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ABSTRACT 

In this paper, the effect of the change of Pulse Repetition Frequency (PRF) on the 
performances of the STAP with reduced rank is discussed. The numerical evaluation is 
based on two different models of changing the PRF, namely quadratic and chaotic but 
with two methods of reduction of the rank: Principle Components (PC) and Signal to 
Interference Noise Ratio (SINR metric). Rank reduction reduces the computing time and 
cost. The simulation results show that the change of PRF solves well the problem of 
ambiguities while using a reduced rank of covariance matrix of the environment. Indeed, 
the notches of the clutter are eliminated. Also, a comparative study between the two 
methods, quadratic change and chaotic change, shows that the chaotic change is better 
and this is due to the simplicity of the generation of the impulses on one hand, while on 
the other hand, the chaotic change has the possibility of taking a large variety of PRFs at 
the same time. In fact, we use the properties of a chaotic system, such as sensitivity of 
initial conditions, mixture, and   density of periodic points to sweep all the space. The 
changes of frequencies used are numerous, and are generated (according to an 
equation modelling the environment). 
 

Key words 
Space time adaptive processing, STAP, PRF, chaotic change, quadratic change 
 
 
 
 
 
 
 
______________________________________________________________________ 
* Assistant professor, Dpt. of electronics, University of Jijel, Algeria. Now she is a visiting 

scholar at the Dpt. of signal and image processing, ENST/TSI, Telecom Paris, France. 
** Professor, Dpt. of Electrical Engineering, American University of Sharjah, UAE  
*** Graduate student, Dpt. of Electronics, University of Jijel, Algeria. 
**** Professor, Dpt. of signal and image processing, ENST/TSI, Telecom Paris, France.  



 
Proceeding of the 12-th ASAT Conference, 29-31 May 2007 SPR-03 2 
 

1. INTRODUCTION 

In ground radars, all the ground returns are received with a Doppler frequency almost 
null. However, in airborne radars, the returns present a wide spectrum of Doppler 
frequencies because of the platform in motion. Space-Time Adaptive Processing, STAP, 
improves the capacity of radars to detect slow moving targets which can be masked by 
clutter or a jammer. In [1], we studied the STAP with full and reduced rank of the 
covariance matrix while introducing the concept of changing the PRF which showed its 
effectiveness for the elimination of the ambiguous notches of the clutter. It was proven in 
[1-8] that STAP is of a great utility for the detection of targets in the presence of 
interfering signals. It is an optimum tool for the design of air and space borne MTI radar. 
STAP has the unique property of compensating for the Doppler spread induced by the 
platform motion and thus, making the detection of slow targets possible.  
 
In [8], Klemm considered the effect of a staggered PRF on the STAP performance. The 
numerical evaluation was based on two different stagger patterns: pseudo-random and 
quadratic. It was shown that quadratic staggering is equivalent to a constant 
acceleration of the radar platform. In case of perturbations of the platform motion, the 
precise knowledge of the perturbation is required to avoid mismatch between the target 
echo sequence and the Doppler filter.  
 
In this paper, we propose the use of a chaotic change of the PRF and we compare the 
performances with those of the quadratic one. We proceed as follows: first, we present 
in Section 2 the structure of the covariance matrix to describe the environment in which 
the radar operates. In Section 3, we give a brief description of STAP with full and 
reduced rank, and of the improvement factor (IF), which is the parameter for detection 
performances. In Section 4, the proposed contribution in the change of PRF using both 
the quadratic and chaotic methods is presented. Then, our results along with a 
discussion are presented in Section 5.  
 

2. STRUCTURE OF THE COVARIANCE MATRIX  

The structure of the covariance matrix is given by [2] 
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where, ,  and are the covariance matrices of the clutter, jammers and thermal 
noise, respectively, such that 

cR jR nR

  

( ) ( )H
sksk

N

k

H
tktkkc SSSSR

c

∑
=

⊗=
1
ζ                                                                      (1b)                 

 
H

N

i

N

j

H
ss

H
jij AEASSR

j j

ji
=⊗= ∑∑

= =1 1
αα                                                                   (1c) 

and  
 



 
Proceeding of the 12-th ASAT Conference, 29-31 May 2007 SPR-03 3 
 

KJKJ
H
nnn IIIXXER 22][ σσ =⊗==                                                             (1d) 

