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ABSTRACT 
 
A finite element formulation is presented for modeling the dynamic as well as static 
response of a compressor blades subjected to extension, bending and torsional 
loads. The formulation is derived from the variational principle with the consideration 
for the total potential energy of the structure based on the classical lamination theory. 
The compressor blade is modeled as an advanced beam with idealized rectangular 
cross-section that takes the warping effect into consideration. The bending-torsion 
coupling is introduced in the stiffness and mass matrices. A one dimensional linear 
isoparametric element with hermit cubic shape function is used. A two end nodes and 
one intermediate node as well is implemented for the finite element formulation. A 
Matlab interactive code was developed to solve a blade with a multi action loads. The 
results obtained are compared to the available analytical and finite element results. 
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NOMENCALUTRE 
 
ε   … Axial strain. 
γ   … shear strain. 
ϕ(x)    ... The twist angle at each section. 
θ    … The bending angle (slope). 
ρ   … Density. 
ω    … Natural frequency of the vibration. 
ν   … Poisson’s ratio. 
λ   … The Warping function. 
φ1, φ2, φ3   … Torsion nodal displacements. 
Δ(λ)    … polynomial of degree n in λ.  
Ω(x)    … Constant distributed load acting on beam element. 
a    … Height of cross section of the beam. 
b    … Width of cross section of the beam. 
c1, c2, c3, c4  … Constants of integration. 
faxial(x)   … Axial shape functions. 
fbending(x)   … Bending shape functions. 
ftorsion(x)   … Torsion shape functions. 
fAxial-Warping   … The effect of warping on torsional shape functions. 
h   … Single Element length. 
m(x)    … Mass per unit length. 
maxial   … Axial mass matrix. 
mbending  … Bending mass matrix. 
mtorsion   …Torsion mass matrix. 
n   … Number of elements. 
u1, u2    … Axial nodal displacements. 
w1, θ1, w2, θ2   … Bending nodal displacements. 
V   … Volume. 
A    … Cross sectional area (A = a.b). 
D    … Dynamic matrix. 
E   … Modulus of Elasticity. 
F    … Total mechanical Loads on single beam element. 
Fx

warping   … The effect of torsional warping on torsional stiffness. 
G   … Shear modulus. 
Im(x)    … Mass polar moment of inertia per unit length. 
I    … Second area moment of inertia. 
J    … Area Polar moment of inertia. 
[K]    … Stiffness matrix. 
Kaxial   … Axial stiffness matrix. 
Kbending  … Bending stiffness matrix. 
Ktorsion   …Torsion stiffness matrix. 
Kwarping   … Cross-sectional warping coefficient. 
L   … Length of the Cantilever beam. 
P(x)    … Constant axial force acting on beam element. 
T(x)    … Constant Torque moment acting on beam element. 
Ui    … Strain energy of the total system. 
We   … External work done on the system. 
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1. INTRODUCTION 
 
The failure of turbine and compressor blades due to multi mechanical applied loads, 
poor handling and intolerable noise has led to an increased interest in the study of 
the static and dynamic response of these blades. To improve the dynamic and static 
performance of these blades during their operations, a model must be considered 
and studied concerning with problems and loads they are subjected to. The 
compressor and turbine blades are undergo extension, bending and torsional loads, 
while an assumption must be consider, that the rotor must be operating at steady 
state conditions such that the blade fixation could be considered as fixed end 
cantilever beams. Besides the distribution of bending and torsion loads are constant 
along the length of the blades unlike the real case where the pressure loads on the 
blade span. 
 
 
Several researches have studied the calculation of the uncoupled modes of arbitrarily 
shaped cantilever beams has been extensively investigated [1-4], but little work has 
as yet been done on calculating the coupled modes of such beams. The modeling of 
beam structures with coupled behavior presented in [5–11]. Sakawa and Luo [6] 
used a shear-indeformable theory to model a mass coupled beam. The internal beam 
damping was included in their model, the beam was mounted on a rotating shaft and 
an actuation torque was provided to the shaft by a motor. Banks and Smith [7] 
studied a coupling problem similar to that of Sakawa and Luo; however, in their 
model the warping effects and the internal shear damping were considered. Shen [8] 
also employed a shear-indeformable theory in which the warping effect was not 
included in composite beams. Banerjee and Williams [9] studied the vibration in a 
beam with geometrical coupling. Despite they used the shear-deformable theory, 
warping effect was ignored. A shear deformable theory is simplified by Sankar [11] to 
be applicable for a one-dimensional beam analysis. The warping effects caused by 
St. Venant torsion and warping effect are explicitly included in his model. Sankar 
theory shows some results identical to those achieved by Boresi et al [10]. A quite 
good agreement for a laminate beam is obtained between Sankar results and those 
reported by Tsai et al [13]. 
 

