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ABSTRACT 
Reissner’s, stress-based, shear deformation plate theory is chosen to approximate 
the stress field for balanced symmetric laminates. The longitudinal stresses are 
assumed to vary linearly along the plate thickness. In fact, we may view the purpose 
of this work as an examination of effectiveness of mathematical laminate models in 
which the response is defined in terms of force and moment resultants. Average 
stiffness moduli are considered to characterize the laminate properties. The accuracy 
and the range of application of the present approach are proved for laminated 
plate:1- in cylindrical bending and 2-simplly-supported with different thickness, for 
which elasticity solutions exist. The paper presents the first step of validation of the 
developed theory. The cylindrical bending of symmetric cross-ply laminated plates 
subjected to sinusoidal loading is investigated. Results from the present theory are 
compared with those from exact solutions and other known theories as well.  
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INTRODUCTION 
It is well known that the advanced composite materials play more and more important 
role in aerospace structures. The evaluation of transverse shear and normal stress 
and the related effects have played an important, constant role in thick laminated 
composite structures. Recent interest in such evaluations is due to the use of 
composite materials in primary components, which are considerably thicker. 
Conventionally, the analysis of laminated plates is based on Equivalent Single Layer, 
ESL due to its simplicity and low computational cost. However, the ESL’s with pre-
assumed displacement field have a major deficiency. The continuity of the 
displacement field and its derivatives through the laminate thickness is in 
contradiction with the continuity of transverse stresses. Thus, the transverse stresses 
predicted are doubled value when using constitutive relations. To remove these 
discrepancies in ESL, the Layer Wise Models, LWM were introduced for the analysis 
of thick laminate. However, LWM’s are computationally expensive due to the fact that 
the number of structural variables generally depend on the number of layers. For 
multi-layered laminate (use of 100 layers in aircraft structures is not unusual) the 
computations become tremendous task. Also, the computational costs, especially for 
geometrically nonlinear problems or transient analysis using the finite element 
method, preclude the use of such theories.  
 
Pagano [1] assumed a stress distribution field in each layer in order to capture the 
Interlaminar effects. However, his  theory results in a tedious mathematical model 
consisting of 23N partial differential equations in the laminate's midplane coordinates 
and 7N edge boundary conditions, where N is the number of the layers in the 
laminate.  
 
In the present work, a simplified variational ESL procedure is developed based on 
the same stress field as in [1]. The solution of a boundary value problem is 
considered to assess the validity of the presented approach. A comparison with the 
exact solutions and other models as well obtained for different span-to-thickness 
ratios indicates that the presented approach estimates the central deflection and the 
transverse stresses very well as compared to exact solution specially for the 
relatively thick laminates. 
 

THEORY 
Consider a laminated plate with m-orthotropic layers such that the various axes of 
material symmetry are parallel to the plate axes Xi. If the laminate is subjected to 
lateral load on the upper and lower faces by the two loadsq+ and  respectively as 
indicated in Fig. 1, the total load  and the mean extensional load 

q−

q p  may be written 
as 
 

q q q
p (q q ) / 2

+ −

+ −

= +
= −

     (1) 

Reissner’s, stress-based, shear deformation plate theory is based on a linear 
distribution of the inplane normal and shear stresses through the thickness. The 
assumed in-plane stress field is: 
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1 2 3 1 23

1 12N (x ,x ) x M (x ,x )
h hαβ αβ αβσ = +     (2) 

 
where  and  is the normal and shear stresses. , 1,α β = 2 αβσ Nαβ  and  are the 
membrane and bending moments respectively which are functions of the inplane 
coordinates X1 and X2. X3 is the thickness coordinate and h is the total thickness of 
the plate. This stress field is the simplest assumption consistent with realistic stress 
analysis [1].  

Mαβ

The distribution of the transverse normal and shear stresses is determined from the 
equilibrium equations of the 3-D elasticity theory;  
 

3,3 ,

33,3 3,

0
0

α αβ β

α α

σ + σ =

σ + σ =
       (3) 

 
Equilibrium of plate element is governed by overall equations containing resultant 
axial force, N, shear force, S, and bending moment, M, Fig.1. The equilibrium 
equations are [2]:  

,

,

,

N 0

M S

S q 0

αβ β

αβ β α

α α

0

=

− =

+ =

     (4) 

 
Using these equilibrium equations, and satisfying boundary conditions at  
(top and bottom surfaces); we have 

3X h /= ± 2

3
3 3

3

2
3

3 1 2

3 1 2 13

2

x x1p(x ,x ) (

x3 (1

3 4 ) q(x ,x
2 h

4 )S (x ,x )
2h h

h

α α

σ = + −

σ = −

2 )
   (5) 

