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ABSTRACT 
 
A classical adaptive filtering model of the problem of instantaneous blind signal 
separation, or what is formally known as unsupervised adaptive filtering is presented. 
This classical form helps understanding the well-known superior behaviour of the 
natural gradient solution to the blind separation problem. A new RLS-based algorithm 
is developed using this classical model. The algorithm provides improved on-line 
separation speed under the same steady state error compared to the natural gradient 
algorithm without requiring pre-whitening. 
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I. INTRODUCTION 
 

Blind Source Separation (BSS) is intended to separate or recover a set of 
unobservable sources from another set of mixtures, without having access to the 
mixing matrix coefficients. One main category of cost functions for blind separation of 
instantaneous mixtures is information theory based methods [1]. This category is 
preferred due to its robustness against outliers, meaning that a single or a few highly 
erroneous observations should have little impact on the overall estimate of the 
sources. Information theory approaches aim at separating the mixtures into their 
basic components using estimates of the sources’ probability densities. One of the 
main cost functions in the information theory category is the Maximum-Likelihood 
(ML) cost function.  
 
In [2], the idea of applying differential geometry to the LMS-update of the maximum-
likelihood cost function for blind separation led to the well-known natural gradient 
update which exhibits equivariant properties, meaning that the gradient is better 
directed to the minima of the cost function on the curved optimization manifold, i.e., 
Riemannian manifold. 
 
In [3], the idea of iterative inversion of the mixing matrix using the maximum-
likelihood cost function for blind separation was introduced.  One of the main 
contributions in [3] is the ability to develop the natural gradient algorithm without the 
use of Riemannian geometry.  
 
This paper presents another view of the blind source separation based on maximum-
likelihood.  We introduce a classical filtering analogy to the separation process by 
splitting the stochastic gradient into equivalent "input" and "error" components. Using 
this “input/error” representation enables the interpretation of the maximum-likelihood 
update as a classical adaptive filtering LMS-update.  
 
A new RLS-algorithm stemming from this analogy is then introduced that can be 
reduced to the natural gradient update.  The new algorithm, in its original non-
reduced form, and the natural gradient are compared when applied to different audio 
mixtures. Simulation results show that the new proposed RLS-based algorithm 
achieves better convergence speed while producing the same steady state error as 
the natural gradient algorithm. 
 
The rest of this paper is organized as follows. In section 2, the principle of signal 
separation based on the maximum-likelihood is presented, along with a review of the 
Riemannian manifold approach to natural gradient. Section 3 presents the adaptive 
filtering interpretation of the maximum-likelihood update. The new proposed RLS 
algorithm for BSS is presented in Section 4 along with the reduction to the natural 
gradient algorithm. Section 5 is dedicated to the test setup and the presentation of 
the results. We finally conclude the paper in Section 6. 
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II. MAXIMUM-LIKELIHOOD PRINCIPLE 

 
Let  be the scalar source inputs for a mixing matrix  at a time n , with 
the resulting mixtures . For simplicity, it is assumed that the mixing is 
linear and that the mixing matrix is square, i.e. of size 

Nitsi L1),( = A
Nitxi L1),( =

A NN × . The mixing model can 
be expressed as: 

)()( tt sAx ×=                                                                                            (1) 
 
where  and  are the  vectors of the mixtures and the sources, respectively. 
The purpose of blind signal separation algorithms is to estimate an  matrix  
and estimate output signals 

x s 1×N
NN × W

Nityi L1),( = : 

)()( tt xWy ×=                                                                                                 (2)  
 
such that , where  is a permutation of a diagonal matrix. If this condition 

is met, then the outputs,  or better a smoothed nonlinear version of the outputs 
 are equal to the independent sources 

PAW =× P
)(ty

))(( tg y Ninsi L1),( = , except for order and 
scale ambiguity [10]. 
 
The Maximum-likelihood cost function attempts to perform the separation via 
maximizing the joint entropy , where is the );( WyH y 1×N  vector of the outputs 

of the separation process. The concept has been introduced in [4]. The cost 
function of the log-likelihood  can be expressed as: 
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where refers to the expected value,  is the ith output and  is the 
probability density function of . The gradient of  on the Euclidean space is: 
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The natural gradient update can be obtained by finding the steepest descent 
direction of the cost function on the Lie-algebra space associated with [4]. 
The modified differential along this tangent space is [5]: 

)(WL W
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Differentiation of the cost function  with respect to results in two terms. 
The first term is: 
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estimated as follows: 
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The update along the Lie-algebra is given by: 
 
