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ABSTRACT 
 

The paper presents an optimum receiver for digitally modulated signals in additive 
class-A impulsive noise for flat fading channels. The receiver is based on maximum 
likelihood (ML) approach. Two algorithms are presented to estimate the unknown 
fading channel. The convergence properties of the estimation algorithms are 
investigated and compared. The performance of the receiver is evaluated by 
simulation. The performance is measured by the bit error probability. Computer 
simulations are illustrated to validate the theoretical developments. It is shown that 
the performance of the developed receiver is sensitive to the impulsive index of the 
noise. Decreasing the value of the impulsive index degrades the performance of the 
receiver and reduces the receiver resistivity against frequency and time offset. 
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I. INTRODUCTION 
  
In most of digital communication systems, the additive white Gaussian noise (AWGN) 
channel model is widely applied. However, the assumption of white Gaussian noise 
alone is sometimes not true. In several situations, the noise accompanied with the signal 
is non-Gaussian [1]. For example, the communication channels usually exhibit impulsive 
characteristics, i.e., long bursts due to noise impulses of large amplitude relative to the 
root mean square noise [2]. Also, the noise generated by a variety of natural and man-
made electromagnetic sources exhibits impulsive characteristics [2], [3]. Non-Gaussian 
impulsive noise is known to be one of the major sources of errors in digital transmission 
systems. Therefore, a more realistic noise model might be an additive mixture of the 
Gaussian thermal noise and a non-Gaussian impulsive noise. One of the models that 
has been proposed to meet these requirements, is the general model derived by 
Middleton [5]. According to the relation between the durations of the noise impulses and 
the spectral bandwidth of the receiver, Middleton derived three general classes of the 
impulsive noise: class-A, B, and C [4], [5]. Class-A model represents the interference 
arising from sources whose emission spectra are equal to or narrower than the receiver 
bandwidth. Class-B model represents the interference arising from sources whose 
emission spectra are broader than the pass-band of the receiver while class-C 
interference is composed of the sum of class-A and class-B components. In this paper, 
we use class-A impulsive noise model because it is known to fit closely a variety of non-
Gaussian noises and also it is analytically tractable model of Gaussian/non-Gaussian noises.  
 
Fading is used to describe the rapid fluctuation of the amplitude of a radio signal over a 
period of time. Fading is caused by interference between two or more versions of the 
transmitted signal which arrive at the receiver at slightly different times. These multi-path 
waves, combine at the receiver antenna to give a resultant signal which can vary widely 
in amplitude and phase. Multi-path in the radio channel are classified to: (1) changes in 
signal strength over a time interval, (2) random frequency modulation due to varying 
Doppler shifts on different multi-path signals, and (3) time dispersion (echoes) caused 
by multi-path propagation delays.  
 
In this paper, The unknown fading channel is estimated using two different algorithms. 
The first algorithm estimates the channel for each hypothesis and the second one uses 
transmitted pilot symbols and uses them to estimate the channel. The performance of 
the receiver using the two algorithms are performed by computer simulations. The 
performance of the receiver is derived theoretically and validated by simulations for a 
QPSK signal as a case study. The paper is organized as follows. In section II, the class-
A impulsive noise model is briefly reviewed. In section III, the optimal receiver structure 
for class-A impulsive noise over flat fading channel is derived. In section IV, the 
simulation experiments are presented to validate the theoretical performance of the 
receiver. Finally, conclusions are presented in section V. The performance of the 
designed receiver is evaluated in terms of probability of error. The sensitivity of the 
receiver to time and frequency offsets is also studied. 
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II. CHARACTERISTICS OF CLASS-A IMPULSIVE NOISE 
 
        Class-A impulsive noise model is a generalized model of the Gaussian noise 
combined with a non-Gaussian impulsive noise. In this model, a frequency component 
of the impulsive noise is constrained within the bandwidth of the receiver. The class-A 
impulsive noise for real channel has a density function , given by [ 6,pp.86 ]: p
 

                                       ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∑

∞

=

−

2

2

0 2 2
exp

2!
)(

mm m

mA n

m

Aenp
σπσ

                                              