 

It should be noticed that the transverse shear stresses, obtained from the equilibrium 
equations, are parabolicly distributed through the thickness. Also, when we have 
surface traction free,  vanishes. 33σ
 
Variational Principle for Laminates 
We apply variational analysis, based on Reissner’s theory, on the assumed stress 
field (2) and (5). This leads to the following constitutive relations [3], which are 
organized to suit the orthotropic laminate: 

o
,

3
,

,

N h (Q u B p)

h 6M (Q B
12 5h

S hd ( w )

αβ αβγδ γ δ αβ

γ δ
αβ αβγδ αβ

αβα β β

= +

= ψ +

= ψ +

q)     (6) 
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where, 3 3d 5C / 6αβ α β= , 33 3333/ Cαβ αβ=B C . 
 
For orthotropic laminate, the laminate stiffness may be considered as the linear 
average of the ply stiffness as follow 

m
n

n
n 1

1Q Q
hαβγδ αβγδ

=

= ∑ h ; where are the laminate reduced stiffness coefficients [4] 

and is the thickness of the n-th layer or ply group. 

nQαβγδ

nh

Similarly 
m

n
ijkl ijkl n

n 1

1C C
h =

= ∑ h

2

a
)

. Where are the transformed elastic coefficients [4]. n
ijklC

 
EXAMPLE BOUNDARY VALUE PROBLEM 
Consider a laminated plate composed of an arbitrary number of orthotropic layers 
such that the various axes of material symmetry are parallel to the  axes of 
the plate (cross-ply laminates). In addition, let us assume a state of plane strain in 
which the plate is of infinite length in the -direction, and simply supported along the 
edges ( ), with the upper surface subjected to a normal traction: 

. Thus; 

1X X−

2X
1X 0,=

o 1q q sin(m x / a= − π

1
o

1
o

xq q sin
a

x1p q sin
2 a

π
= −

π
= −

 for m = 1    (7) 

 
This is a classical problem often used by researchers as a bench mark. This problem 
has been solved (exactly) by Pagano [5] using a three-dimensional elasticity theory. 
 

Using above conditions, the deflected surface is cylindrical, i.e., 

2 2u 0= ψ =o , ,1 1 1u u (x )=o o

1 1 1(x )= ψ and 1w w(x )=    (8) ψ
Starting with: 0N , =βαβ ; due to the simple support BC [6] thus: . 12 11N N= = 0
Substitute in the expression (6); we have 

 
a
xcosaq

Q
B

2
1u 1

o
1111

11o
1

π
π

−=      (9) 

 

Using the equilibrium equations (4); and since we have orthotropic (symmetric) 
laminate; thus: 12M 0= [6]. Also, Since our problem is cylindrical bending; 

(however ); thus; 22,2M = 0 022M ≠ 0S2 = . Hence, substitute in equilibrium equations 
(4); we get 
 

1
1 o

a xS q cos
a
π

= −
π

     (10) 

For simple support; , thus 
111@ x 0,aM 0= =
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2
1

11 o 2

aM q sin
a
xπ

= −
π

     (11) 

 

Since the present problem is cylindrical bending; thus: 2 0ψ =  and also, for 

bidirectional (cross-ply) laminate; 1112 1121Q Q 0= = . Thus, substitute for  in  (6), 

where at ; we get 
11M

1 1x a / 2;= ψ = 0
2 2

1
o 111 3 2

1111

a 12a 6hq ( B )cos
h Q 5 a

xπ
−ψ =

π π
   (12) 

 
Deflection In The Thickness Direction 
 
Substituting for S  in expression (6), the out-of-plane deflection;  is obtained as α w
 

   (13) 
2 2 2

1
11 o3 2 2

11 1111

1 1 12a 6h aw [ ( B )]q sin
h Q 5 ah d

π
= − + −

π π
x

 
 

The Longitudinal Displacement Through The Thickness Of The Laminate 

 

It is assumed to vary linearly through the thickness, 
2

1
1 1 3 3 o 112

1111

r 12r 6u * x x q ( B )cos
Q 5

x
a
π

= ψ = −
π π

   (14) 

 
The Longitudinal Stress 
 
It is obtained by substituting (11) into (2); thus we have 
 

2
1

o1 3 21 3
a1 xq sin2 x

h a
=

π
π

σ −     (15) 

 
The Transverse Shear and Normal Stress 

Substituting for S  and (7) in expression (5), we get α

1
o

1

2
3

13 2

3
3 1

o o
3

33 3

xaq cos
a

x x1 q sin q sin
2

x3 (1 4 )
2h h

x x1 (3 4 )
2 h ha a

σ = − −

σ = − −

π
π

π π
−

   (16) 

