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ABSTRACT 
This paper deals with structural shape optimisation of prismatic shell structures using 
genetic algorithm. In the formulation of the optimisation problem, the minimum value 
of the strain energy is thought as objective function while the volume of each 
structure remains constant. The optimisation process is carried out for two structures: 
cylindrical and folded plate structures. The design variables are chosen such that the 
shape of each studied structure can be represented. The proposed algorithm, used 
to generate new structural shapes, is linked to a finite element package to calculate 
the objective function. It is observed that the proposed optimisation algorithm 
provides an efficient and reliable way of obtaining better solutions for such class of 
prismatic shell structures. 
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INTRODUCTION 
The problem of shell optimisation has been of importance to structural engineers. 
Therefore, many authors developed algorithms to optimise the shape and size of 
shell structures. Shape and size optimisation of these structures using finite elements 
was investigated by Bletzinger and Ramm [1], Rao and Hinton [2], Afonso and Hinton 
[3], Ghasemi [4] and Lee [5]. Hinton et al [6] and Rao et al [7] also carried out shape 
and size optimisation of prismatic shell structures using the finite strip method. The 
main limitations using the FE models are the difficulty of handling branched shell 
structures. Further, the treatments of shape definition and mesh generation are 
complex. Moreover, the use of FE models is restricted by geometry and boundary 
condition limitations that makes the optimisation process time consuming.  
The main task involved in the optimisation of any structure is to develop a suitable 
interface with an optimisation package, which is usually treated as a black box. An 
important step in the development of good models for the analysis and optimisation 
of shells is the introduction of an appropriate geometric model. In the initial definition 
of the shell, loads, boundary conditions and material disposition can be associated 
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with the geometric model. If a discrete analysis tool is to be used such as the FE 
method, then a suitable discretization may be produced using structured or 
unstructured meshing. Furthermore, if shape or size optimisation is to be carried out, 
then a suitable parameterization is required and design variables must be selected 
from the key data controlling the geometric model. 
 
In the present paper the shape optimisation is performed with the aim to smooth the 
rough boundaries because of the difficulties to extract by the topology precise 
information on location and shape of the final boundaries. The paper also aims to 
develop an efficient and reliable procedure for the analysis and optimisation of shell 
structures using a simple to use algorithm based on modified genetic algorithm 
developed by Mahfouz and Raslan [8]. 

 
GENETIC ALGORITHM 

 
Genetic algorithm (GA) is an optimisation strategy in which points in the design space 
are analogous to organisms involved in a process of natural selection. The term 
genetic is used because, along with the expected design representation, GA employs 
a code representation of design attributes that is analogous to a chromosome (see, 
Holland [9], Goldberg [10] and Davis [11]). This code is commonly a character string, 
with each character position being analogous to a gene, and each character 
assigned to a position being analogous to an allele. Organisms are generated and 
tested in generations, with offspring designs arising from parent designs. The 
creation of new designs for a new generation occurs with a process that is analogous 
to biological reproduction. Genetic crossover allows offspring designs to retain traits 
from parent designs, and infrequent mutations possibly yield radically improved 
designs. The testing of new designs is done with merit function, usually tailored to 
take the coded representation as input. In a given generation, designs with a higher 
merit are given a higher probability of creating offspring, and perhaps surviving 
themselves into the next generation.  
Optimisation occurs, therefore, through a process of natural selection. Designs in a 
given generation group in pairs (i.e., mate), with the better designs having a higher 
probability of pairing. These parent designs produce offspring by genetic crossover. 
In single point crossover, a point along the coded representations (the 
chromosomes) is chosen at random, and the segments of the code after the point are 
swapped. After that random mutations are performed on individual alleles within the 
chromosomes by changing the values. These operations yield two new codes which 
represent two new designs that possess traits from both parents. The process then 
iterates. After many generations, the best design is achieved, because the merit 
function is more likely to allow better designs to produce offspring. Generally, the GA 
is judged to be successful if it evolves a population of highly fit individuals. Among 
many authors, Haftka, and Gurdal [12] and Michalewicz [13] may be consulted for 
more details regarding the various aspects of genetic algorithms.  
The main features of the suggested modifications follow the basic assumption of a 
GA: the probability of getting fit children of two highly fit parents is higher than when 
one of the parents has a poor fitness. Accordingly, attempts have been made to 
accelerate obtaining population of a better average fitness thus reducing a chance of 
selection of poorly fit partner in the crossover operator. At first, the new technique 
uses a considerably larger population size before the actual start of the genetic 
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algorithm. This initial large population contains (Npo = nNp) randomly selected strings 
where Np is the size of all subsequent populations and n is a number of the order of 
ten. The fitness of all strings in this initial population is evaluated and Np best strings 
are selected to start the usual genetic operations. Obviously, in terms of 
computational effort this is equivalent to adding n iterations to the standard algorithm 
but, as the first regular population contains better strings, the modified algorithm 
tends to converge faster thus reducing the overall computational effort. At second, 
the new technique kills the worst individuals with a certain percentage, i.e. specifies 
how the less fit members are removed from the population. When using the 
traditional simple GA, it has been observed that the best individual of the population 
may fail to produce offspring for the next generation. The elitist strategy developed 
keeps the best individuals with a certain percentage termed elite ratio  of the 
population. Those individuals are called elite. The developed elitist strategy can be 
described as follows: 

