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ABSTRACT 
 
Frequently in communication and radar signal processing problems it is useful to 
expand a function as a linear combination of orthogonal basis functions. The 
orthogonality of the basis functions makes the representation efficient and 
mathematically convenient. In signal processing applications it also guarantees that 
the components of the signals with respect to the basis functions do not interfere with 
each other. For example, in communication problems the use of orthogonal functions 
permits several different signals to share the same transmission medium, such as a 
cable or fiber optic link. This paper shows that the use of orthogonal basis functions, 
in reconstructing an original signal from a received noisy observation, increases the 
signal-to-noise ratio and is counterpart for the nonstationary noise case to eliminating 
the out-of-band noise. The proposed signal representation is based on the discrete 
Karhunen-Loeve transform. The proposed filtering method reconstructs the original 
signal from a received noisy observation based on real data and does not depend on 
any prior statistical knowledge. Numerical results show that the proposed filtering 
method is very efficient. 
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I. INTRODUCTION  
 
A basic issue in the design of receivers is that of detecting a signal embedded in a 
background of additive noise. The purpose of such receivers is to establish the 
presence or absence of signal in noise. In order to enhance the strength of the signal 
relative to that of the noise, and thereby facilitate the detection process, a detection 
system usually consists of a predetection filter followed by a decision device. When 
the additive noise is white, that is, the power spectral density of the noise is constant, 
it turn out that the optimum solution to the prediction filter is a matched filter [1]. The 
matched filter is so-called because its characterization is matched to that of the 
signal component in the received signal. A matched filter is optimum in the sense that 
it maximizes the output signal-to-noise ratio (defined in a special way). The matched 
filter is useful in the design of digital communication  systems where the concern is to 
enhance the received pulses. This can be done by  maximizing the signal to noise 
ratio of the receiver output. Another approach of this basic optimization problem is 
based on probabilistic criterion directly related to performance ratings of most digital 
communication systems in which we are interested. In this case the filter optimization 
criterion is based on minimization of the average probability of error (involving the 
two types of errors: error when deciding a symbol 0 when symbol 1 is true and error 
when deciding a symbol 1 when symbol 0 is true). The probabilistic approach yields 
the so-called correlation receiver, which involves a correlation of the received signal 
with a stored replica of the transmitted signal. It is well known that the two receiver 
structures (matched filter and correlation receiver) are equivalent for the case of 
additive white Gaussian noise [2].  

 
In these applications we are primarily interested in improving the ability to recognize 
a pulse signal in the presence of additive noise and not in preserving the fidelity of 
the pulse shape. It is also assumed that the signal and noise are both stationary with 
known power spectral densities. If the random signals are not stationary, then the 
power spectral densities are not defined and the solution is not so clear [3-5]. 
 
In this paper, we propose a method to reconstruct an original signal from a received 
noisy observation in case of non-stationary random signals, i.e. if the power spectral 
densities are not known. The proposed method is depending on the discrete 
Karhunen-Loeve transform [6-8]. The discrete Karhunen-Loeve transform expresses 
a random signal as a set of orthogonal basis functions. The paper is organized as 
follow. Diaganolaization of the correlation matrix of a random signal by unitary 
transformation is addressed in section II. The discrete Karhunen-Loeve transform is 
presented in section III. The proposed filtering method and the most efficient 
representation of the random process, based on the discrete Karhunen-Loeve 
transform, is also presented in section III. Simulation results are considered in 
section IV. Section V contains conclusions. 
 
II. DIAGONALIZATION OF THE CORRELATION MATRIX BY UNITARY 

TRANSFORMATION 
 
A sequence )(nx defined on the interval 10 −≤≤ Nn  can be represented as a vector 

 with components . A real random vector  will be denoted by the column 
vector  
x )(nx x
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where the components of  are real-valued random variables. Let x )(xψ represent 
any quantity derived from the random vector . This quantity may be a scalar, 
vector, or matrix. The expectation of 

x
ψ  is denoted by { })(xψE  and defined by the 

operation  
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where is the probability density function of the random vector . The 
correlation matrix of represents the complete set of second moments for the 
random vector and is defined by [9-11] 
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For a real random vector this matrix has the form 
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Note that the correlation matrix is a symmetric, that is 
T
xx RR = . ……………………………………………………………………………………………………………….................(5) 