Note that 
o

1
3

3

x hsq , @

3

in x 2a
h

2
3 x0, @

π

−

− =

=
σ = 〈    which satisfy the BC.  
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NUMERICAL RESULTS AND DISCUSSION 
 
In order to verify the accuracy of the presented approach, 3-, 5- and 9-ply orthotropic 
laminates with layers of equal thickness are examined. The coordinate system of the 
laminate can be found in Fig. 2. All the laminates considered are symmetric with 
respect the central plane, with fiber orientations alternating between  and  with 
respect to the -axis, and the  layers are the outer surfaces of the laminate. 

o0 o90
1X o0

 
Each layer is a unidireticonal fiber reinforced material with the following properties 
[5], which simulate a high modulus Graphite/Epoxy laminate  

LE 172 GPa= , ,G 3TE 6.9GPa= LT .5GPa= ,G 1TT .4GPa LT TT 0.25ν = ν =  = ,
Where L signifies the direction parallel to the fibers, T is the transverse direction and 

 is the Poisson’s ratio measuring strain in the transverse direction under uniaxial 
normal stress in the L-direction.  

LTν

 
The deflection and the normal stress in the middle of the span and the shear stress 
at the free edge of the laminate are of interest. The numerical results are 
summarized in the following sections with the normalized terms used by Pagano [5], 

i.e., 3 4
22 o

aw 100E h w( , 0) / q a
2

= , 22 1 3
1

o

E u (a,x )u 10
q h

= , 
1

11

3

o

1
a x

q

( , )
2

σ
σ = , 

3

33

3

o

3
a x

q

( , )
2

σ
σ = , 

3
13

3

o

1 (
q
a,x )σ

σ =  ,  3
3

x aX , S
h h

= = . 

 
Also shown, for comparison purposes, are the results given by: 

1. Higher order theory, HSDT, [7], [8], [9], [10], [13], [14] 
2. First order shear deformation theory, FSDT [8], 
3. First order zig-zag model [11], 
4. Layerwise theory, LWM, [12] which is based on: Linear Displacement 

formulation; D-l and Linear Mixed formulation; M-l, 
which almost represent all the models used for the analysis of laminated plates.  
 
For all the referred references, results are due to finite element analysis and Ref[7] 
has closed form solution as well. Also, all these models are based on pre-assumed 
displacement field except [12] and [14]. Carrera [12] adopted mixed formulation in 
addition to a displacement field as well, while Spilker [14] used hybrid stress field. 
 
Displacement In The Thickness Direction, w   
 
The results of the displacement in the thickness direction in the middle of the 
laminate, at (a/2, 0), are listed in Table 1-3. 
 
For a symmetric 3-ply laminate, with stacking sequence(0/90/0) is examined. Table 1. 
shows the values of the central deflection w obtained from the different theories for a 
span-to-thickness ratio  of 4 and 6(thick), 20(intermediate) and 40(thin).  S
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The present approach is next tested for a symmetric 5-ply laminate. The central 
deflection w  for a span-to-thickness ratio S  of 4 and 6 is shown in Table 2. It is seen 
that the present approach has improved upon Lo, Christensen and Wu’s model [13]. 
 
To further assess the accuracy of the present approach the more difficult case of a 
symmetric 9-ply laminate is considered. The results for the central deflection w  are 
given in Table 3. for S and 6 where the stability and consistency of the presented 
approach are observed.  

4=

 
 
The Transverse Shear Stress 
 
Table 4. shows the values of the transverse shear stress obtained from the present 
approach with the elasticity ,ES, and other solutions for a span-to-thickness ratio  of 
4 and 10(thick), 20(intermediate) and 40(thin). The results are in a good agreement 
with elasticity solution and in particular for the intermediate ratio 10, 20 compared to 
the finite element solution [9]. 

S

 
 
The Transverse Normal Stress 
 
Table 5. shows the values of the transverse shear stress obtained from the present 
approach with the elasticity, HSDT and CPT solutions for a span-to-thickness ratio 

.   S 4=
 

Table 6. shows the values of the transverse shear stress obtained from the present 
approach at the middle surface of the laminate for a span-to-thickness ratio  of 
4(thick), 20(intermediate) and 40(thin). The results are in a good agreement with 
elasticity and other solutions (FEM and closed form). 

S

 
 
The Longitudinal Stress 
 
Table 7. shows the values of the longitudinal stress obtained from the present 
approach at the surface of the laminate for a span-to-thickness ratioSof 4 and 
10(thick). The results are slightly better than CPT solutions, in a good agreement with 
the FSDT [8] for aspect ratio of  4 and comparable to the FE based on HSDT [7]. 