 
The matrices and ,  with , 
is the jammer to noise ratio (JNR), and ζk is the clutter to noise ratio (CNR) per zone of 
clutter; and are, respectively, the directional temporal and space vectors. 
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3. DESCRIPTION OF STAP   

STAP with full rank 
 
The space-time adaptive processing with full rank for airborne radars is a continuation of 
the mono-dimensional adaptive processing [2]. The two-dimensional adaptive weights of 
the STAP will be calculated with each element and impulse. For the cell under test, the 
vector of data received can be expressed as 
 

iXSX += α                                                                                                (2)  
 

where, α represents a random amplitude, is the space-time vector of direction of the 
target, and Xi is the vector of interferences. The output of the STAP is given by   

S

  
                                                                                                        (3)                 XWy H=

 
while the optimum weight (of the STAP), which maximizes the signal to interference 
noise ratio SINR, is obtained to be   
 

                                                                                               (4) SRW iopt
1−= α

 
Ri is the covariance matrix of the ith interference which is supposed to be known. The 
performance of the processor can be discussed in terms of the Improvement Factor, IF. 
IF is defined as the ratio of the SINR of the output to that of the input of the Direct Form 
Processor, DFP. For an optimal processor, this factor is given by [1,3] 
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Note that a reversed peak of the clutter appears at the frequency in the direction of sight 
of the radar, and the width of this notch gives a measurement for the detection of slow 
moving targets. 
 

STAP with reduced rank 
 
The objective of the partially adaptive STAP is to reduce the complexity of the problem 
of adaptation, while carrying out always almost the same optimal performance. The 
partially adaptive algorithms of the STAP consists in transforming the data with a matrix 

 where .  The weight vector of the reduced rank matrix is given by rkJCV ×∈ kJr <<
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where  is the reduced covariance matrix of  . There are several methods of rank 
reduction [4-6], which differ in the shape of the processor and in the way the columns of 
the matrix are selected. The principal component is based on the eigenvectors 
conservation of the matrix of covariance of interferences corresponding to the dominant 
eigenvalues [4]. In the SINR metric method, the objective is to choose the r columns of 

such that the loss in the performances of the SINR will be minimized. Berger and 
Welsh [6] chose the columns of V as being the eigenvectors of R, which minimized the 
loss in the performance of the SINR. By taking into account the rank of the reduction 
matrix, the improvement factor of the reduced rank can be written as  
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4. CHANGE OF PRF  

 
It is known that if the PRF is weak, Doppler ambiguities occur, and are caused by the 
overlapping of the edge lines with the true spectrum. This overlapping decreases 
gradually with each time the PRF is increased because the edge lines move away one 
from the other by leaving the true spectrum without a shift. So the idea of using the 
change of PRF appeared to solve the problem of Doppler ambiguities. We use two 
models of change for the PRF; namely, the quadratic change and the chaotic change. It 
should be noted that the change is done for an impulse to another (i.e., from pulse to 
pulse during processing). 
 

4.1 Quadratic Change of PRF [8] 
 
This type of change consists of increasing (or decreasing) the interval of repetition of 
impulses (PRI) in certain stages. Therefore, the PRI in the temporal frequency of the 
direction vectors of the target and clutter is multiplied by the term (1+ ε j/J) for each 
impulse j. In practice, the best choice ofε , for the elimination of the ambiguous notches, 
is equal to 1.   
 

4.2 Chaotic Change of PRF    
 
Traditionally, signals have been partitioned into two broadly defined classes; namely, 
deterministic signals and stochastic processes. This classification, however, overlooks 
another important class of signals, known as chaotic signals which share attributes with 
both deterministic signals and stochastic processes. Specifically, a chaotic signal has 
mostly a very irregular waveform, but it is generated by a deterministic mechanism [9-
12]. Such a system must have the following properties. (i) It must be sensitive to the 
initial conditions, (ii) it must be topologically mixing, and (iii) its periodic orbits must be 
dense. We now describe each property. 
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Sensitivity to the initial conditions  
 
It means that if the starting state is changed, one expects that the general evolution of 
the system is also modified and the error will be of the same order as the signal itself. 
This can be seen clearly in Figure 1, where we take as a reference value x=0.1 and 
introduce an error of 0.00001. We can observe that the error changes the evolution of 
the results. Also, it has a value which approaches the one of the signal itself. Using the 
following dynamic system to generate the chaotic orbits x(t), which are used for the 
generation of the PRF, 
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the exhibitors of Lyapunov measure the rate of divergence of the close orbits. They are 
given by [9]  
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Using (8), Equation (9) becomes then 
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This expression of Lyapunov makes it possible to separate the zones where the system 
is chaotic from the zones where the system is stable as shown on Figure 2. In this case, 
if is negative or equal to zero, we are in the presence of a stable or periodic 
phenomenon; if not, it is chaotic. 