rE

Step 1: Preparation of the data files, which includes GA parameters population size 
, elite ratio , probability of crossover , probability of mutation , crossover 

operator required and seed number. 
pN rE cP mP

Step 2: Creation of population with number of individuals equals to . pN
Step 3: Calculation of the objective function  (i =1, 2,…, ) for each individual. iF pN
Step 4: Check of the feasibility of each individual using the predefined constraints. 
Step 5: Computation of the value of the penalised objective function . iPF
Step 6: Searching of the smallest  and largest  value of the penalised 
objective function out of whole population . 

bestPF worstPF

pN
Step 7: Evaluation of the fitness function ( ) for all individuals: iFF

 

ii PFPFPFFF −+= worstbest . (1) 
 

Step 8: Sorting the whole population  according to the value of fitness function 
( ) of each individual where the largest value of  is the best. 

pN

iFF iFF
Step 9: Killing the individuals (Nw) having low fitness according to the week 
percentage Wp of the population ( ) where pN

 

Nw = Wp × . pN (2) 
 

Step 10: In the surviving part , finding of the new value of the largest penalised 
objective function new  which is the worst values of the surviving part. 

surN

worstPF
Step 11: Defining a new fitness function  for only the surviving part  of the 
population. The fitness function new  is 

new
iFF surN

iFF
 

ii PFPFPFFF −+= new
worstbest

new
. 

(3) 
 

Step 12: Calculation of the probability of selection  of all the surviving individuals 
using 

 

sel
iP
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Step 13: Filling in the new population. Here, the new population consists of:   
(1) part 1 contains the elite individuals. The number of these individuals  eN

 

pre NEN = . (5) 
 

and it is filled by copying the best individuals out of the current population, 
(2) part 2 contains the number of individuals ( ) after crossover, where cN

 

pcc NPN = . (6) 
 

and it is filled by selecting its individuals according to the probability of selection 
discussed in step 12 and crossover the parents. 
(3) part 3, the rest of population,  whose number of individuals ( ) is computed from rN

 

⎩
⎨
⎧

=+
<++−

=
1 if0
1 if)(

rc

rccep
r EP

EPNNN
N . 