                                                                                            (10) )})({( TgIE yyM −=Δ μ
 
This update is mapped to the Riemannian space of  via exponential mapping [6]: W

 
                                                                                     (11)                 )1()exp()( −Δ−= tt WMW
 
The update  can be approximated to be: WΔ

 
  { }[ ] )1()( −−≅Δ tEI T WyygW                                                                            (12) 
 
A stochastic form of this algorithm can also be developed.  This is achieved by 
replacing the expectation by the instantaneous value, and in each iteration of the 
algorithm a small step size 1<<μ  is used to add the update to the demixing matrix : W
 

  [ ] )1()()1()( −−+−= tItt T WyygWW μ                                                                 (13) 
 
Using equation (3) as the starting point, we propose in the following section a 
classical adaptive filtering interpretation of the maximum-likelihood update. This 
classical view facilitates the analysis of natural gradient algorithm update and also 
helps giving rise to a new RLS-based update based on the multiplication of an input 
signal by the inverse of its correlation matrix. The new algorithm can provide faster 
convergence than the natural gradient in the regular instantaneous mixtures, square 
mixing matrix case. 
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III. CLASSICAL INTERPRETATION OF THE NATURAL GRADIENT 

UPDATE 
 
We consider the gradient of the maximum-likelihood cost function: 
 

{ }TT gEL xyWW )()()( 1 +−=∇ −                                                                                  (14) 
 
This form can be re-written as: 
 
 { } { }TTT gEEL xyxxRWW xx )()( 1 +−=∇ −−                                                           (15) 
with the autocorrelation { }TE xxR xx = . An instantaneous version of the above update 
can then be re-written as: 
 

 ( ) TT gL xyxRWW xx )()( 1 +−=∇ −−
                                                                             (16) 

 
As in [11], the above update can be interpreted as an error term  
( ))(1 yxRW xx gT +− −−  multiplied by an input term .       Tx
 

( ){
input

T

error

T gL xyxRWW xx 444 3444 21
)()( 1 +−=∇ −−                                                                      (17) 

Such that: 
 

( ){
input

T

error

T gtt xyxRWWW xx 4444 34444 21
)()()1( 1 +−+=+ −−μ                                                                    (18) 

 
which has a classical LMS-update form. A closer look at the error term  
( ))(1 yxRW xx gT +− −−

 reveals that can be considered as a whitened 
version of the mixtures  given that the mixtures  have zero-mean and in this 
case the transpose of the inverse of the de-mixing matrix is equivalent to  under 
the orthogonality constraints [1].  In this case the error term can be written as: 

xR xx
1−

x x
W

 
  ( ))(1 yxRW xx gerror +−= −                                                                            (19)  
 
 
Thus, the error term can be analyzed as the difference between the estimated 
sources  and the output of the whitened input mixtures  applied on the 
demixing matrix . 

)(yg x
W

 
The above interpretation of the maximum-likelihood update gives rise to a spectrum 
of variant algorithms based on classical adaptive filtering theory. In the following 
section an RLS-based update is presented, along with an interpretation of the natural 
gradient as a special case of this RLS-based algorithm. 
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IV. RLS-BASED BSS ALGORITHM 
 
In this section, a new approach to blind signal separation is developed in analogy to 
the classical adaptive filtering RLS algorithm, which bases its work on a multiplication 
of the input signal by the inverse of its correlation matrix. The developed algorithm 
can be updated using the iterative inversion and the well-known matrix inversion 
lemma.  
 
As a starting point, we consider the gradient of the maximum-likelihood cost function: 
 
 ( ) {

input

T

error

T gtt xyxRWWW xx 444 3444 21
)()()1( 1 +−+=+ −−μ                                                                       (20) 

 
To create the new algorithm based to the above LMS-based one, we modify the 
update ( ) TT gL xyxRWW xx )()( 1 +−=∇ −−  by post-multiplying it with the inverse of the 
correlation matrix  of the mixtures input mixtures : xxR x
 

( ) ( ) 111 )()()( −−−−− +−=+−=∇ xxxxxx RxyWRxyxRWW TTTT ggL                         (21) 
 
Assuming that the unobservable source signals are equivalent to the nonlinear 
outputs  [10] such that: )(yg
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TT

ss ggEE ===                                                                (22) 
 
the correlation matrix  can be written as: xxR
 

T
gg

TTTTT ggEEE ARAAyyAAssAxxR yyxx )()(})()({}{}{ =≈==                          (23) 
 
Using equation (22), the inverse  of the correlation matrix  can be estimated 
as: 

1−
xxR xxR

 
WRWR yyxx

1
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1 −− = gg
T                                                                                           (24) 

