Military Technical College
Kobry El-Kobba
Cairo, Egypt

12-th International Conference on
Aerospace Sciences \& Aviation Technology

SIMPLIFIED VARIATIONAL APPROACH FOR ANALYSIS OF THICK ORTHOTROPIC LAMINATED

PLATES: 2- SIMPLE SUPPORT

Tmerek * M.Taha, El-Soaaly ${ }^{* *}$ E. E., El-Nomrossy ${ }^{*}$ M. M., and Istafanous ${ }^{*}$ A. A.

Abstract

A simplified variational approach, stress-based, for the analysis of symmetric crossply laminate was developed in Part 1 of this work. It was also tested for the 1-D problem, orthotropic plate in a cylindrical bending, solved exactly by Pagano. This simplified approach is extended here to a two-dimensional structure. The accuracy of the present approach is examined by applying it to the case of rectangular laminated plate with simple support for which the elasticity solution was obtained [1,2]. The present approach gives results for multi-layered laminate with small span-tothickness ratios that compare well with those from elasticity solutions and other known theories as well.

KEY WORDS

Laminate, Orthotropic, Plate, Simple Support, ESL, Variational, and Stress-based

[^0]
INTRODUCTION

As the technology of composites advances, laminated composites are used for thick and moderately thick structures. Also, laminated plates made of advanced composite materials, whose elastic to shear modulus ratios are very large, are susceptible to thickness effects because their effective transverse shear moduli are significantly smaller than the effective elastic moduli.

The classical laminated plate theory, CPT, is inadequate for these types of laminates since it ignores the transverse shear effects. Thus, the shear deformation theories were emerged. Shear deformation theories, FSDT with pre-assumed continuous displacement field across the thickness require a shear correction factor and suffer from locking problem. Thus the higher order, HSDT were developed.

The continuity of the displacement field and its derivatives through the laminate thickness is in contradiction with the continuity of transverse stresses. Thus, the transverse stresses predicted are doubled value when using constitutive relations. To remove these discrepancies in ESL, the Layer Wise models, LWM were introduced which give excellent results for both global and local distributions of displacements and stress. However, LWM's suffers from a numerical crisis if the layer number becomes large.

A stress-based approach developed by the authors in a previous work [3] was tested by the bench-mark problem for the plate in a cylindrical bending solved exactly by Pagano. The presented simplified approach gave good results for out-of-plane displacement and the transverse stresses. This approach is now to be applied for the 2-D problem. Specifically, the problem of a symmetrically bidirectional laminate with pinned edges under static bending forces is considered. For the sake of brevity, the details of the derivation of equilibrium equations, variational analysis and continuity conditions are omitted, see [3]. For the sake of continuity, only relevant equations are provided.
To assess the proposed approach, the problem of bending of a 3,5,7 and 9-layered, symmetrically laminated rectangular and square plates simply-supported on all edges are investigated. Numerical results are given and compared with those resulting from the elasticity solution, ES, classical lamination theory, CPT, shear deformation theory (first order, FSDT and higher order, HODT) and layer wise, LWM, as well.

GOVERNING EQUATIONS

Consider a laminated plate composed of an arbitrary number of orthotropic layers such that the various axes of elastic symmetry are parallel to the plate axes. The simple support boundary conditions are expressed as

$$
\begin{array}{ll}
@ \mathrm{x}_{1}=0, \mathrm{a} ; & \sigma_{11}=\mathrm{u}_{2}=\mathrm{u}_{3}=0, \tag{1}\\
@ \mathrm{x}_{2}=0, \mathrm{~b} ; & \sigma_{22}=\mathrm{u}_{1}=\mathrm{u}_{3}=0
\end{array}
$$

Where a and b denote the length and the width of the plate, respectively. A transverse normal loading, $-q_{0} \sin \frac{\pi x_{1}}{a} \sin \frac{\pi x_{2}}{b}$, is applied to the top surface, while the lower surface is traction-free.

Since the stress resultants must satisfy the following equilibrium equation[3];

$$
\begin{align*}
& \mathrm{N}_{\alpha \beta, \beta}=0 \\
& \mathrm{M}_{\alpha \beta, \beta}-\mathrm{S}_{\alpha}=0 \tag{2}\\
& \mathrm{~S}_{\alpha, \alpha}+\mathrm{q}=0
\end{align*}
$$

And using the following constitutive relations for orthotropic laminate[3]

$$
\begin{align*}
& \mathrm{N}_{\alpha \beta}=\mathrm{h}\left(\overline{\mathrm{Q}}_{\alpha \beta \gamma \gamma} \mathrm{u}_{\gamma, \delta}^{0}+\overline{\mathrm{B}}_{\alpha \beta} \mathrm{P}\right) \\
& \mathrm{M}_{\alpha \beta}=\frac{\mathrm{h}^{3}}{12}\left(\overline{\mathrm{Q}}_{\alpha \beta \gamma \gamma} \psi^{\gamma, \delta}+\frac{6}{5 \mathrm{~h}} \overline{\mathrm{~B}}_{\alpha \beta} q\right) \tag{3}\\
& \mathrm{S}_{\alpha}=\mathrm{h} \overline{\mathrm{~d}}_{\alpha \beta}\left(\psi_{\beta}+\mathrm{w}_{, \beta}\right)
\end{align*}
$$

where, $\alpha, \beta=1,2, \overline{\mathrm{~d}}_{\alpha \beta}=5 \overline{\mathrm{C}}_{\alpha 3 \beta 3} / 6$, and $\overline{\mathrm{B}}_{\alpha \beta}=\overline{\mathrm{C}}_{\alpha \beta 33} / \overline{\mathrm{C}}_{3333}$.
The total load q and the mean extensional load p may be written as

$$
\begin{align*}
& \mathrm{q}=-\mathrm{q}_{0} \sin \frac{\pi \mathrm{x}_{1}}{\mathrm{a}} \sin \frac{\pi \mathrm{x}_{2}}{\mathrm{~b}} \tag{4}\\
& \mathrm{p}=-\frac{1}{2} \mathrm{q}_{0} \sin \frac{\pi \mathrm{x}_{1}}{\mathrm{a}} \sin \frac{\pi \mathrm{x}_{2}}{\mathrm{~b}}
\end{align*}
$$