It is useful to estimate the expected values when the density of the random vector is 
not known but instead there are a number of samples  of the 
random vector x . The estimate for the correlation matrix takes the form [ 7, 12-13] 
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Sometimes it is desirable to transform a random vector x  to another random vector 
x′whose components have the orthogonality property 

lkxxE lk ≠=′′ ;0}{  . ……………………………………………………………………………………………(8) 
This provides the advantages and simplicity of working with orthogonal random 
variables. Since the components are orthogonal the correlation matrix for the new 
random vector is a diagonal matrix. In this case the components of the random vector 
are uncorrelated.   
If is the correlation matrix, an eigenvector e  and an eigenvalue xR λ  satisfy the 
relation 

eeR λ=x  . ……………………………………………………………………………………………………………………….(9) 

That is, when regarded as a linear transformation, maps the eigenvector e  into 

a scaled version of itself. Because the matrix is symmetric it is possible to find N 

orthogonal vectors  and a corresponding set of eigenvalues 

xR
xR

Neee ........,,, 21

Nλλλ ........,,, 21  which are all real (some of them may have the same value). Let 

and be any two such eigenvectors from this orthonormal set. Then it follows 
that 
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Now define a matrix E  whose columns are the eigenvectors 
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From (10) it follows that 
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It is clear that  is the correlation matrix for a random vector xΛ ′defined by  
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and since  is diagonal, the components of Λ x′are orthogonal. Further, the 
eigenvalues, which are the second moments of the components , are always 
positive (or possibly zero). Since the columns of E  are orthogonal, the matrix 

represents a unitary transformation, i.e., 

kx′

TE
IEEEE == TT . ……………………………………………………………………………………………………….(14) 

The correlation matrix is  
ΛERER ==′ x

T
x . ………………………………………………………………………………………………….(15) 

Note that the eigenvalue problem (9) can be written in the alternative matrix form 
EΛER =x .  ……………………………………………………………………………………………………………….(16) 

Equation (15) can be pre- and post-multiplied by E  and ; since E  is a unitary 
matrix the result is 

TE

T
x EΛER =  . ……………………………………………………………………………………………………………..(17) 

Further, taking he inverse of this equation and noting that  
T

x EΛER 11 −− =  .  ………………………………………………………………………………………………………...(18) 

This equation is useful for inverting the correlation matrix since is simply a real 
diagonal matrix with diagonal element 

1−Λ
jλ/1 . In addition since E  is orthonorrmal, the 

determinant and trace of are the same as the determinant and trace of . Thus 
it follows that [14-18] 
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In most cases a computer program will be used to find the eigenvectors and 
eigenvalues. However it is worthwhile to review a procedure for doing it manually. To 
find the eigenvectors of a matrix, we can write (9) in the equivalent form 

0eIR =− )( λx  .  …………………………………………………………………………………………………………(22) 
In order for nontrivial solutions of this equation to exist, it is required that 

0IR =− || λx  . ……………………………………………………………………………………………………………(23) 
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Equation (22) is the characteristic equation corresponding to (9); it is a polynomial in 
λ  whose roots are the eigenvalues of . Once these eigenvalues are found, (22) 
can be used to determine the corresponding eigenvectors.  

xR

                                                                               
III. DEVELOPMENT OF THE DKLT AND ITS OPTIMAL REPRESENTATION  
 
Consider a segment of a random sequence }1,...,1,0);({ −= Nnnx . This 
segment can be expanded in any set of orthonormal basis functions )(niφ  as  
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It follows from (24) and (25) that the coefficients are given by 
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Therefore, if the random process has zero mean, which is the usual assumption, the 
coefficients are uncorrelated. Define the vector of coefficients 
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and the matrix 
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From (29) and (25), it is clear that the columns of  are a set of orthonormal vector 
satisfying 
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therefore,  is a unitary matrix. Equations (24) and (26) can be written using the 
matrix formulation  
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where since Φ  is unitary, is the inverse of . TΦ Φ
Recall from section II that if the  are chosen as the eigenvectors of the correlation 

matrix, then the resulting satisfy (27). The desired set of basis functions are thus 
determined by the eigenvectors of the correlation matrix. These functions are called 
eigenfunctions of the random process and satisfy this equation 
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The last equation has the matrix form 