 
 
Thus the RLS- update in (21) can be re-written as: 
 
                                                            (25) ( ) )()()()1( 1

)()( tgtt gg
T WRyyIWW yy

−−+=+ μ
 
The above RLS-form can reduce to the well-known natural gradient algorithm given 
in equation (13) as follows: 
 
at the steady state point, i.e. when separation is reached, the output signals y are 
independent. As such: 
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where NiygygE iii L1,)}()({ ==α  is a constant factor that only adds scaling factor 
to each separated source Niyy iii L1, =→α . This scaling factor can be 
neglected as the separation process itself introduces scaling ambiguity in the 
separated sources. Taking this ambiguity into consideration, and applying this 
approximated optimal value of   in equation (24), the resulting equation can 
be written as: 

)()( yyR gg

 
 ( ) )1()()1()( −−+−= tgtt T WyyIWW μ                                                            (27) 
 
This is the same as the natural gradient equation developed in equation (13). Thus, 
the natural gradient can be considered as a special case of the developed RLS 
algorithm in (24).  
 
However, the introduction of the inverse matrix   in the RLS algorithm (24) 
without approximating the matrix by its diagonal value at the optimal separation 
points helps improving the convergence speed of the algorithm. The estimation of the 
autocorrelation function  is done by a running sum of the 
expected value updated from time instant (t-1) to time t using an exponential window 
with a forgetting factor λ  as: 

1
)()(
−

yyR gg

})()({)()(
T

gg ggE yyR yy =

 
                                                         (28) T

gggg tgtgtt ))(())(()1()( )()()()( yyRR yyyy +−=λ
 
Considering the additional computations required for this algorithm, it is easily seen 
that the main increase is in the matrix inversion process to estimate  which 

could be in the order of  for N sources. However, using the matrix inversion 
lemma [9] to estimate  iteratively from one time instant to the next, this 

computational load can be reduced to the order  , which lies in the same range of 
complexity of the natural gradient algorithm. 

1
)()(
−

yyR gg

3N
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V. SIMULATION RESULTS 
 
In order to assess the improvement gained by the proposed   RLS algorithm given by 
(25), it was compared to the natural gradient algorithm, given by (13). The step size 
of the natural gradient algorithm was set to 0.0005, while the forgetting factor λ of the 
RLS-algorithm was set to the fixed value of 0.999. The values of the step size for the 
natural gradient and the forgetting factor for the RLS-algorithm were chosen so that 
they converge to the same steady state error. The nonlinear function  used was: 

. 

(.)g
)tanh(2)( yy =g
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The tests were performed on audio data files from [7]. These files are sampled at 8 
kHz and are of duration 6.5 sec. each, with the following two groups: 
 
(a) Miscellaneous_4: two males, one female, and soft music. 
(b) Male_4: 4 male speakers with similar characteristics. 
 
We used the following performance index  [8], [9]: 
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 where  is one element of the matrix  ijP WAP = , which is supposed to be a scaled 
permutation of a diagonal matrix at  the optimal point of separation. The above cost 
function thus penalizes the deviation of P from the permutation structure. 
The test was performed for 100 different runs. The matrix  was randomly generated 
for each run. Figure 1 and Figure 2 illustrate the results of the simulations, showing 
the improved performance of the proposed algorithm for the same steady state   
error. 

A

 
Fig1. RLS-algorithm vs. Natural Gradient for 100 different runs with the first group of 

sources (Miscelleneous_4) 
 



 
Proceeding of the 12-th ASAT Conference, 29-31 May 2007 SPR-05 9 
 

 

 
Fig2. RLS-algorithm vs. Natural Gradient for 100 different runs with the second group 

of sources (Male_4) 
 
 
 
 
VI. CONCLUSION  
 
This paper introduces a classical adaptive filtering view of the blind source separation 
process in its instantaneous form using the maximum-likelihood principle. This global 
classical view helps establishing a clear analogy between well known adaptive 
filtering algorithms and blind source separation algorithm. The regular Maximum-
likelihood update was linked to the LMS update. This approach also gives an 
interpretation of the natural gradient algorithm and its improved performance without 
rendering to the Riemannian geometry mathematics. A new algorithm that resembles 
the classical RLS algorithm in its principle of work has also been developed. This 
algorithm modifies the maximum-likelihood update to perform a multiplication of the 
input signal by the inverse of its correlation matrix. The new RLS-based algorithm is 
capable of working on-line with good results, as confirmed by the assessment quality 
measure that was used. This improved performance can be achieved with a 
reasonable additional computational load. 
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