(1) 
 
where the parameter A  is called the impulsive index: it is the product of the received 
average number of impulses per unit time and the duration of an impulse. This 
parameter defines the impulsiveness of the noise. For small A , the noise becomes 
more impulsive, that is  exhibits large impulsive "tails" and for large )(np A , the 
statistical characteristics of the class-A impulsive noise approach those of Gaussian 
noise.  The probability density function of the class-A impulsive noise for complex 
channels is given by: 
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The variances   are related to the physical parameters and are given by: 2

mσ
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where the parameter  defines the mean variance of the class-A impulsive noise. The 
model of white class-A combines the presence of an additive man-made noise 
component with variance  and a white Gaussian noise component with variance . 
The parameter  in (3) is the ratio of the mean power of the Gaussian noise component 
to the non-Gaussian impulsive noise component. The white Gaussian noise component 
is presented in class-A noise model to describe the influence of thermal noise which is 
naturally present in the real physical receiver. Note that  consists of an infinite 
weighted sum of zero mean Gaussian densities with decreasing weights and increasing 
variances. An approximation to the model in (1) and (2) can be obtained by limiting the 
sum to the first three terms only which are found to be sufficient to give excellent 
approximation to the noise probability density function [7]. In fact, the series should be 
summed until the factor 
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makes the terms decrease quickly as  increases. It is found that three terms are 
enough for many applications.  

m

 Hence, the probability density function of the class-A impulsive noise for complex 
channels (given by (2)) can be written as: 
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Another approximation to the model in (1) and (2) can be obtained by the maximum 
value of its first three terms only. This approximation is valid under the condition that the 
impulsive index A  is sufficiently small [8]. According to this approximation, the 
probability density function of the class-A impulsive noise for complex channels (given 
by (2)) can be written as: 
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This approximation is used in this thesis to model the generated class-A noise. 
 

III. DERIVATION OF THE OPTIMUM RECEIVER 

 
        In this section, the optimum receiver over flat fading channel is derived. The 
channel is assumed to be time invariant with no intersymbol interference (ISI).  The 
fading channel parameter α in this case is given by: 
 
                                                                                                                          (6) θα jeq=

 
where  denotes the amplitude which is a random variable with Rayleigh distribution: q
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  where { }2qE=Ω  is the mean square value of . The parameter q θ  in (6) denotes the 
phase which is uniformly distributed from ( )ππ :− :  
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Now, the optimum ML receiver to detect one signal out of M  is derived. The channel is 
assumed to be unknown. The received signal over flat fading channel can be written as: 
 
                                             )()()( tntstr i += α ;                                          (9) Mi ...,,2,1=

 
where  is the ith transmitted signal. Writing the waveform in (9) in vector forms 
yields: 

)(tsi

 
                                                      nsr += iα                                                                (10) 
 
where , ( ))(...,),2(),1( Krrr=r ( ))(...,),2(),1( Ksss iiii =s , and ( ))(...,),2(),1( Knnn=n . Note 
that K  is the number of samples per symbol. The probability density function of the 
received signal given the transmitting signal  and the unknown fading parameter is α  
can be expressed as: 
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The ML receiver to detect one out of M signals is that one that maximizes (11) with 
respect to i but we have unknown parameter α  in (11). To handle the incomplete 
knowledge in (11), the unknown parameter α might be considered as a complex 
random variable with pdf )(αp  and the average likelihood ( ) ( )∫ ααα dpp i ,sr  might be 
maximized. To avoid the dependence of the resulting receiver structure upon )(αp , the 
most adverse )(αp  might be selected according to the mini-max strategy [9 ]. 
 
A more convenient approach is to use the generalized maximum likelihood (GML) rule. 
In this rule, α  is modeled as an unknown parameter, rather than as a random variable 
yielding an M-ary composites hypothesis testing problem (provided that all the 
transmitted signal have non-zero energy). The hypothesis  is then selected for which 
the generalized maximum likelihood 

iH
( )α̂,ip sr  is maximum, where α̂  is the ML estimate 

of α . Based on (11), the GML rule is implemented by maximizing ( )α,ip sr  with respect 
to α and the index . Maximizing i ( )α,ip sr  is equivalent to minimize the quantity 

isr α− . According to the GML rule, 22 ˆmin ii srsr αα
α

−=− , and therefore the GML 

rule is still the minimum distance rule, but the distances are between the received vector  
and the estimated signal vector isα̂ , Mi ...,,2,1= . It is clear that the minimum of 

2
isr α−  with respect to α results in [9 ]: 
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Note that iα̂  is obtained for each hypothesis Mi ...,,2,1=  so, by substituting of (12) into 
(11), we have ( iip )α̂,sr  and the optimum receiver is obtained by maximizing ( )iip α̂,sr  
over the index . Using the approximation given by (5) we maximize i
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with respect to . This operation can be speed up by calculating and storing the release 
of 

i
α̂ for all hypothesis in a look up table. Note that maximization of (13) represents a 

symbol by symbol detection if  represents a symbol. For example, for detection of 