The stress resultants are chosen to be in the following form

$$
\begin{align*}
& \mathrm{S}_{1}=\mathrm{S}_{1}^{\cdot} \cos \frac{\pi \mathrm{x}_{1}}{\mathrm{a}} \sin \frac{\pi \mathrm{x}_{2}}{\mathrm{~b}}, \mathrm{~S}_{2}=\mathrm{S}_{2}^{\cdot} \sin \frac{\pi \mathrm{x}_{1}}{\mathrm{a}} \cos \frac{\pi \mathrm{x}_{2}}{\mathrm{~b}}, \tag{5}\\
& \mathrm{M}_{11}=\mathrm{M}_{11}^{\cdot} \sin \frac{\pi \mathrm{x}_{1}}{\mathrm{a}} \sin \frac{\pi \mathrm{x}_{2}}{\mathrm{~b}}, \mathrm{M}_{22}=\mathrm{M}_{22}^{\cdot} \sin \frac{\pi \mathrm{x}_{1}}{\mathrm{a}} \sin \frac{\pi \mathrm{x}_{2}}{\mathrm{~b}}, \mathrm{M}_{12}=\mathrm{M}_{12}^{\cdot} \cos \frac{\pi \mathrm{x}_{1}}{\mathrm{a}} \cos \frac{\pi \mathrm{x}_{2}}{\mathrm{~b}}=\mathrm{M}_{21}
\end{align*}
$$

And the generalized displacements are also chosen as

$$
\begin{equation*}
\mathrm{w}=\mathrm{w}^{\cdot} \sin \frac{\pi \mathrm{x}_{1}}{\mathrm{a}} \sin \frac{\pi \mathrm{x}_{2}}{\mathrm{~b}}, \psi_{1}=\psi_{1}^{\cdot} \cos \frac{\pi \mathrm{x}_{1}}{\mathrm{a}} \sin \frac{\pi \mathrm{x}_{2}}{\mathrm{~b}}, \psi_{2}=\psi_{2}^{\cdot} \sin \frac{\pi \mathrm{x}_{1}}{\mathrm{a}} \cos \frac{\pi \mathrm{x}_{2}}{\mathrm{~b}} \tag{6}
\end{equation*}
$$

Where; $\left(\mathrm{S}_{1}^{*}, \mathrm{~S}_{2}^{*}, \mathrm{M}_{11}^{\cdot}, \mathrm{M}_{22}^{\cdot}, \mathrm{M}_{12}^{\cdot}, \psi_{1}^{*}, \psi_{2}^{\cdot}\right.$ and $\left.\mathrm{w}^{\bullet}\right)$ are constants to be determined using the equilibrium equations (2), the constitutive equations (3), and satisfying boundary conditions at $\mathrm{x}_{1}=0$, a and $\mathrm{x}_{2}=0$, b (simple support). Since a bidirectional orthotropic laminate is assumed, we get the following 8 equations

$$
\begin{align*}
& \mathrm{S}_{1,1}+\mathrm{S}_{2,2}=-\mathrm{q} \tag{7}\\
& \mathrm{M}_{11,1}+\mathrm{M}_{12,2}-\mathrm{S}_{1}=0 \tag{8}\\
& \mathrm{M}_{21,1}+\mathrm{M}_{22,2}-\mathrm{S}_{2}=0 \tag{9}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{M}_{11}=\frac{\mathrm{h}^{3}}{12}\left(\overline{\mathrm{Q}}_{1111} \psi_{1,1}+\overline{\mathrm{Q}}_{1122} \Psi_{2,2}\right)+\frac{\mathrm{h}^{2}}{10} \overline{\mathrm{~B}}_{11} \mathrm{q} \tag{10}\\
& \mathrm{M}_{22}=\frac{\mathrm{h}^{3}}{12}\left(\overline{\mathrm{Q}}_{2222} \psi_{2,2}+\overline{\mathrm{Q}}_{2211} \psi_{1,1}\right)+\frac{\mathrm{h}^{2}}{10} \overline{\mathrm{~B}}_{22} \mathrm{q} \tag{11}\\
& \mathrm{M}_{12}=\frac{\mathrm{h}^{3}}{12} \overline{\mathrm{Q}}_{1212}\left(\psi_{1,2}+\psi_{2,1}\right)+\frac{\mathrm{h}^{2}}{10} \overline{\mathrm{~B}}_{12} \mathrm{q} \tag{12}\\
& \mathrm{~S}_{1}=\mathrm{h} \overline{\mathrm{~d}}_{11}\left(\psi_{1}+\mathrm{w}_{, 1}\right) \tag{13}\\
& \mathrm{S}_{2}=\mathrm{h} \overline{\mathrm{~d}}_{22}\left(\psi_{2}+\mathrm{w}_{, 2}\right) \tag{14}
\end{align*}
$$

Solving these 8 equations leads to the determination of the both stress resultants $\left(\mathrm{S}_{1}^{\cdot}, \mathrm{S}_{2}^{\cdot}, \mathrm{M}_{11}^{\cdot}, \mathrm{M}_{22}^{\cdot}, \mathrm{M}_{12}^{\cdot}\right)$ and the generalized displacements $\left(\psi_{1}^{\cdot}, \psi_{2}^{\cdot}, \mathrm{w}^{\bullet}\right)$

NUMERICAL EXAMPLE

Here we present numerical results. The three-dimensional elasticity solutions of Pagano [1] and Pagano and Hatfield [2] for simply supported rectangular plates under sinusoidal loading are used to assess the present approach.
The following laminated plate problems are considered:

1. Square laminates consisting of 3-, 4-, 5-, 7-, and 9-layers.
2. A 3-ply laminate of rectangular geometry ($\mathrm{b} / \mathrm{a}=3$).

All the laminates are with layers of equal thickness and subjected to sinusoidally distributed transverse loading $\mathrm{q}_{0} \sin \frac{\pi \mathrm{x}_{1}}{\mathrm{a}} \sin \frac{\pi \mathrm{x}_{2}}{\mathrm{~b}}$.