(xλ 0 )

 

Capacity of mixture     
 
Topologically, mixing means that the system will evolve over time so that any given 
region or open set of its phase space it will eventually overlap with any other given 
region. If we consider two unspecified intervals I and J from [0; 1], the first being 
regarded as source and the second as target, there exists an orbit whose first term xo is 
in I, and which has one of his elements xn in J. More precisely, the definition of the 
capacity of mixture is as follows:  

   ] [ ] [ [ ] ] [ ] [δχβαδχβα ,,,,,1;0,,, 0 ∈∈∃∈∃⊂∀ nxNnx            (11) 

We consider the function f defined by Equation (8), with a = 4. Let the interval of test be 
[0; 1]. If we subdivide this interval in ten equal parts, we obtains 10 sub intervals which 
are [0; 0.1], [0.1; 0.2], and so on until the interval [0.9; 10] and denoted I1, I2,…, I10. 
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Consider the interval [0.3; 0.4] as the starting interval and determine the final interval in 
which the values for this starting interval are.  

As shown in Table1, the evolution of the final interval of f (x) varies with the iterations 
since from a starting interval [0.3; 0.4], the interval becomes [0.024; 0.998] after 4 
iterations. It should be noted that after one iteration only, sub intervals 9 and 10 are 
reached. The iteration produced points in sub intervals 2 to 6 and so on. We could have 
defined others sub-intervals for the interval [0; 1] and still obtain similar results. Thus, a 
chaotic system will converge according to time (or from the iteration count) to others sub 
intervals in a manner at unforeseeable fact independently of the starting interval.  

Density of the periodic points     
 
By varying the parameter a, the following behaviour is observed. With a between 2 and 
3, the frequency oscillates around the value (a-1)/a for some time and then it is 
stabilized at that same value. When a is between 3 and 3.45 (approximately), the 
frequency oscillates between two values dependent of a but doest not stabilize. When a 
is between 3.45 and 3.54 (approximately), the frequency oscillates between four values 
and does not stabilize at any value. With a value of a slighter larger than 3.54, the 
frequency will probably oscillate between 8 values, then 16, 32 values, and so on. The 
lengths of the parameter intervals which yield the same number of oscillations decrease 
rapidly. This behavior is an example of a period-doubling cascade. 
  
At a = 3.57 (approximately), we have the onset of chaos at the end of the period-
doubling cascade. We can no longer see oscillations. Slight variations in the initial 
frequency yield dramatically different results over time, which is a prime characteristic of 
chaos. Most values beyond 3.57 exhibit chaotic behavior, but certain isolated values of a 
appear to show non-chaotic behaviour. These are sometimes called islands of stability.   
 
For values of a greater than 4, the values eventually leave the interval [0, 1] and diverge 
for almost all initial values. A bifurcation diagram, as shown in Figure 3, summarizes 
this. The horizontal axis shows the values of the parameter a while the vertical axis 
shows the possible long-term values of x. We can obtain the diagram of Feigenbaum 
from Equation (10) and we set for example r=2.8 until r=4. It is observed that from a 
principal branch, one passes to two branches which they are subdivided into two other 
ones (unfolding of the frequency).  
 
As we approach 4, we notice that the entire interval (from 0 to 1) is covered by this 
structure. The PRFs are generated according to the product: PRFmax x(n).  The 
advantage of using a chaotic system to generate PRFs lies in:  

(i) the simplicity of the generation of the impulses while basing itself on simple 
electronic circuits, such as the circuit of Chua, and  

(ii) the possibility of taking a large variety of PRFs at the same time. In the case 
considered in this paper, we use a classical chaotic generator followed by a 
multiplier, so that we get all the PRFs in the interval [0, PRFmax]. 
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5. RESULTS AND DISCUSSIONS  

The simulated radar is a linear network sidlooking (parallel with the longitudinal 
reference axis of the plane) of 8 antennas spaced by half the transmitted wavelength, 
with 10 impulses in the interval of coherent processing. The dimension of the adaptive 
process is thus KxJ=80. The angle of elevation is fixed at 20°, and the angle of azimuth 
represents the only free parameter. The speed of the airborne radar is 100m/s, and the 
frequency of transmission is 0.3 GHz.  The environment of the interferences is 
composed of:   
 (i) Five jammers whose angles of azimuth are: 0°, 180°, 60°, 90°et, 72°, with jammer 

reports/ratios on noise (JNRs) of 13dB, 12dB, 11dB, 10dB, and 9dB respectively.    
(ii) Clutter of ground covering the band [- 30°, 30°], and of clutter to noise ratio (CNR) 

equal to 8 dB.  
 