Therefore, the objective of this investigation is to develop a finite element formulation 
for modeling the static and dynamic response of a compressor blade simplified as an 
advanced cantilever beam subjected to axial, bending and torsion loads. The warping 
effect due to the torsion is taken into consideration during the analysis, and the 
bending-torsion coupling is introduced in stiffness and mass matrices. The equation 
of motion is obtained via the principle of total potential energy. A finite element 
interactive code, designated as “ABTIB” is developed on the basis of the analysis 
during this investigation. Numerical examples are performed for a single mode and 
coupled modes for different cases of loads. 
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2. THEORETICAL FORMULATION 

 
To obtain the mathematical statement of displacements of the advanced beam under 
the assumptions of the Euler-Bernoulli theory of beams, it is required to define the 
co-ordinate system for the beam subjected to axial, transverse loads and twisting 
moment. The axial and transverse deformations are shown in Fig.1. and Fig.2. while 
Fig.3. shows the torsional displacement of the beam. The following formulations are 
obtained, 
 

( ) β⋅−ϕ⋅β−ϕ⋅β⋅=β⋅−ϕ+β⋅=Δ cosrsinsincoscosr)cos(r)cos(rY  (a)   
 
For small deformation angle ( ),  cos (ϕ ϕ ) ≅ 1,  sin ( ) ≅  ϕ ϕ
 
Therefore,   ( ) )sin(rcosrsin1cosrY β⋅⋅ϕ−=β⋅−β⋅ϕ−⋅β⋅=Δ  (b)  (1) 
 
Since Z = r. sin (β), thus,  ϕ⋅−=Δ ZY      (c)  
 
Similarly,  

( β) ⋅−ϕ⋅β+ϕ⋅β⋅=β⋅−ϕ+β⋅=Δ sinrcossinsincosr)sin(r)sin(rZ  (a)   
 

( ) )cos(rsinr1sincosrZ β⋅⋅ϕ=β⋅−⋅β−β⋅ϕ⋅=Δ  (b)  (2) 
 

ϕ⋅=Δ YZ      (c)  
 
The warping effect is appeared in Fig.4. and the warping function must satisfy two 
conditions: 
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From these conditions, warping function can be written as; 

 
zyK warping ⋅⋅=λ      (5) 

Where Kwarping is the cross-sectional warping coefficient. For Aluminum rectangular 
beam  Kwarping = 1 
 
Thus, the assumed displacement field equations based on the classical lamination 
theory in the x, y, and z directions are, 
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Where  Us(x) is the mid plane axial displacement, w(x) is the bending displacement 
due to transverse load and φ(x) is the twist angle. 
 
The warping function will appear when differentiating the displacement in z-direction, 
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3. STRAIN-DISPLACEMENT RELATIONS 
 
The normal strain (ε) and shear strain (γ) can be obtained simply by differentiating the 
displacements, equations as; 
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By substituting equation (6) into eqn. (8), one can obtain; 
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4. VARIATIONAL FORMULATION 
 
The element equations of motion can be detected by means of variational approach 
by writing the Kinetic energy, Potential energy, and the Virtual work expressions in 
term of the nodal coordinates. 
 
Using the principle of total strain energy [13],  

    
   ei WU δ=δ       (10) 
  
Equation (10) will be expanded as follows, 
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By using Equation (9); the energy equation (11) can be simplified as, 
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( ) ∫∫∫∫ ⋅
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            (12) 
Where  P(x) is the axial load per unit length [N/m], Ω(x) is the transverse load per unit 
length [N/m], and T(x) is the twisting moment per unit length [N]. P(x), (x) and T(x) 
are assumed to be constant along the span x, then equation (12) can be written as, 

Ω
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The element mass matrix is obtained using the kinetic energy term as;  
 

)15(dx.)x(Iw)x(mU)x(m
2
1

)14(dxv)x(m
2
1)t(T

2/L

2/L

2

x

22

L

0

2

∫

∫

−

•••

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ϕ⋅⋅ρ+⋅+⋅=

⋅⋅⋅=

 
 
Where ρ is the density of the material, v is the velocity (displacement 
differentiation), and m(x) is the mass per unit length of the beam. 
 