Each layer is a unidireticonal fiber reinforced material with the following properties, which simulate a high modulus Graphite/Epoxy laminate

$$
\mathrm{E}_{\mathrm{L}}=172 \mathrm{GPa}, \mathrm{E}_{\mathrm{T}}=6.9 \mathrm{GPa}, \mathrm{G}_{\mathrm{LT}}=3.5 \mathrm{GPa}, \mathrm{G}_{\mathrm{TT}}=1.4 \mathrm{GPa}, \mathrm{v}_{\mathrm{LT}}=\mathrm{v}_{\mathrm{TT}}=0.25
$$

Where L signifies the direction parallel to the fibers, T is the transverse direction and v_{LT} is the major Poisson's ratio.

All the laminates considered are symmetric with respect the central plane, with fiber orientations alternating between 0° and 90° with respect to the X_{1}-axis, and the 0° layers are the outer surfaces of the laminate.

The numerical results are summarized in the following sections. Also shown, for comparison purposes, are the results given by:

1. 3-D Elasticity (exact) [4],
2. Higher order theory, HSDT, [5], [8],
3. Finite element based on Layerwise theory, LWM, [6],
4. Three-dimensional finite element [7],
5. First order shear deformation theory, FSDT, [8].
which almost represent all the models used for the analysis of laminated plates. The analogous CPT results, quoted by [1] and [2], are given as well. Although equivalent
single layer approach is adopted, a computer program, MathCad, was necessary to find the expressions of the eight unknowns, see Appendix.

Max Central Plane Deflection " $\overline{\mathrm{w}}$ " at ($\mathrm{a} / 2, \mathrm{~b} / 2$)

Table 1. contains the nondimenionalized deflections for 3-(square), 5-, 7-, and 9layers laminate. The results were normalized using the following terms [2],

$$
\overline{\mathrm{w}}=\pi^{4} \mathrm{Qw} / 12 \mathrm{q}_{0} \mathrm{hS}^{4} \text { where } \mathrm{Q}=4 \mathrm{G}_{\mathrm{LT}}+\left[\mathrm{E}_{\mathrm{L}}+\mathrm{E}_{\mathrm{T}}\left(1+2 \mathrm{v}_{\mathrm{TT}}\right)\right] /\left(1-\mathrm{v}_{\mathrm{LT}} \mathrm{v}_{\mathrm{TL}}\right) \text { and } \mathrm{S}=\mathrm{a} / \mathrm{h}
$$

While Table 2. contains results for 3-(rectangular), and 4-layers laminate. The results are normalized using the following formula [1]

$$
\overline{\mathrm{w}}=100 \mathrm{E}_{22} \frac{\mathrm{w}}{\sigma \mathrm{hS}^{4}} ; \sigma=\mathrm{q}_{\mathrm{o}}
$$

The In-Plane Stress
The results of longitudinal stresses ($\bar{\sigma}_{11}, \bar{\sigma}_{22}$ and $\bar{\sigma}_{12}$) is shown in Tables 3., 4., and 5. respectively. For the sake of brevity, results of $\bar{\sigma}_{22}$ is shown only for 3-ply rectangular Laminate. All the results are normalized as follow; [1-2]

$$
\bar{\sigma}_{\alpha \beta}=\sigma_{\alpha \beta} / \mathrm{q}_{o} \mathrm{~S}^{2}
$$

The Transverse Normal Stress

In Table 6., the present results of $\bar{\sigma}_{33}\left(\mathrm{a} / 2, \mathrm{~b} / 2, \overline{\mathrm{X}}_{3}\right)$ for 3-ply square Laminate are compared with the elasticity (exact) results obtained by Senthil and Batra [4]. The results are normalized as follow[4]

$$
\bar{\sigma}_{33}=\sigma_{33} / q_{o}
$$

The Transverse Shear Stress

Tables7. and 8. give the nondimenionalized results of $\bar{\sigma}_{13}(0, b / 2,0)$ and $\bar{\sigma}_{23}(a / 2,0,0)$ respectively. The following quantity is used for normalization; [1-2]

$$
\bar{\sigma}_{\alpha 3}=\sigma_{\alpha 3} / \sigma S ; \sigma=q_{o}
$$

The Longitudinal Displacement
The results for the in-plane displacement are obtained using [3]

$$
\mathrm{u}_{1}=\psi_{1} * \mathrm{X}_{3}
$$

Table 9. lists the elasticity results of $\overline{\mathrm{u}}_{1}(\mathrm{a} / 4, \mathrm{~b} / 2, \pm \mathrm{h} / 2)$ obtained by Senthil and Batra [4] as a comparison with the present results. The results are normalized by [4];

$$
\overline{\mathrm{u}}_{1}=\frac{100 \mathrm{E}_{\mathrm{T}}}{\mathrm{q}_{0} \mathrm{~S}^{3}} \bar{X}_{3} \psi_{1}
$$

CONCLUSION

A simplified approach, stress-based, was examined by the authors for laminated plate in cylindrical bending[3] has been extended for simply supported cross-ply symmetric laminates. Average stiffness moduli are considered to characterize the laminate properties, ESL. In order to verify the accuracy of the presented approach, a square plate with $3-7$-, 5 - and 9 -layers and a rectangular plate with 3-layers orthotropic laminates of equal thickness has been examined. Aspect ratios (span-tothickness) of 2, 4(thick), 10, 20(intermediate) and 50, 100(thin) have been considered. Numerical results have been compared with the elasticity (exact) solutions and other models (CPT, FSDT, HSDT, LWM, 3-D FE) as well and the following observations are made for

1. The present approach estimates the central deflection very well compared to the elasticity solutions, ES, almost for all the considered aspect ratios,
2. For the transverse shear stress, the present approach is in a good agreement with the elasticity solutions especially for intermediate aspect ratios and yields better results than both the FSDT and HSDT of Reddy [8],
3. The present approach estimates both the transverse normal stresses and the inplane displacement, at the surface, very good as compared to the 3-D elasticity (exact) solutions by Senthil and Batra [4],
4. The present approach is consistency in the sense that it yields results with the same level of accuracy for all the multi-layered laminate considered,
5. The assumption of continuity of the longitudinal stress at the laminate interfaces which violates the continuity of the displacements causes significant differences with the elasticity solutions for the thick and intermediate laminate. However, the present approach compares fairly good for aspect ratio greater than 20,

ACKNOWLEDGMENT

The MathCad program was provided and sat up by LtCol Dr Amgad. Also, his technical advises for using the program are acknowledged.