(7) 

 

and it is filled by randomly selecting its individuals from surviving  part.  surN
Step 14: Check of the termination condition. In the present study, three termination 
conditions are used and if any of them is satisfied, then the process will terminate. 
These conditions are: 
If the fittest design has not changed for 30 successive generations, or if the 
difference between the fittest  of the current generation and that of 30 
generations before is very small value  This could be expressed in the form: 

cuF
.cuC

 

cu
cu

30cucu

C
F

FF
≤

− −

. 
(8) 

 
As proceeding with more generation, the population gets filled by more fit individuals, 
with perhaps a very small deviation from the fitness of the best individuals. 
Consequently, the average fitness comes very close to the fitness of the best design. 
This could result in another convergence criterion such that the percentage 
difference between the average fitness  of the current population and the current 
fitness of the best design  reaches a very small value . This can be expressed 
by: 

avF
cuF avC

 

av
cu

avcu

C
F

FF
≤

− . 
(9) 

 

When a total allocated number of generations ( ) are reached. 300max =gen
 If the conversion is satisfactory, then stop the program otherwise continue. 
Step 15: Performing the mutation. The number of binary digits  that are changed 
can be computed from  

dNU
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T

vmpd nPNNU l= . (1
0) 

 

where  is the number of chromosomes (string length) of one individual, and  is 
the probability of mutation. 

T
vnl

mP

Step 16: The process is repeated from Steps 3–14 until a converged solution is 
obtained, or a prescribed maximum number of iterations have been performed. 

 
DESCRIPTION OF THE PROFILE AND MESH GENERATION  
 
Among the various types of curves used for representing a shape, cubic splines are 
the most popular. The cubic spline meets the needs of most problems arising in 
practical applications. The profile of a typical prismatic shell is formed by an 
assembly of segments (Figure 1). Each segment is formed by an assembly of sub-
segments passing through certain key points all of which lie on the mid-surface of the 
shell. Each sub-segment is a cubic spline curve and spans between two adjacent key 
points within a segment. Some key points are common to different segments at their 
points of intersection. It is to be noted that the coordinates and thickness values of 
the key points are taken as design variables. The use of the coordinates and 
thicknesses at key points as design variables leads to fewer design variables and 
more freedom for controlling the shape of the shell. 

 
Once the shape of the structure is defined in the transverse direction, the shape in 
the longitudinal directions can be defined by a range of mathematical functions to suit 
the geometric needs of the structure. For example, engineering structures such as 
plates, shells, tunnels and box girder bridges may have constant geometrical 
properties in the longitudinal or curvilinear direction.   
 
Initially a mesh in the transverse direction forms the shell profile. This is usually 
carried out using an unstructured meshing procedure. This is sufficient to define the 
model (with a few additional single parameters such as length). Next, it is necessary 
to define the mesh in the longitudinal or spanning direction. In order to control the 
mesh density or spatial distribution of element sizes throughout the region of interest, 
the mesh density is specified at a sequence of key points in the shell structure. At the 
beginning of analysis, the mesh density values are given at the two end points of 
each segment. Based on the prescribed mesh density, the profile of the shell is 
discretized into a series of straight linear, quadratic or cubic elements. This mesh can 
be directly used for analysis. The transverse co-ordinates remain the same for FE 
analysis. The spanning co-ordinate of the nodes corresponds to the location of the 
section along the length of the prismatic shell. Further, for branched shells such as 
folded plates, no extra effort is required. The input data to the mesh generator is 
minimal and generates meshes of different sizes and types as specified. Figure 2 
shows some examples of mesh generation on transverse profile and along the 
spanning direction for prismatic shells.  

 
 

SHAPE OPTIMIZATION OF CYLINDRICAL SHELL ROOF STRUCTURE 
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In this section, the shape optimisation of classic cylindrical shell roof structure (see, 
Scordelis and Lo [14]) is investigated. The geometry of the structure is given in 
Figure 4 where L=50.0 ft., t= 0.25 ft., R=25.0 ft. The objective of optimisation is to 
minimize the strain energy (SE) of the structure with a constraint that the volume of 
the structure remains constant. The structure is modelled using 4 key points and one 
segment. Shape design variables at these key points are considered. The following 
material properties of the structure are assumed: The modulus of elasticity equals 
4.32 × 10 8 lbs/ft2 and Poisson's ratio ν= 0.0. The cylindrical shell roof is subjected to 
a self weight loading of 80 lbs/ft2. The upper and lower limit of the design variables 
are given in Table 1. Using a population size of 60, single point crossover and 
probability of mutation equals 0.005, the optimisation process is carried out. The 
termination conditions of the optimisation process are illustrated by Mahfouz [15]. 
The best solution is obtained after 147 iterations. Table 1 gives the values of the 
design variables at the optimum solution and Table 2 gives the values of strain 
energy (SE) and maximum displacement. It is observed that there is a reduction of 
nearly 54%  in the SE and  85%  in the  maximum displacement values in the 
optimum structure compared to the initial structure. The initial and optimum shapes 
are also shown in Figure 3.   

