatives 
will be fed to the control algorithms implemented by a PC. The initial position of the 
robot arm is set at θref1=60 deg. and θref2=100 deg. (angular joint coordinates), x0, 
y0=[-0.074, 0.205] (task space coordinate) shown in Fig. 4. Angular joint velocity = 
0.6 m/sec. Angular joint acceleration = 0.2 m/sec2,  Radius of the circle is 0.12m, with 
1253 samples and 5 sec. running time.  
 
 
EXPERIMENTAL PHASE: 
 
The experimental phase is assumed that experimental input output data, ZN, 
describing the underlying system in its entire operating region has been obtained. 
 

 



 

 
u(t)is a set of inputs, driving signal to the drive motor that represent "u", Likewise y(t) 
now represents the measured output signal θm. ‘t’ specifies sampling instant number. 
Actual task space is shown in Fig. 5. 
 
MODEL STRUCTURE PHASE. 
 
Multilayer perceptrons neural networks are known to be an universal function 
approximators. The Universal Function Approximation theorem states that a single 
hidden layer with sigmoidal (or hyperbolic tangent) activation functions plus one layer 
of linear output neurons is sufficient for a multilayer perceptron to compute an 
approximation with a bounded error to an arbitrary continuous function [6]. 
Assuming that a data set has been acquired, the next step is to select a model 
structure. Unfortunately, this issue is much more difficult in the nonlinear case than in 
the linear case. Not only is it necessary to choose a set of regressors but also a 
network architecture is required, as we are going to use the neural network as a 
learning tool. The approach used here is described in [7]. The idea is to select the 
regressors based on inspiration from linear system identification and then determine 
the best possible network architecture with the given regressors as inputs. ϕ(t) is a 
vector containing the regressors, θ is a vector containing the weights and g is the 
function realized by the neural network. 
 

 
 
A function, which uses a Levenberg-Marquardt algorithm is implemented to generate 
the model. A Levenberg-Marquardt method is the standard method for minimization 
of mean-square error criteria, due to its rapid convergence properties and 
robustness. [8]. 
 
 
IDENTIFICATION RESULT 
 
A number of different model structures, before picking the best one, have been 
investigated. As regressors we will use two past inputs and two past outputs. 
Furthermore we will choose network architecture with 5 hidden tanh units and one 
linear output unit. Now that a model structure has been selected, we are ready to 
begin training. Let's run the NNARX function, which uses a Levenberg Marquardt 
algorithm for generating a NNARX-model.[9]. The following are W1, W2, Weight 
matrices1000 samples of data are used for training the network Fig. 6, and the rest 
(253 samples) are used for validation. 

• W1: Input-to-hidden layer weights. The matrix dimension is [(# of hidden 
units)-by-(inputs + 1)] (the 1 is due to the bias). 

• W2: hidden-to-output layer weights. Dimension is [(outputs)  *  (# of hidden 
units + 1)]. 

The following identification is for the first arm and next, by the same way, we will 
identify the second arm dynamic model. 



 

Fit a Linear Model 
 
The golden rule in identification (and in most other matters) is to try simple things 
first. If a linear model does a decent job, one should not bother wasting time on fancy 
neural network based model structures. To identify a linear OE model, the System 
Identification Toolbox from The MathWorks, Inc. is employed [10]. Fig. 7 & 8 show 
validation of linear model. From the comparison plot, as well as from the correlation 
functions, it, clearly, appears that the linear model has severe problems. It is thus 
concluded that this is due to the underlying system being nonlinear. 
 
 
Fit a Non Linear Model (Neural Network) 
 
For comparison a NNARX model structure is attempted. A fully connected 2 layers 
network architecture with 5 hidden hyperbolic tangent units and 1 linear output is 
selected. The network now has to be trained to obtain the weights w1&w2. 
 
 
Validation of the trained network 
 
This looks quite satisfactory, and it is definitely better than the linear model. However, 
it is never a problem to fit the training data accurately. Redoing the validation on the 
test set clearly gives a less flattering result. Fig. 9 & 10 depict validation charts for the 
chosen structure. Fig. 11 & 12 depict validation results, for the optimal network 
architecture, after pruning neural networks model structure by applying regularization. 
Experience has shown that regularization is helpful when. pruning neural networks. 
A remarkable change in performance when using both formats, short and long. Long 
format has been appreciated. The correlation coefficients almost stay within their 
standard deviations now and thus look far better than those shown previously: 
 
 
CONCLUSION 
 
A Neural Network model structure and an OE linear model are used to identify non 
linear, flexible, hand made robot manipulator dynamical system. 
The case has been treated as there is no particular physical knowledge about the 
system properties, black box case. Validation of linear model has found severe 
problems. It is thus concluded that this is due to the underlying system being 
nonlinear. Different neural network model structures ,before picking the best one, 
should be investigated. The model structure selection consists of two subproblems: 
Choosing a regressor structure and choosing a network architecture. Validation of the 
trained NNARX network, looks quite satisfactory, and it is definitely better than the 
linear model. Experience has shown that regularization is helpful when pruning 
neural networks. A remarkable improvement in performance, when using long 
instead of short format for choosing neural network weights, is appreciated. 
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Fig. 1, Experimental robot used in the identification  
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Fig. 2.  Block diagram of the robot system 



 

0 1 2 3 4 5 6
-50

0

50

100

150
Angular Generated Joint 1 & 2 Trajectory Versus Time in Sec.

po
si

tio
n 

(D
eg

re
e)

joint(1)
joint(2)

-0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4
Resulted Task Space Desired Position Trajectory

X (m)

Y
 (m

)

0 1 2 3 4 5 6
-100

-50

0

50

100
Angular Generated Joint Velocity Trajectory Versus Time in Sec.

(D
eg

re
e/

se
c.

)

joint(1)
joint(2)

 
Fig. 3.  Circular shape angular joint position, velocity, and x-y task space trajectory 
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Fig.. 4.  Circular shape x-y versus time trajectory 
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Fig. 5.  Actual circular task space versus reference trajectory 

 
Fig. 6, Input and output data (first 1000 samples. 
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Fig. 7, Actual model measured versus identification model output 
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Fig. 8, Correlation and cross correlation of residuals. 
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Fig, 9, NNARX model, correlation of prediction error (up chart) and cross-correlation 

of u1 and prediction error (down chart). 
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Fig. 10, Actual and NNARX prediction output (up chart), and residuals (down chart). 
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Fig. 11, Regularization model, correlation of error (up) and cross-correlation of u1 and 

prediction error (down chart). 
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Fig. 12, Actual and NNARX, regularization model, prediction output (up chart), and 

residuals (down chart). 
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