QPSK signal, we have four signals; each signal represents a symbol: 
is

);()( tPeEt ij
i

θ=s  

},,,0{ 2
3

2
ππ πθ ∈i  where  is the unit amplitude pulse waveform. In this case )(tP iα  is 

estimated using (12) every symbol. This provides large estimation error since the 
number of samples per symbol is small. Another estimation algorithm which does not 
depend on the number of samples per symbol can be obtained if we use a Pilot symbols 
to estimate the channel. This algorithm is obtained by applying the least square 
estimation to the linear model given by (10) and results in: 
 
                                                                                                               (14) rsss TT 1)(ˆ −=α
 
where ( ))(...,),2(),1( pKsss=s  and  is the length of Pilot symbols. The length of the 
Pilot symbols can be chosen large enough to provide accurate estimate after obtaining 

pK

α̂ we maximize (13) with respect to i to detect the transmitted signal. 
 
The structure of this receiver is shown in Fig. 1. This block first calculates the estimate of 
the channel parameter α  and then calculate the log-likelihood function iΔ  for 
hypothesis . The output of the log-likelihood calculation blocks are entered to the unit that 
takes the maximum. This maximum is the estimation of the transmitted signal vector . 

i
iŝ

 

IV. COMPUTER SIMULATIONS AND RESULTS 
      In this section, the performance of the developed receiver is evaluated for the flat 
fading communication channel under class-A impulsive noise environment. The 
simulations are performed for a binary PSK signal. The parameters that are used in the 
simulations are as follows. The frame length is 2048 samples. The number of the 
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samples per symbol is 6. A class-A impulsive noise, with 1=Γ , is simulated and added 
to the signal at the input of the receiver. The signal to noise ratio is defined as SNR=10 
log ( ) where  is the noise power spectral density and  is the energy per 
bit. similar to that ones used in case of non-fading channel. It is assumed that no phase 
and time offsets in the carrier. However, the effects of these offsets are studied in this 
section.  

ob NE / 2/oN bE

 
Now, the performance of the receiver for BPSK signal is investigated. The bit error 
probability versus the signal to noise ratio for  A= 0.01, 0.1, and 1 is shown in Fig. 2. in 
this figure, we consider ideal receiver i.e. the channel is assumed to be known at the 
receiver. This figure shows that as signal to noise ratio increases, the bit error probability 
decreases. Also, the performance of the receiver depends on the impulsive index A . As 
A  decreases, the performance of the receiver deteriorates due to the increase of the 
noise impulsiveness. In Fig. 3, the performance comparison between the practical 
receiver and the ideal receiver is performed for different values of A . By practical 
receiver, we mean a receiver that assumes the channel is unknown and uses estimation 
algorithm to estimate it. The estimation algorithm that uses to estimate the channel is 
given by (14). In the ideal receiver, the channel is assumed to be known; therefore this 
receiver represents unrealistic case. The figure shows that there is a performance loss 
between the practical receiver and the ideal receiver. The reason of this performance 
loss is the channel parameter estimation error. This estimation error introduces an error 
in the log-likelihood function and causes degradation in the receiver performance. In the 
ideal receiver, this error does not exist and the performance of the receiver is affected 
only by SNR. The figure also shows that the gap in performance between the practical 
and the ideal receiver is large. For example, probability of error = 10-4, and for 1.0=A  
the gap in performance is about 8 dB. This is due to the high estimation error in this 
algorithm because it uses only 6 samples for estimation (number of samples per bit), 
this is clear from Fig. 2, and 3.  
 
The comparison of the performance of the ideal receiver, the practical receiver which 
equipped with the LSE algorithm and the practical receiver which equipped with the first 
algorithm is shown in Fig. 4. In this figure, the LSE algorithm is denoted by AL2 and the 
first estimate algorithm is denoted by AL1. This figure shows that the receiver equipped 
with the LSE algorithm has better performance than the receiver equipped with the first 
algorithm. For example, at  and at probability of error = 10-4, the performance 
gain between them is about 7 dB while for 

01.0=A
1.0=A  and at the same probability of error, 

the gain is about 6 dB.  
 