 
 
CONCLUSION 
 
We have presented an approximate analysis, based on Reissner’s stress field, for 
symmetric laminate consisting of orthotropic layers. Average stiffness moduli are 
considered to characterize the laminate properties, ESL. The accuracy of the 
presented approach was examined for the case of cylindrical bending of an infinitely 
long strip under sinusoidal loading, as numerical example, which had an elasticity 
solution obtained by Pagano [5]. A comparison with the exact solutions and other 
models as well obtained for different aspect ratios indicates that the presented 
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approach estimates the central deflection and the transverse stresses very well 
compared to ES. While for estimating the in-plane stress, it is better than CPT and in 
a good agreement with FSDT proposed by Maiti and Sinha [8]. However for the 
longitudinal stresses, it has significant differences with the ES. This is due the 
assumption of continuity of the longitudinal stresses at the laminate interfaces which 
violates the continuity of the displacements. Therefore, the presented simplified 
approach yield good results for out-of-plane displacement and the transverse 
stresses which are responsible for the delamination failures.  
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Table 1. Central deflection w(a / 2,0) for 3-layer laminate  
 

S ES1 Present [10] [11] [13]  [7] [8] [8] [9] [12]2 [12]3 
4 2.5345 2.617 2.881 2.907 2.687 1.9706 2.7372 2.4146 2.9025 2.791 2.783
6 1.635 1.565 1.634 1.636 1.514 ----- ------ ------- ------ ----- -----

10 0.9569 1.026 ----- ----- ----- 0.7492 ----- ----- ----- ----- -----
20 0.6172 0.799 ----- ----- ----- ----- ----- ----- 0.6194 ----- -----
40 0.5367 0.742 ----- ----- ----- ----- ----- ----- 0.538 ----- -----

 

 
 
 
 

Table 2. Central deflection w(a / 2,0) for 5-layer laminate  
 

S ES Present [10] [11]1 [13]1 [12] [12] 
4 3.044 2.797 3.032 3.018 2.597 2.984 3.005 
6 1.721 1.687 1.716 1.702 1.507 ----- ------ 

 
 

 
 
 

ES, Elasticity (Exact) 1results quoted by  [7], [8]&[9] 2LWM (D-l) 3LWM (M-l) 

1results quoted by [10]

 S 

X3, w 

X1 u, N 

S 

M 
M 

N 

q- 

  q+ 

Fig.1. Thick plate loading and sign

X1 

X3 
0

xq q sin
a+

π
= −

Fig. 2 Cylindrical bending of orthotropic 
laminated plate 

 



 
 

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 STR-10 10 
 

Table 3. Central deflection w(a / 2,0) for 9-layer laminate  
 

S ES Present [10] [11]1 [13]1 

4 3.324 2.929 3.313 3.231 2.835
6 1.929 1.778 1.921 1.875 1.708

 1results quoted by [10] 
 

Table 4. 3-ply Laminate; 13 (0,0)σ  
 

S  ES Present  [7] [8]1 [8]2  [9]3  [9]4 
4 1.5974 1.91 1.782 1.5707 1.6063 1.4548 1.4244 

10 4.2347 4.7746 4.648 ----- ------ ----- ----- 
20 8.749 9.5492 ----- ----- ----- 9.7509 8.7462 
40 17.634 19.0986 ----- ----- ----- 23.485 17.634 

    
 

1HSDT 2FSDT 3FEM 4Closed form
 

 
Table 5. 333(a / 2,X )σ  for 3-ply Laminate; (S 4= ) 

 
3X  -.5 -.4 -.3 -.2 -.1 1 2 3 4 5 

ES 0 0.042 0.145 0.268 0.395 0.626 0.737 0.863 0.953 1.00
Present 0 0.028 0.104 0.216 0.352 0.648 0.784 0.896 0.972 1.00

[7] 0 0.038 0.138 0.271 0.414 0.558 0.701 0.837 0.946 1.00
CPT1 0 0.263 0.105 0.216 0.368 0.658 0.789 0.9 0.987 1.00

1results quoted by [7] 
 

Table 6. 3-ply Laminate; 33(a / 2,0)σ   
 

S ES Present  [9]2  [9]3 
4 0.4988 0.5 0.5 0.4988

20 0.5001 0.5 0.5018 0.5001
40 0.5 0.5 0.5018 0.5

2FEM 3Closed form 
 

 

Table 7. 3-ply Laminate; 11(a / 2, h / 2)σ  
 

S ES Present [7]1 CPT2 [8]1 [8]3 
4 18.41 9.727 13.89 9.641 18.43 10.516 

10 70.2564 60.7927 67.4 59.692 ------ ------ 
1HSDT       2results quoted by [7]      3FSDT 

 