REFERENCES

1. Pagano, N.J., "Exact Solution for Bidirectional Composites and Sandwich Plates," J Composite Materials, Vol. 4, 20-34, (1970).
2. Pagano, N.J. \& S.J. Hatfield "Elastic Behavior of Multilayered Bidirectional Composites", AIAA J., Vol.10, No. 7, 931- 933, 1972.
3. Tmerek, M.T. and El-Soaaly, E.E., "Simplified Variational Approach for Analysis of Thick Laminated Orthotropic Plates:1- Cylindrical Bending." Paper presented to the ASAT-12.
4. Senthil S. Vel and R.C. Batra, "Analytical Solution for Rectangular Thick Laminated Plates Subjected to Arbitrary Boundary Conditions," AIAA J, Vol. 37, No. 11, Nov (1999).
5. Y. W. Kwon and J. E. Akin, "Analysis of Layered Composite Plates Using A Higher Order Deformation Theory," Computers and Structures 27, 619-623 (1987).
6. Mawenya, A.S. and Davies, J.D., "Finite Element Analysis of Multilayer Plates," Int. J. Num. in Eng., Vol.8, 215-225,1974.
7. Owen, D.R.J. and Li, Z.H., "A Refined Analysis of Laminated Plates by Finite Element Displacement Method- I. Fundamentals and Static Analysis," Computers and Structures 26, 907-914 (1987).
8. Reddy, J.N., "A Simple Higher Order Theory for Laminated Composite Plates," ASME J Applied Mech, Vol 51, 12, pp 745 - 752, 1984.