iii φφR x λ=  .  …………………………………………………………………………………………………………….(34) 
With this choice of basis functions, the transformation (26) is the DKLT, and the 
representation (24) is called Karhunen-Loeve expansion for the random process [ 7]. 
The DKLT is also unique in that it is the only transformation that results in (27). To 
show this, consider any set of orthonormal basis functions (not necessarily those 
corresponding to the DKLT). Since the functions and the corresponding vectors are 
orthonormal, the requirement (27) can be written as 
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where 

jjjj φφRu x λ==  , ………………………………………………………………………………………………(37) 

is whatever vector results from multiplying  by the correlation matrix. Condition 

(37) states that  is orthogonal to all of the 

jφ

ju jii ≠for φ . But since the form 

orthonormal set,  must be equal to a constant times φ , that is, 
iφ
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This states that  must be an eigenvector and jφ jλ  must be the corresponding 

eigenvalue. Since this is true for any choice of , it follows that the unique set of 

{ } that result in (27) are the eigenvectors of the correlation matrix. Then from 
equations (35) and (38) it also follows that 
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An important property of the DKLT is that it is the most efficient representation of the 
random process if the expansion is truncated to use fewer than N orthonormal basis 
functions. If the random process consists of a signal in additive noise, it can turn out 
that by using a truncated expansion, a significant part of the noise is eliminated while 
most of the signal is kept intact.  
Consider approximating the random sequence in terms of some number NM <  of 
basis functions as 
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The problem is to find the appropriate set of basis functions to minimize the average 
energy in the error process 
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This quantity is referred to as the mean-square error. We can write 
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where the vector quantities x  and ˆ ε  defined here correspond to the sequence 
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where the last step follows because the iϕ  satisfy the orthonormal condition of 
equation (30). Equation (35) can be used to write the mean-square error in compact 
form as 



 
Proceeding of the 12-th ASAT Conference, 29-31 May 2007 SPR-04 9 
 

i

N

Mi
x

T
i φRφ∑

+=
=

1
ε .  …………………………………………………………………………………………………(45) 

The problem is now to minimize (45) subject to the constraints  
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This problem can be easily solved by using Lagrange multipliers. The gradient can 
be expressed as 
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Equation (45) can then be reexpressed using (47) as 
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Since the eigenvalues of a correlation matrix are never negative, we should use the 
MN − smallest eigenvalues of the correlation matrix in order to minimize the 

mean-square error. Since these smallest eigenvalues correspond to the terms left out 
of the expansion, the optimal basis functions for the truncated expansion of equation 
(40) correspond to the eigenvectors of with the xR M largest eigenvalues. 
 
IV. SIMULATION RESULTS 
 
In simulation, we consider the problem of DKLT expansion a signal, and its use in 
recovering data corrupted by noise. Let us consider a discrete finite-length 
deterministic signal which is observed in additive noise [19-20]. The observed 
sequence is 

,)()()( nwnsnx +=  ……………………………………………………………………………………………………..(49) 

where  is the noise sequence. We assume the noise to be zero mean, white, 

independent on 

)(nw
)(ns . The goal is to see how we can use the DKLT effectively to 

best reconstruct the original signal )(ns from the observations )(nx . We assume 
that the signal sequence is 

)
355

2(cos3.0)
60

2(sin5.0)
40

2(cos)( ππππ ++−=
nnnns .  ………………………………..(50) 

Samples of 1024 data points (N=1024) of the noise sequence  and the signal 

sequence 

)(nw
)(ns  are generated. They are added together to obtain the observed 

sequence )(nx . The signal to noise ratio is assumed to be -3 dB. The original 

sequence )(ns  (without adding noise) is shown in Fig.1. The noise sequence  

is shown in Fig.2. The observed sequence 

)(nw
)(nx (signal plus noise) is shown in 

Fig.3. 
The correlation between any two samples of a random process and is 
expressed by the correlation function (or the autocorrelation function) 

 )( 1nx )( 2nx

.})()({),( 2121 nxnxEnnRx =   ………………………………………………………………………………(51) 
For a stationary random process, the correlation function can be defined as 