 
5. FINITE ELEMENT MODELING 
 
The shape functions of the axial deformation Us(x) [14], can be obtained from the 
differential equation for the axial deformation as, 
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By integrating eqn. (16) twice, and applying the boundary conditions, we obtain the 
expression for the axial displacement, 
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The shape function of transverse deformation w(x) [13], is obtained from the 
differential equation for the transverse displacement as, 
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By integrating eqn. (19) four times and applying the boundary conditions we obtain 
the expression for the transverse deformation, 
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The shape function of the Torsion displacements φ(x), can be obtained as, 
 
         (22) 32

2
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By applying boundary conditions to eqn (22), for the three nodal displacements on 
beam element,  
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By substituting eqn. (23) into eqn. (22), the expression for the torsional displacement 
is obtained as, 
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Defining the Nodal displacements for axial, bending and torsion displacements to be 
"u1, u3", "w1, θ1, w3, θ3" and “φ1, φ2, φ3” respectively, which are illustrated in the Fig.5. 
By inserting the shape functions into the displacement equations (6), the 
displacement equation can be written as, 
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Where fx, fy and fz are the combined shape function of the axial, bending and torsion 
displacement equations, and the parameter s = x/h  
 
The strain equations can be written as, 
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By inserting the strain and perform the integration, 
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The axial, bending and torsion element stiffness matrix is given by, 
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And are given in Appendix (A). 
 
By performing the integral in equation (29), and substitute the strain components, the 
static equilibrium equation takes the form; 
      [ ] { } [ ]FqK itotal =⋅      (33) 
Where, [Ktotal] is the element stiffness matrix, and F is the force vector, which shown 
in Appendix (B) and (C); respectively. 
 
The element mass matrix is obtained by using the kinetic energy equations (14) and 
(15) for the axial, bending, and torsion deformation as follows; 
 
For the axial, bending, and torsion mass components 
  



 

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 STR-13 9 
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The element mass matrices maxial, mbending, and mtorsion are given in Appendix (D) 
The interaction between these elements of masses matrices is derived from the 
formula, 

{ } { }∫ ⋅⋅ρ=
h

0

T
totaltotaltotal dx)x(f)x(fm     (38) 

 
Where ftotal explained in appendix (E) and mass matrix explained in Appendix (F). 
 
 
6. Equations of Motion 
 
Assembling the mass, stiffness matrices and the load vector, the global stiffness, 
mass matrices and load vector are obtained, 
     

         (39) [ ] [ ] ⎡ ⎤ ⎡ ⎤FqKqM
..

=⋅+⎥⎥
⎤

⎢⎢
⎡⋅

 
For free vibration analysis, [15] 

 

[ ] [ ] ⎡ ⎤ ⎡ ⎤0qKqM
..

=⋅+⎥⎥
⎤

⎢⎢
⎡⋅      (40) 

Eigenvalue problem  
 
The problem of determining the value of the square of the natural frequency ω2 is 
known as the characteristic value of eigenvalue problem, which can be represented 
as;  

 
[ ] ⎡ ⎤ [ ] ⎡ ⎤ ⎡ ⎤0qKqM2 =⋅+⋅ω−     (41) 

 
By making some manipulation, the solution of the eigenvalue problem is written as, 

 
( ) [ ] [ ] ⎡ ⎤( ) 0q1D rr

2 =⋅−⋅ω      (42) 
 
Where, (ω2)r is the system natural frequencies (r = 1, 2, 3, … n), ⎡ ⎤ru  represents the 

eigenvector corresponding to the eigenvalues (ω2)r, and [ ] [ ] [mKD 1 ⋅= − ] 
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Checking for normalization and Orthogonality 
 
The process of adjusting the elements of the natural modes to render their amplitude 
unique is called normalization which obtained by setting; 
 

{Qnor}T [M] {Qnor} = [1] and {Qnor}T [K] {Qnor} = [ω2]   (43) 
 

Where Qnor … the normalized mode shapes. 
 