APPENDIX

Equations of The Generalized Displacements

$\Psi 1=\frac{6}{5} \cdot \mathrm{q} \cdot \frac{\mathrm{b}^{2} \cdot \mathrm{a} \cdot\left(\pi^{4} \cdot \mathrm{~b}^{4} \cdot \mathrm{~h}^{4} \cdot \mathrm{~B} 1 \cdot \mathrm{Q} 66 \cdot \mathrm{~d} 1+\pi^{4} \cdot h^{4} \cdot \mathrm{~B} 1 \cdot \mathrm{~b}^{2} \cdot \mathrm{Q} 22 \cdot \mathrm{a}^{2} \cdot \mathrm{~d} 1+12 \cdot \pi^{2} \cdot \mathrm{~b}^{4} \cdot h^{2} \cdot \mathrm{~B} 1 \cdot \mathrm{a}^{2} \cdot \mathrm{~d} 2 \cdot \mathrm{~d} 1+\pi^{4} \cdot h^{4} \cdot \mathrm{~B} 1 \cdot \mathrm{a}^{2}\right.}{\pi^{3} \cdot \mathrm{~h}^{3} \cdot\left(2 \cdot \pi^{2} \cdot h^{2} \cdot \mathrm{a}^{2} \cdot \mathrm{Q} 66 \cdot \mathrm{Q} 12 \cdot \mathrm{~b}^{4} \cdot \mathrm{~d} 1-\pi^{2} \cdot h^{2} \cdot \mathrm{Q} 66 \cdot \mathrm{Q} 11 \cdot \mathrm{~b}^{6} \cdot \mathrm{~d} 1-12 \cdot \mathrm{Q} 11 \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{6} \cdot \mathrm{a}^{2} \cdot \mathrm{~d} 1+\pi^{2}\right.}$ $\frac{\mathrm{Q} 66 \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{2}+\mathrm{h}^{4} \cdot \mathrm{~B} 1 \cdot \pi^{4} \cdot \mathrm{Q} 22 \cdot \mathrm{a}^{4} \cdot \mathrm{~d} 2-\pi^{4} \cdot \mathrm{a}^{2} \cdot h^{4} \cdot \mathrm{~B} 2 \cdot \mathrm{Q} 12 \cdot \mathrm{~b}^{2} \cdot \mathrm{~d} 1-\pi^{4} \cdot \mathrm{a}^{2} \cdot h^{4} \cdot \mathrm{~B} 2 \cdot \mathrm{Q} 66 \cdot \mathrm{~b}^{2} \cdot \mathrm{~d} 1-\pi^{4} \cdot \mathrm{a}^{4} \cdot h^{4} \cdot \mathrm{~B} 2 \cdot \mathrm{Q} 12 \cdot \mathrm{~d} 2}{\mathrm{~b}^{4} \cdot \mathrm{~h}^{2} \cdot \mathrm{Q} 12^{2} \cdot \mathrm{a}^{2} \cdot \mathrm{~d} 1-\pi^{2} \cdot b^{4} \cdot h^{2} \cdot \mathrm{Q} 22 \cdot \mathrm{Q} 11 \cdot \mathrm{a}^{2} \cdot \mathrm{~d} 1-48 \cdot \mathrm{Q} 66 \cdot \mathrm{a}^{4} \cdot b^{4} \cdot \mathrm{~d} 2 \cdot \mathrm{~d} 1-24 \cdot \mathrm{a}^{4} \cdot \mathrm{Q} 12 \cdot \mathrm{~b}^{4} \cdot \mathrm{~d} 2 \cdot \mathrm{~d} 1+2 \cdot \pi^{2} \cdot \mathrm{a}^{4} \cdot h^{2} \cdot \mathrm{Q} 12 \cdot}$ $\frac{+12 \cdot \pi^{2} \cdot a^{4} \cdot h^{2} \cdot \mathrm{~B} 2 \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{2} \cdot \mathrm{~d} 1-\pi^{4} \cdot \mathrm{a}^{4} \cdot h^{4} \cdot \mathrm{~B} 2 \cdot \mathrm{Q} 66 \cdot \mathrm{~d} 2-10 \cdot \mathrm{a}^{2} \cdot \pi^{2} \cdot h^{2} \cdot \mathrm{Q} 66 \cdot \mathrm{~b}^{4} \cdot \mathrm{~d} 1+10 \cdot \mathrm{a}^{4} \cdot \mathrm{~h}^{2} \cdot \pi^{2} \cdot \mathrm{Q} 12 \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{2}-120 \cdot \mathrm{a}^{4}}{\mathrm{O} 6 \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{2}-\pi^{2} \cdot \mathrm{~b}^{2} \cdot h^{2} \cdot \mathrm{O} 22 \cdot \mathrm{O} 66 \cdot \mathrm{a}^{4} \cdot \mathrm{~d} 1-\pi^{2} \cdot h^{2} \cdot \mathrm{O} 11 \cdot \mathrm{O} 66 \cdot \mathrm{~d} 2 \cdot \mathrm{a}^{2} \cdot \mathrm{~b}^{4}-\pi^{2} \cdot h^{2} \cdot \mathrm{O} 11 \cdot \mathrm{a}^{4} \cdot \mathrm{~b}^{2} \cdot \mathrm{O} 22 \cdot \mathrm{~d} 2+\pi^{2} \cdot \mathrm{a}^{4} \cdot \mathrm{~h}^{2} \cdot \mathrm{Q} 12^{2}}$ $\frac{\left.b^{4} \cdot \mathrm{~d} 2 \cdot \mathrm{~d} 1-10 \cdot a^{4} \cdot \pi^{2} \cdot b^{2} \cdot h^{2} \cdot \mathrm{Q} 22 \cdot \mathrm{~d} 1+10 \cdot \mathrm{a}^{4} \cdot h^{2} \cdot \mathrm{Q} 66 \cdot \pi^{2} \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{2}\right)}{2}$ $\left.\mathrm{d} 2 \cdot \mathrm{~b}^{2}-12 \cdot \mathrm{~b}^{2} \cdot \mathrm{Q} 22 \cdot \mathrm{a}^{6} \cdot \mathrm{~d} 2 \cdot \mathrm{~d} 1-\pi^{2} \cdot \mathrm{~h}^{2} \cdot \mathrm{Q} 66 \cdot \mathrm{Q} 22 \cdot \mathrm{a}^{6} \cdot \mathrm{~d} 2\right)$
$\Psi 2=\frac{6}{5} \cdot \mathrm{q} \cdot \frac{\mathrm{a}^{2} \cdot \mathrm{~b} \cdot\left(\pi^{4} \cdot h^{4} \cdot \mathrm{~B} 1 \cdot \mathrm{~b}^{4} \cdot \mathrm{Q} 66 \cdot \mathrm{~d} 1+\pi^{4} \cdot h^{4} \cdot \mathrm{~B} 1 \cdot \mathrm{Q} 12 \cdot \mathrm{~b}^{4} \cdot \mathrm{~d} 1-12 \cdot \pi^{2} \cdot h^{2} \cdot \mathrm{~B} 1 \cdot \mathrm{a}^{2} \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{4} \cdot \mathrm{~d} 1+\pi^{4} \cdot h^{4} \cdot \mathrm{~B} 1 \cdot \mathrm{~b}^{2} \cdot \mathrm{Q} 66\right.}{\pi^{3} \cdot h^{3} \cdot\left[(-2) \cdot \pi^{2} \cdot h^{2} \cdot \mathrm{a}^{2} \cdot \mathrm{Q} 66 \cdot \mathrm{Q} 12 \cdot \mathrm{~b}^{4} \cdot \mathrm{~d} 1+\pi^{2} \cdot h^{2} \cdot \mathrm{Q} 66 \cdot \mathrm{Q} 11 \cdot \mathrm{~b}^{6} \cdot \mathrm{~d} 1+12 \cdot \mathrm{Q} 11 \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{6} \cdot \mathrm{a}^{2} \cdot \mathrm{~d} 1-\pi^{2}\right.}$ $\frac{a^{2} \cdot \mathrm{~d} 2+\pi^{4} \cdot h^{4} \cdot \mathrm{~B} 1 \cdot \mathrm{a}^{2} \cdot \mathrm{Q} 12 \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{2}-\pi^{4} \cdot h^{4} \cdot \mathrm{~B} 2 \cdot \mathrm{Q} 11 \cdot \mathrm{~b}^{4} \cdot \mathrm{~d} 1-\pi^{4} \cdot \mathrm{a}^{2} \cdot h^{4} \cdot \mathrm{~B} 2 \cdot \mathrm{~b}^{2} \cdot \mathrm{Q} 66 \cdot \mathrm{~d} 1-\pi^{4} \cdot \mathrm{a}^{2} \cdot h^{4} \cdot \mathrm{~B} 2 \cdot \mathrm{Q} 11 \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{2}-}{\mathrm{b}^{4} \cdot h^{2} \cdot \mathrm{Q} 12^{2} \cdot \mathrm{a}^{2} \cdot \mathrm{~d} 1+\pi^{2} \cdot \mathrm{~b}^{4} \cdot h^{2} \cdot \mathrm{Q} 22 \cdot \mathrm{Q} 11 \cdot \mathrm{a}^{2} \cdot \mathrm{~d} 1+48 \cdot \mathrm{Q} 66 \cdot \mathrm{a}^{4} \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{4} \cdot \mathrm{~d} 1+24 \cdot \mathrm{a}^{4} \cdot \mathrm{Q} 12 \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{4} \cdot \mathrm{~d} 1-2 \cdot \pi^{2} \cdot \mathrm{a}^{4} \cdot