})()({)( ll −= nxnxERx .  ………………………………………………………………………………………(52) 
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It is clear that the correlation matrix is completely specified by the correlation function 
for the random process. 
The autocorrelation sequence  for the whole sequence is calculated and 
plotted in Fig.4. It is clear that it is an even function. Now we want to reconstruct the 
first 128 points of the original sequence 

)(lxR

)(ns  based on )(nx , 1, 2, . . . . .,128 

and the corresponding autocorrelation function , thus we obtain the 

correlation matrix . Also we calculate the eigenvectors and the eigenvalues of the 

correlation matrix. The first 128 points of the observed sequence 

=n
)(lxR

xR
)(nx and its 

correlation function are shown in Fig.5 and Fig.6 respectively. The eigenvalues of 
are plotted in Fig.7. Note that most of them are very small. We reconstruct the 

sequence using the eigenvectors corresponding to the largest eigenvalues (we call 
them the largest eigenvectors). Fig.8 compares the original sequence

xR

)(ns  and the 

noisy estimated sequence. Fig.9 compares the original sequence )(ns  and the 

estimated sequence )(ˆ ns  based on the largest 4-eigenvectors, i.e., 

=)(ˆ nx  ……………………………………………………………………………………………….(53) ∑
=

4

1
;)(

i
ii nk ϕ

where the )(niϕ  correspond to the largest 4-eigenvectors .  
It is clear that by using only 4-eigenvectors we can estimate the sequence with high 
accuracy despite of the noise sequence. Figures 10-14 compare the original 
sequence )(ns  and the estimated sequence )(ˆ ns  based on the largest 5, 6, 9, 20, 
and 40 eigenvectors, respectively. It is clear that when we use more eigenvalues 
including some with small eigenvalues, the estimated sequence )(ˆ ns is not tracking 

the original sequence )(ns , i.e., the reconstructed sequence differs from the original 
sequence, especially, when we use more than 6 eigenvectors. Thus to reduce the 
mean square error in the approximation, we must use the smallest number of the 
dominant eigenvectors  corresponding to the largest eigenvalues.  
 
 
V. CONCLUSIONS 
 
The problem of reconstructing an original signal from a received noisy observation in 
case of non-stationary random signals, i.e. if the power spectral densities of the 
random signals are not known, has been considered. The proposed filtering method 
is based on the discrete Karhunen-Loeve transform, which expresses a random 
signal as a set of orthogonal basis functions. It has been shown that a random signal 
can be represented in terms of the eigenvectors and the eigenvalues of the 
correlation matrix of the random signal. The most efficient representation which 
maximizes the signal-to-noise ratio is the representation that uses the dominant 
eigenvectors corresponding to the largest eigenvalues. Simulation results show that 
when we use only four or five eigenvectors we can estimate the original signal with 
high accuracy despite of the noise sequence. When we use more eigenvalues (more 
than five) including some with small eigenvalues, the reconstructed sequence differs 
from the original sequence. The proposed filtering method reconstructs the original 
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signal from a received noisy observation based on real data and does not depend on 
any prior statistical knowledge. Simulation results show that the proposed filtering 
method is very efficient. 
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        Fig.1 The Original Sequence s(n) 
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                                                    Fig.2 The Noise Sequence w(n) 
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                                   Fig.3 The Observed Sequence x(n)=s(n)+w(n) 
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                        Fig.4  The Autocorrelation Function of the Observed Process 
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                            Fig.5 Segment of 128 Points of the Observed Sequence 
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                       Fig.6 The Autocorrelation Function of the 128 Points of x(n)  
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                                Fig.7  The Eigen Values in Descending Order  
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                  Fig.9  s(n) (o) and its Estimate (*) Using 4-Dominant Eigen Vectors 
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                 Fig.10  s(n) (o) and its Estimate (*) Using 5-Dominant Eigen Vectors  
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                  Fig.11  s(n) (o) and its Estimate (*) Using 6-Dominant Eigen Vectors 
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                  Fig.12  s(n) (o) and its Estimate (*) Using 9-Dominant Eigen Vectors     
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                  Fig.13  s(n) (o) and its Estimate (*) Using 20-Dominant Eigen Vectors 
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                  Fig.14  s(n) (o) and its Estimate (*) Using 40-Dominant Eigen Vectors   