While, the Orthogonality with respect to the inertia matrix [m] and also with respect to 
the stiffness matrix [K], is verified when, 

 
{Q}i

T [M] {Q}j = [0]  and {Q}i
T [K] {Q}j = [0] and i ≠ j  (44) 

 
The vectors then said to be Orthonormal to each other 
 

7. VALIDATION EXAMPLE 
 
An Aluminum beam has the following properties is used for validate the model for a 
static and dynamic response 
 
ν = 0.33  ; ρ = 2710 kg/m3 ; G = 2.59 X 106 N/m2 ; E = 6.89 X 106 N/m2 
L = 0.1524 m; b = 0.0254 m ; a = 0.01524 m  ; P(x) = 5 N/m  
Ω(x) =-5 N/m ; T = 1 N 
 
 
For a cantilever beam under axial bending and torsion loads Fig.7. and Fig.8. shows 
the axial and bending displacements under the action of multi loads, also Fig.9. 
shows the torsional displacement versus number of nodes. Fig.10. shows the static 
deflection in Axial, bending and torsional directions on 3-D drawing. 
 
 
The bending mode shapes from 1st to 5th are shown in Fig.11. to Fig.15. The bending 
torsion coupling mode shapes is illustrated from Fig.16. to Fig.20. The coupled 
natural frequencies is shown for different beam length, 
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L in mm b/a Tip deflection in mm modes ωcoupling (rad/sec) fcoupling (Hz) 

1 5107.8 812.9316 
2 31647.96 5036.929 1 -1.0885 x 10-6 
3 87057.39 13855.61 
1 5109.01 813.1242 
2 31647.75 5036.896 2 -5.4427 x 10-7 

3 87053.7 13855.03 
1 5107.0 812.8043 
2 31646.1 5036.633 

100 

3 -3.6284 x 10-7 
3 87042.91 13853.31 
1 1279.85 203.6945 
2 7991.5 1271.887 1 -1.7417 x 10-5 
3 22273.38 3544.919 
1 1278.67 203.5067 
2 7991.24 1271.845 2 -8.7083 x 10-6 

3 22273.2 3544.89 
1 1279.1 203.5751 
2 7991.15 1271.831 

200 

3 -5.8055 x 10-6 
3 22272.46 3544.772 
1 568.48 90.4764 
2 3558.28 566.3179 1 -8.8171 x 10-5 
3 9942.99 1582.476 
1 568.51 90.48118 
2 3558.31 566.3226 2 -4.4086 x 10-5 
3 9942.92 1582.465 
1 568.33 90.45253 
2 3558.28 566.3179 

300 

3 -2.9390 x 10-5 
3 9942.8 1582.446 

Table .1. Coupled natural frequencies and tip deflections 
 
8. CONCLUSION 
 
A finite element model and a computer code were developed for analyzing a 
compressor blades subjected to multi mechanical loads. The warping effect was taken 
into consideration. 
 
The notice torsion variation through the length of the unique element requires an 
additional node at the middle of the element to give a better presenting of the torsional 
deformation. The interaction between the axial and bending and torsion terms in the 
global mass and stiffness matrices are arisen due to the existing coupling. So the most 
clear torsional modes will be obvious at higher frequencies as shown in graphical 
representation of the bending-torsional modes. 
 
From this study, it is believed that the computer code based on a finite element 
formulation could be further developed as a design tool for structures having different 
layouts and constituent material. 
 
The formulation presented in this paper can be easily extended to anisotropic materials 
as a 2nd part of the studies which is in print. 
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APPENDIX 
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FIGURES  

 

 

 

 

 

 
 
 
 

Fig.4. Warping of bar of non-circular 
cross section 

 Under torsion loading 
 

 
 
 
 
 
 
 
 
 
 

Fig.5. Nodal Displacements of axial-
bending-torsion Element 

 
 
 
 

  
  Fig.6. Boundary conditions of 

Fixed-Free beam 
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Fig.1. Coordinate system of 
calculated beam with axial load 
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Fig.2. Bending displacement 
in axial direction 
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Fig.3. Torsion displacements 
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Fig.7. Nodal axial displacements 

 

 
Fig.8. Nodal bending deflection 

 

 
Fig.9. Nodal torsional displacements 

 

 
Fig.10. The static coupled bending-

torsion deflection 
 

 
Fig.11. The First bending mode shape 

 

 
Fig.12. The Second bending mode shape 
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Fig.13. The Third bending mode shape 

 
 

 
Fig.14. The Fourth bending mode shape 

 

 
Fig.15. The Fifth bending mode shape 

 
Fig.16. The first bending-torsion coupling 

mode shape 

 
Fig.17. The second bending-torsion 

coupling mode shape 
 

 
Fig.18. The third bending-torsion 

coupling mode shape 
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Fig.19. The fourth bending-torsion 

coupling mode shape  
Fig.20. The fifth bending-torsion coupling 

mode shape 
 
 
 