h^{2} \cdot \mathrm{Q} 12 \cdot}$ $\frac{12 \cdot \pi^{2} \cdot a^{4} \cdot h^{2} \cdot \mathrm{~B} 2 \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{2} \cdot \mathrm{~d} 1-\pi^{4} \cdot \mathrm{a}^{4} \cdot h^{4} \cdot \mathrm{~B} 2 \cdot \mathrm{Q} 66 \cdot \mathrm{~d} 2-10 \cdot a^{2} \cdot \pi^{2} \cdot h^{2} \cdot \mathrm{Q} 12 \cdot \mathrm{~b}^{4} \cdot \mathrm{~d} 1-10 \cdot \mathrm{a}^{2} \cdot h^{2} \cdot \pi^{2} \cdot b^{4} \cdot \mathrm{Q} 66 \cdot \mathrm{~d} 1+}{\mathrm{Q} 66 \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{2}+\pi^{2} \cdot b^{2} \cdot h^{2} \cdot \mathrm{Q} 22 \cdot \mathrm{Q} 66 \cdot \mathrm{a}^{4} \cdot \mathrm{~d} 1+\pi^{2} \cdot h^{2} \cdot \mathrm{Q} 11 \cdot \mathrm{Q} 66 \cdot \mathrm{~d} 2 \cdot \mathrm{a}^{2} \cdot \mathrm{~b}^{4}+\pi^{2} \cdot h^{2} \cdot \mathrm{Q} 11 \cdot \mathrm{a}^{4} \cdot \mathrm{~b}^{2} \cdot \mathrm{Q} 22 \cdot \mathrm{~d} 2-\pi^{2} \cdot a^{4}}$ $\frac{\left.120 \cdot a^{4} \cdot d 2 \cdot b^{4} \cdot \mathrm{~d} 1+10 \cdot a^{2} \cdot \pi^{2} \cdot h^{2} \cdot \mathrm{Q} 11 \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{4}+10 \cdot \mathrm{a}^{4} \cdot \pi^{2} \cdot \mathrm{~h}^{2} \cdot \mathrm{~b}^{2} \cdot \mathrm{Q} 66 \cdot \mathrm{~d} 2\right)}{\left.\mathrm{h}^{2} \cdot \mathrm{Q} 12^{2} \cdot \mathrm{~b}^{2} \cdot \mathrm{~d} 2+12 \cdot \mathrm{~b}^{2} \cdot \mathrm{Q} 22 \cdot \mathrm{a}^{6} \cdot \mathrm{~d} 2 \cdot \mathrm{~d} 1+\pi^{2} \cdot \mathrm{~h}^{2} \cdot \mathrm{Q} 66 \cdot \mathrm{Q} 22 \cdot \mathrm{a}^{6} \cdot \mathrm{~d} 2\right]}$
$\mathrm{W}=\frac{1}{5} \cdot \mathrm{q} \cdot \mathrm{a}^{2} \cdot \mathrm{~b}^{2} \cdot \frac{\left[(-6) \cdot \pi^{4} \cdot h^{4} \cdot \mathrm{~B} 1 \cdot \mathrm{Q} 66 \cdot \mathrm{~b}^{4} \cdot \mathrm{~d} 1-72 \cdot \pi^{2} \cdot h^{2} \cdot \mathrm{~B} 1 \cdot \mathrm{~b}^{4} \cdot \mathrm{a}^{2} \cdot \mathrm{~d} 2 \cdot \mathrm{~d} 1-6 \cdot \pi^{4} \cdot h^{4} \cdot \mathrm{~B} 1 \cdot \mathrm{Q} 22 \cdot \mathrm{a}^{2} \cdot \mathrm{~b}^{2}\right.}{}$ $\frac{\cdot \mathrm{d} 1+6 \cdot \pi^{4} \cdot h^{4} \cdot \mathrm{~B} 1 \cdot \mathrm{Q} 66 \cdot \mathrm{a}^{2} \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{2}+6 \cdot \pi^{4} \cdot a^{2} \cdot h^{4} \cdot \mathrm{~B} 1 \cdot \mathrm{Q} 12 \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{2}+6 \cdot \pi^{4} \cdot \mathrm{~b}^{2} \cdot h^{4} \cdot \mathrm{~B} 2 \cdot \mathrm{Q} 12 \cdot \mathrm{a}^{2} \cdot \mathrm{~d} 1+6 \cdot \pi^{4} \cdot h^{4} \cdot \mathrm{~B} 2 \cdot \mathrm{Q} 66 \cdot \mathrm{a}^{2} \cdot}{\pi^{4} \cdot h^{3} \cdot\left(2 \cdot \pi^{2} \cdot h^{2} \cdot \mathrm{Q} 66 \cdot \mathrm{a}^{2} \cdot \mathrm{Q} 12 \cdot \mathrm{~b}^{4} \cdot \mathrm{~d} 1-\pi^{2} \cdot h^{2} \cdot \mathrm{Q} 66 \cdot \mathrm{Q} 11 \cdot \mathrm{~b}^{6} \cdot \mathrm{~d} 1-\pi^{2} \cdot h^{2} \cdot \mathrm{Q} 22 \cdot \mathrm{Q} 11 \cdot \mathrm{a}^{2} \cdot \mathrm{~b}^{4} \cdot \mathrm{~d} 1-12 \cdot \mathrm{Q} 11 \cdot \mathrm{~b}^{6} \cdot \mathrm{a}^{2} \cdot \mathrm{~d} 2 \cdot \mathrm{~d} 1\right.}$ $\frac{b^{2} \cdot d 1-6 \cdot \pi^{4} \cdot h^{4} \cdot \mathrm{~B} 2 \cdot \mathrm{Q} 11 \cdot \mathrm{a}^{2} \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{2}-6 \cdot \pi^{4} \cdot h^{4} \cdot \mathrm{~B} 2 \cdot \mathrm{Q} 66 \cdot \mathrm{a}^{4} \cdot \mathrm{~d} 2-72 \cdot \pi^{2} \cdot h^{2} \cdot \mathrm{~B} 2 \cdot a^{4} \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{2} \cdot \mathrm{~d} 1-10 \cdot \pi^{4} \cdot h^{4} \cdot \mathrm{Q} 66 \cdot \mathrm{a}^{2}}{+\pi^{2} \cdot b^{4} \cdot h^{2} \cdot \mathrm{Q} 12^{2} \cdot \mathrm{a}^{2} \cdot \mathrm{~d} 1-48 \cdot \mathrm{Q} 66 \cdot \mathrm{a}^{4} \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{4} \cdot \mathrm{~d} 1-24 \cdot \mathrm{a}^{4} \cdot \mathrm{Q} 12 \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{4} \cdot \mathrm{~d} 1-\pi^{2} \cdot h^{2} \cdot \mathrm{Q} 22 \cdot \mathrm{Q} 66 \cdot \mathrm{a}^{4} \cdot \mathrm{~b}^{2} \cdot \mathrm{~d} 1-\pi^{2} \cdot h^{2} \cdot 1}$ $\frac{\mathrm{Q} 12 \cdot \mathrm{~b}^{2}+5 \cdot \pi^{4} \cdot h^{4} \cdot \mathrm{Q} 66 \cdot \mathrm{Q} 11 \cdot \mathrm{~b}^{4}+60 \cdot \pi^{2} \cdot h^{2} \cdot \mathrm{Q} 11 \cdot \mathrm{~b}^{4} \cdot \mathrm{a}^{2} \cdot \mathrm{~d} 2+60 \cdot \pi^{2} \cdot \mathrm{~h}^{2} \cdot \mathrm{Q} 66 \cdot \mathrm{~b}^{4} \cdot \mathrm{a}^{2} \cdot \mathrm{~d} 1+5 \cdot \pi^{4} \cdot \mathrm{~h}^{4} \cdot \mathrm{Q} 22 \cdot \mathrm{Q} 11 \cdot \mathrm{a}^{2} \cdot}{\mathrm{Q} 11 \cdot \mathrm{Q} 66 \cdot \mathrm{a}^{2} \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{4}+2 \cdot \pi^{2} \cdot \mathrm{a}^{4} \cdot \mathrm{~h}^{2} \cdot \mathrm{Q} 12 \cdot \mathrm{Q} 66 \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{2}+\mathrm{a}^{4} \cdot \pi^{2} \cdot h^{2} \cdot \mathrm{Q} 12^{2} \cdot \mathrm{~b}^{2} \cdot \mathrm{~d} 2-\pi^{2} \cdot h^{2} \cdot \mathrm{Q} 11 \cdot \mathrm{Q} 22 \cdot \mathrm{a}^{4} \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{2}-\pi^{2} \cdot h^{2}}$ $\frac{b^{2}-5 \cdot \pi^{4} \cdot a^{2} \cdot b^{2} \cdot h^{4} \cdot Q 12^{2}+720 \cdot a^{4} \cdot b^{4} \cdot \mathrm{~d} 2 \cdot \mathrm{~d} 1+60 \cdot \pi^{2} \cdot h^{2} \cdot \mathrm{Q} 66 \cdot a^{4} \cdot \mathrm{~d} 2 \cdot b^{2}+5 \cdot \pi^{4} \cdot h^{4} \cdot \mathrm{Q} 22 \cdot \mathrm{Q} 66 \cdot a^{4}}{2}$
Q $\left.66 \cdot \mathrm{Q} 22 \cdot \mathrm{a}^{6} \cdot \mathrm{~d} 2-12 \cdot \mathrm{Q} 22 \cdot \mathrm{a}^{6} \cdot \mathrm{~d} 2 \cdot \mathrm{~b}^{2} \cdot \mathrm{~d} 1\right)$