 
SHAPE OPTIMIZATION OF FOLDED PLATE ROOF STRUCTURE 
 
The folded plate structure (Fries-Skene and Scordelis, [16]) shown in Figure 4 is 
studied.  The initial thickness is considered to be same for all the plates. The 
geometric dimensions are chosen such that the length of the structure in the 
transverse direction is 70.0 ft, t = 0.25 ft, a = 8.67 ft, b = 9.83 ft, d = 5.0 ft, e = 1.75 
ft and the initial value of S1= 3.0 ft. The modulus of elasticity equals 4.32 × 10 8 
lbs/ft2 and Poisson's ratio ν= 0.0 . The structure is modelled using 4 key points and 3 
segments. Both shape and thickness design variables are considered. The shell is 
subjected to a self weight loading of intensity 90 lbs/ft2. The objective of optimisation 
is to minimize the strain energy (SE) of the structure with a constraint that the volume 
of the structure remains constant. The upper and lower limit of the design variables 
are given in Table 3. Using a population size of 100, single point crossover and 
probability of mutation equals 0.005, the optimization process is carried out. The best 
solution is obtained after 161 iterations.  
The initial and optimum shapes are shown in Figure 4. It is observed that there is a 
reduction of nearly 44% in the SE and 71% in the maximum displacement values in 
the optimum structure compared to the initial structure even for slight changes in the 
plate configurations. Table 3 gives the values of design variables and Table 4 gives 
the values of the SE and maximum displacement. 

 
CONCLUSION 

 
The methodology of shape optimization using genetic algorithm is suggested.  The 
optimization procedure based on genetic algorithm is reliable as considerable 
reduction in strain energy and maximum displacement can be observed.  The tools 
developed can also be used for designing novel structural forms. The present work 
can be easily extended to shells with curved and skew plan-form subjected to multi-
load cases and multi-criteria optimization. 
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Figure 1 Representation of structural cross-sectional geometry  
of smooth and branched  prismatic shells 

 
 
 

 
 
 

Figure 2 Mesh generation on the transverse profile 
and along the spanning direction of  shells 
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Figure 3  Cylindrical shell roof 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Folded plate structure 
 
 

(b)  Initial and best shape
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a) shape design variables 
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Table 1 Cylindrical shell roof structure: values of the design variables. 
 

Design 
variables 

Lower 
limit 

Upper 
limit Obtained values 

1s  17.0 28.0 22.0 
2s  17.0 28.0 24.5 
3s  17.0 28.0 24.6 
4s  17.0 28.0 24.6 

 
 

Table 2 Cylindrical shell roof structure: initial and optimal values of strain energy and 
maximum displacement. 

 
Strain energy Max. displacement  

Method Initial Obtained Initial Obtained 
FE 9076 4148 0.290 0.037 

 
 

Table 3  Folded plate roof structure: values of the design variables. 
 
 

Table 4 
Folded plate roof structure: initial and optimal values of strain 
energy and maximum displacement. 

Design 
variables 

Lower 
limit 

Upper 
limit Obtained values 

1s  3.00 9.75 8.58 
2s  1.00 8.00 3.76 
1t  0.10 0.50 0.20 
2t  0.10 0.50 0.20 
3t  0.10 0.50 0.47 

 
Strain energy Max. displacement  

Method Initial Obtained Initial Obtained 
 FE 11593 6468 0.155 0.045 
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