In Figure 4 we show the improvement factor (IF) versus the normalized Doppler 
frequency for the processor of direct form, DFP-PC, parameterized by rank r. We notice 
that if the rank is very small, the slow moving targets will be removed with the clutter, 
and thus will not be detected. We can then say that the rank should not be reduced 
below certain low values. The same observations are seen in the case of the SINR 
metric processor. In Figure 5, we present the improvement factor (IF) versus the 
normalized Doppler frequency for the processors DFP-optimal, DFP-PC and DFP-SINR 
metric respectively. We notice that the notches are thin and the slow moving targets are 
detected. We also observe ambiguous notches clutter with which the associated speeds 
are called blind speeds. The width of the notch did not change compared to that of the 
optimal processor. Thus, the reduction of the rank does not eliminate ambiguities from 
the clutter during the suppression of the noise, and that does not affect the detection of 
slow targets. The same observations are made when using the SINR metric method. 
Figure 6 shows the improvement factor (IF) for the three processors versus the 
standardized frequency Doppler, Ft, with the quadratic change of PRF. We note that the 
application of the change of the PRF removes the ambiguous notches clutter by leaving 
undulations in the bandwidth of the STAP filter for any values of the of PRF and number 
of ambiguous notches. The use of the change of PRF does not have any effect on the 
detection the slow targets.  The same observations are made for a chaotic change, as 
shown in Figure 7, but we observe that the chaotic change associated the processor 
SINR metric gives performances which approach that of the optimal processor. This 
enables us to say that the chaotic change is preferred when using the quadratic change. 
Moreover, it is known that the generation of frequencies in a chaotic system is done 
using a simple circuit.  
 
6. CONCLUSION  
In this paper, we presented the fundamental principle of the STAP at reduced rank. We 
did the analysis using two methods: PC and SINR metric for a processor of direct form. 
The results showed that these methods allow a reduction in computing time and a 
reduction of the rank at low values without affecting the detection of slow moving targets. 
However, some ambiguous undulations or notches persist in the bandwidth. To 
eliminate the effect of these ambiguous notches on the detection performances, we 
used two methods of change of PRF; namely, quadratic and chaotic. We also showed 
that these two methods solve well the problem of ambiguities even with the reduction of 
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the rank. Indeed, the notches of the clutter were removed. From the detection point of 
view, the two changes are good, but the chaotic one is preferred because of its simplicity 
of integration.  
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Table 1 Evolution of sub interval of f(X) according to iteration count 

Iteration Interval I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 
0 [0.3; 0.4 ]    ×       
1 [0.84; 0.96 ]         × × 
2 [0.154; 0.538 ]  × × × × ×     
3 [0.521; 0.994 ]      × × × × × 
4 [0.024; 0.998 ] × × × × × × × × × × 
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Fig.1 Measured error with an introduced error of 0.0001 
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Fig.2 Curve of junction. 
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Fig.3 Chaotic effect to generate the PRF 
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Fig. 4 Improvement Factor of the DFP-PC processor with reduced rank, PRF=VR/2.λ , 

r=20 and r=8. 
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Fig. 5 Improvement Factor with constant PRF, PRF=VR/2.λ, r=20: 
              (a) optimal processor, DFP (Direct Form Processor) ; 

(b) the DFP-PC reduced rank processor and 
   (c) DFP-SINR metric reduced rank processor. 
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Fig. 6 Improvement Factor with quadratic change of PRF, PRF=VR/2.λ, , of :  1=ε

(a) optimal processor, DFP (Direct Form Processor) ; (b) DFP-PC reduced rank processor and  
(c) DFP-SINR metric reduced rank processor.  
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Fig. 7 Improvement Factor with chaotic change of PRF, PRF=VR/2.λ, , of :  1=ε

(a) optimal processor, DFP (Direct Form Processor) ; (b) DFP-PC reduced rank processor and  
(c) DFP-SINR metric reduced rank processor. 
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