$$
\left.+60 \cdot \pi^{2} \cdot h^{2} \cdot \mathrm{Q} 22 \cdot \mathrm{a}^{4} \cdot \mathrm{~b}^{2} \cdot \mathrm{~d} 1\right]
$$

Fig. 1 Orthotropic laminated simply supported plate.

Table 1. Central deflections " \bar{w} " at ($\mathrm{a} / 2, \mathrm{~b} / 2$), normalized as Pagano and Hatfield[2]

3-ply square Laminate					5-ply Laminate				
S	$E S^{1}$	Present	[5]	[6]	ES ${ }^{1}$	Present	[6]	[7]	[8]
2	11.767	11.159	-------	14.731	12.278	11.197	13.862	-----	-----
4	4.491	3.57	----	4.934	4.291	3.571	4.331	---	4.244
5	-----	2.657	3.621	-----	---	-----	-----	-----	---
10	1.709	1.435	1.788	1.758	1.57	1.433	1.57	-----	1.551
20	1.189	1.128	------	1.196	1.145	1.127	1.142	1.232	1.135
50	1.031	1.041	------	1.026	1.023	1.041	1.017	1.041	1.015
100	1.008	1.029	------	1.002	1.006	1.029	0.999	1.013	0.998
	CPT	1			CPT	1			
		Elasticity	Exact)						
		7-ply Lam	inate				ply Lami		
S	ES ${ }^{1}$	Present			ES ${ }^{1}$	Present	[8]		
2	12.342	11.194			12.288	11.193	-----		
4	4.153	3.569			4.079	3.568	4.088		
10	1.529	1.432			1.512	1.432	1.505		
20	1.133	1.126			1.129	1.126	1.123		
50	1.021	1.041			1.021	1.041	1.016		
100	1.005	1.029			1.005	1.029	1.000		
	CPT	1			CPT	1			

Table 2. Central deflections " \bar{w} " at ($a / 2, b / 2$), normalized after Pagano [1]

3-ply rectangular Laminate						
S	ES	Present	$[8]^{2}$	$[8]^{3}$	$[5]$	$[6]$
2	8.17	7.797	----	-----	----	----
4	2.82	2.513	2.64	2.36	----	----
10	0.92	0.999	0.86	0.8	0.93	----
20	0.61	0.78	0.59	0.58	0.61	0.67
50	0.52	0.719	----	----	0.52	0.53
100	0.51	0.71	0.51	0.51	0.51	0.51
	CPT	0.503				

4-ply Laminate							
ES 1	present	$[8]^{2}$	$[8]^{3}$	$[7]$			
1.954	1.502	1.89	1.71	1.87			
0.743	0.603	0.72	0.66	0.71			
0.517	0.474	0.51	0.49	0.5			
0.434	0.438	----	----	0.43			
0.4385	0.433	0.43	0.43	0.42			
${ }^{\text {results quoted by }[8]}$						${ }^{2} \mathrm{HSDT}$	${ }^{3}$ FSDT

Table 3. Normalized longitudinal stress; $\bar{\sigma}_{11}$ at (a/2, b/2, h/2)