Fig. 5 shows the comparison of the mean square error of estimation (MSEE) of α  for 
the two  channel estimation algorithms for A=0.1 and A=0.01. The MSEE is high at low 
SNR because the noise dominates the performance of the estimator. When SNR 
increases, the MSEE decreases. At SNR > 22 dB, the MSEE becomes small for both 
values of A . We can also see that the MSEE in case of 1.0=A  is smaller than that one 
for . The convergence in case of  01.0=A 1.0=A  is faster than the convergence in case 
of . Both Fig. 5, and 6 show that the estimation algorithm requires high SNR to 01.0=A
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converge. Now, we use the least square estimation (LSE) algorithm given by (14) to to 
estimate the channel. this algorithm uses a 50 pilot samples which is found to be 
sufficient for good estimation. These figures show that the receiver equipped with the 
LSE algorithm (AL2) has better performance than the receiver equipped with the first 
algorithm (AL1). 
 
    The effect of the frequency offset on the performance of the receiver for binary PSK 
receiver over flat fading channel is shown in Fig. 7. The figure is plotted for different 
values of A  (0.0001, 0.1, and 1), and for different values of SNR= 10 dB. The figure 
shows that the receiver is able to detect the signal reliably when the frequency offset is 
small. When the frequency offset increases, the receiver performance degrades rapidly. 
Also, Fig. 7 shows that there is a range in which the effect of frequency offset can be 
neglected and the symbol error probability in this range is small. This range is shown in 
this figure for A=1. This range depends on the SNR (it increases as SNR increases) 
and it is up to f0.Ts=0.04 for SNR= 10dB where Ts is the symbol duration. 
 
The effect of the timing offset on the performance of the developed binary PSK receiver 
is shown in Fig. 8. The figure is plotted for different values of A  (0.0001, 0.1 and 1) for 
SNR=10 dB. This figure shows that the receiver is able to detect the signal reliably when 
the timing offset is small. When the timing offset increases, the receiver performance 
degrades rapidly. Also, Fig. 8 shows that there is a range in which the effect of timing 
offset can be neglected and the symbol error probability in this range is small. This 
range is shown in this figure for A=1. This range depends on the SNR (it increases as 
SNR increases) and it is up to t0/Ts=0.22 for SNR= 10dB. 
 
 

V. CONCLUSIONS 
 
An optimum receiver for digitally modulated signals in additive class-A impulsive noise 
for flat fading channel has been presented. The performance of the receiver has been 
derived theoretically and validated by simulations for a  binary PSK signal as a case 
study. It has been shown that the performance of the developed receiver depends on 
the noise parameter A . Increasing the impulsive index A , enhances the performance of 
the receiver. In fading channels, there is a performance loss between the receiver 
equipped with channel estimator and the receiver which assumed known channel. The 
reason of this performance loss is the channel estimation error. 
There is a range at which the effect of frequency offset can be neglected and the 
receiver can detect the signal reliably. This range depends on the SNR and the 
impulsive index A. This range increases as SNR increases and A increases. When the 
frequency offset increases, the receiver performance degrades rapidly. The same 
conclusion can be stated for the timing offset. 
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 (b) Using the first estimation algorithm (eq.(12)) 

 

 
(c) Using the second estimation algorithm (eq.(14)) 

 
Fig. 1 Construction of log-likelihood calculation block for flat fading channel under class-
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Fig. 2 Performance of the ideal receiver (known channel) for different values of the 
impulsive index A  
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Fig. 3 Performance of the ideal and the practical receiver (estimated channel)  for 

different values of the impulsive index A   
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Fig. 4 Comparison of the performance of the ideal receiver, the practical receiver using 
the least square channel estimation algorithm (eq.(13)), and the practical receiver 
using the first channel estimation algorithm (eq. (14)) 
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Fig. 5 Comparison of the mean square error of estimation of α  for the two  channel 
estimation algorithms for A=0.1 and A=0.01 
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Fig. 6 Comparison of True and estimated values of  fading channel coefficients α  using 
the least square channel estimation algorithm for A=0.1 and A=0.01 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

fo .Ts

10-03

10-02

10-01

1000

B
it 

Er
ro

r P
ro

ba
bi

lit
y

A=0.0001
A=0.1
A=1

  
 



 

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 SPR-01 15 
 

 

Fig. 7 Bit error probability due to frequency offset for different values of the impulsive 
index A  and for SNR=10 dB  
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Fig. 8 Bit error probability due to time offset for different values of the impulsive index 
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and for SNR=10 dB 