Table 4. Normalized longitudinal stress; $\bar{\sigma}_{22}$ at (a/2, b/2, h/6)

S	ES[1]	Present	$[8]^{2}$	$[8]^{3}$
2	0.23	0.066	----	----
4	0.119	0.036	0.103	0.093
10	0.044	0.019	0.04	0.038
20	0.0299	0.016	0.0289	0.0283
100	0.0253	0.015	0.0253	0.0253

Table 5. Normalized longitudinal stress; $\bar{\sigma}_{12}$ at ($0,0, \mathrm{~h} / 2$)

Table 6. Nondimenionalized transverse normal stress ; $\bar{\sigma}_{33}$ at (a/2, b/2, $\overline{\mathrm{X}}_{3}$)

$\overline{\mathrm{X}}_{3}$	S	Present	$[4]$
h	5	0.741	0.726
6	10	0.741	0.74
0	5	0.5	0.496
	10	0.5	0.5

Table 7. Normalized transverse shear stress ; $\bar{\sigma}_{13}$ at $(0, b / 2,0)$

3-ply square Laminate						3-ply rectangular Laminate				
S	present	ES[2]	[4]			S	present	ES[1]	[8] ${ }^{2}$	[8] ${ }^{3}$
2	0.275	0.153	------			2	0.452	0.257	----	----
4	0.282	0.219	-			4	0.463	0.351	0.273	0.1879
5	0.286	------	0.265			10	0.469	0.42	0.286	0.1894
10	0.297	0.301	0.330			20	0.47	0.434	0.288	0.1896
20	0.303	0.328	------			50	0.471	0.439	-----	-----
50	0.305	0.337	------			100	0.471	0.439	0.289	0.1897
100	0.306	0.339	-				CPT	0.44	${ }^{2} \mathrm{HSDT}$	${ }^{3}$ FSDT
	CPT 0.339									
		4-ply La	${ }^{[8]^{2}}$			5-ply Laminate				
S	$E^{1}{ }^{1} \mathrm{P}$	Present			[7]	S	Present	ES[2]	[7]	
4	0.291	0.239	0.206	0.14	0.229	2	0.261	0.227	----	
10	0.301	0.239	0.264	0.167	0.315	4	0.265	0.238	0.250	
20	0.328	0.239	0.283	0.175	0.343	10	0.274	0.258	0.278	
100	0.337	0.239	0.29	0.178	0.355	20	0.277	0.268	0.290	
${ }^{1}$ results quoted by [8] ${ }^{2} \mathrm{HSDT}{ }^{3} \mathrm{FSDT}$						50	0.279	0.271	0.298	
						100	0.279	0.272	0.308	
							CPT	0.272		
7-ply Laminate						9-ply Laminate				
S	present	t ES[2]				S	present	ES[2]	[7]	
2	0.254		178			2	0.251	0.204	---	
4	0.257		0.219			4	0.253	0.223	0.229	
10	0.264		0.255			10	0.258	0.247	0.256	
20	0.266		0.267			20	0.26	0.255	0.265	
50	0.267		0.271			50	0.261	0.258	0.269	
100	0.267		272			100	0.261	0.259	0.270	
	CPT	0.272					CPT	0.259		

Table 8. Normalized transverse shear stress ; $\bar{\sigma}_{23}$ at $(\mathrm{a} / 2,0,0)$

3-ply square Laminate						3-ply rectangular Laminate				
S	present	ES[2]	[4]			S	present	ES[1]	[8] ${ }^{2}$	[8] ${ }^{3}$
2	0.203	0.295	------			2	0.075	0.0668	----	----
4	0.195	0.292	------			4	0.044	0.0334	0.0348	0.0308
5	0.191	----	0.1911			5	0.037	------	----	----
10	0.18	0.196	0.1228			10	0.025	0.0152	0.017	0.0159
20	0.174	0.156	------			20	0.022	0.0119	0.0139	0.0135
50	0.172	0.141	-----			50	0.021	0.0110	-----	----
100	0.172	0.139	------			100	0.021	0.0108	0.0129	0.0127
	CPT	0.138					CPT	0.0108	${ }^{2} \mathrm{HSDT}$	${ }^{3} \mathrm{FSDT}$
4-ply Laminate (0/90/90/0); $b=a$						5-ply Laminate				
S	ES ${ }^{1}$	Present	[8] ${ }^{2}$	[8] ${ }^{3}$	[7]	S	present	ES[2]	[7]	
4	0.292	0.239	0.239	0.1963	0.299	2	0.217	0.186	---	
10	0.196	0.239	0.153	0.129	0.198	4		0.268 0.229		
20	0.156	0.239	0.123	0.109	0.157		0.212	0.233	0.257	
100	0.141	0.239	0.112	0.101	0.144	10	0.204	0.223	0.247	
${ }^{1}$ results quoted by [8] ${ }^{2} \mathrm{HSDT}{ }^{3}$ FSDT						20	0.2	0.212	0.233	
						50	0.199	0.206	0.231	
						100	0.199	0.205	0.229	
							CPT	0.205		
7-ply Laminate						9-ply Laminate				
S	present	ES[2]				S	present	ES[2]	[7]	
2	0.223	0.238				2	0.227	0.194	------	
4	0.22	0.236				4		0.223		
10	0.214	0.219					0.224	0.225	0.234	
20	0.211	0.21				10	0.219	0.226	0.236	
50	0.21	0.206				20	0.217	0.221	0.231	
100	0.21	0.205				50	0.217	0.219	0.229	
	CPT	0.205				100	0.216	0.219	0.230	
							CPT	0.205		

Table 9. Normalized in-plane displacement; $\overline{\mathrm{u}}_{1}$ at (a/4, b/2, $\pm \mathrm{h} / 2$)

3-ply square Laminate					
S = 5			S = 10		
	Present	[4]		Present	[4]
h/2	0.6164	0.62	h/2	0.6532	-0.52
-h/2	0.6164	0.614	-h/2	0.6532	0.522

[^0]: ** Egyptian Armed Forced
 ** Dpt. of MechEng, Higher Technological Institute (HTI), Cairo, Egypt.

