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ABSTRACT 
 
In this work, a numerical effort is presented for modelling and control of structure-
acoustics coupled systems. Modelling of sound transmission through a panel-cavity-
panel system is presented. An approximate series solution is assumed and the 
solution is obtained using Galarkin’s method. The system to be modelled is 
consisting of a rectangular cavity with two flexible panels, one at the top of the cavity 
while the other at the bottom and four other fixed boundaries. PZT pair patches are 
considered to be bonded to the top panel, and each pair is assumed to produce a 
pure moment actuation when an electric drive signal is used to excite them. The 
flexible panel is exposed to an external pressure excitation due to a planar wave 
generated by a sound source mounted above the cavity. Displacements at the mid 
points are calculated for the upper and lower panels. The developed model is 
controlled using the optimal LQR control law. The numerically obtained time 
responses from the compensated model are found to be acceptable compared to the 
uncompensated ones. It is found that the actuation of the upper panel can decrease 
the vibration of the lower one rather than decreasing the acoustic pressure inside the 
cavity. 
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1. INTRODUCTION 
 
The purpose of this work is to model and control the structural-acoustic system. The 
system to be modelled is consisting of a rectangular cavity with two flexible panels, 
one at the top and the other at the bottom and four other fixed boundaries. PZT pair 
patches are considered to be bonded to the top panel (Fig.1), and each pair is 
assumed to produce a pure moment actuation when an electric drive signal is used 
to excite them. The flexible panel is exposed to an external pressure excitation due to 
a planar wave generated by a sound source mounted above the cavity. The inner 
dimensions of the cavity are ,  and , in the xcL ycL zcL x , y , and  directions 
respectively, and the effective dimensions of the panel are  and . As shown in 
the schematic of the panel-cavity-panel system (Figure 1), two coordinate systems 
are used to describe the system; the first one with the origin at is used for the 
cavity, and the second one with the origin at is used for the panels. The panel may 
have larger dimensions than the cavity. The two plates are set such that one of them 
is at the top of the cavity at , while the other is at the bottom of the cavity 
at . Throughout the analysis, the ambient values are indicated with the 
subscript . For convenience, the structure-acoustic system modelling is divided 
into the following subsystems: (i) The plate-cavity-plate system, (ii) The plate-piezo 
system, and (iii) The piezo-plate-cavity-plate system. 
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2. MODELLING OF THE PANEL-CAVITY-PANEL PROBLEM 
 
2.1 The panel-cavity-panel system 
The two governing equations of this system are the conservation of mass equation 
and the conservation of momentum equation. In three-dimensional space, making 
use of linear approximations, the wave equation describing the sound field inside the 
cavity can be obtained as: 
 

01
2

2

2
2 =

∂
∂

−∇
t
P

c
P

o  
(1)

 
where  is the air pressure inside the cavity, the speed of sound in a 
medium assuming isentropic flow is defined as [1] 
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At a rigid boundary, the normal component of the air particle velocity is set to zero, 
and at a flexible boundary, it is set equal to the normal velocity of the flexible panel. 
Thus, the boundary conditions can be stated as: 
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where  is the normal displacement of the flexible boundary, and  n  is the 
direction normal to the boundary.  The pressure field inside the cavity can be 
expressed in the series form  
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where are used to describe the spatial field and are used to describe 
the associated temporal part of the pressure response. The spatial 
functions

),,( zyxiΦ )(tqi

)(xiψ , )(yiϕ  and are assumed to be orthogonal. Substituting Eq. (4) 
into Eq. (1), integrating over the volume of the cavity (Galarkin’s approach), and 
making use of the orthogonality conditions and the boundary conditions, the cavity 
governing equations can be derived to have the following form 
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Eq. (5) will be used later with the panel-piezo equations to satisfy the boundary 
condition at the flexible panel.  
 
2.2 The piezoelectric actuator-panel system 
The panel–piezo system is treated here as a multi-laminate system that consists of 
three plies in places where the piezo pair patches are bonded to the panel, and as a 
single ply panel otherwise. Making use of the assumptions used in earlier studies [3], 
the panel displacement can be described by 
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The plate response is assumed in the series 
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where the )(tiη are temporal functions and the appropriate expressions for the spatial 
functions )()( yandx ii βα  are obtained from the work of [5]. The upper plate only has 
the PZT patches and the incident pressure waves are excite it, then the equations 
governing the two plates can be written as 
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where the subscript  and  are used to describe the upper and lower panels 
respectively. 
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2.3 The coupled piezo-panel-cavity-panel system 
In this section, the panel-cavity system is coupled with the piezoelectric actuator-
panel system to obtain the governing equations for the coupled cavity subsystem. 
The boundary conditions at the flexible boundary are recalled from Eqs. (3) 
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Making use of this boundary condition along with Eqs. (4) and (8), and making use of 
the orthogonality property, we get the following equation: 
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After substituting Eq. (11) into Eqs. (5) and (6), we get the equation governing a 
pressure-field mode as follows: 
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The last terms on the left-hand side of Eq. (13) represent the structural-acoustic 
coupling in the system. At this stage, it is assumed that the spatial functions in Eq. (4) 
are given by rigid-body cavity modes; that is [2],[3], and [4] 
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where the indices  are associated with the spatial functions of the rigid 
cavity mode, in the directions, respectively. The constants are chosen to 
satisfy the orthogonality conditions. Using Eq. (14) the spatial function  at each 
plate will be 
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Making use of Eq. (15) in Eq. (13), it is found that 
 

0)()(
)1(

)()(1

1

)()(

1

)()(

2

22

2

22

2

22

2

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

∑∑
∞

=

∞

=

tByBx
L
A

tByBx
L

A

tq
L

n
L

m
L

l
tq

c

L
i

c
ij

c
ijo

zc

j
U

i

c
ij

c
ijo

zc

j
j

zc

j

zc

j

xc

j
j

o

ηρηρ

πππ

&&&&

&&

 

(16)

 
The equations governing the panel modal amplitudes are obtained by making use of 
Eqs. (4), (7), (8) and (14). After making use of the orthogonality properties and 
boundary conditions, the equation governing each panel modal amplitude is obtained 
as: 
 

[ ]

( )
∑ ∫

∫∑

∑

=

∞

=

∞

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∇

−

+
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

−
=

+++

k

i
i

A
piiU

pztpztp
jj

t
i

A
p

s
Uijj

i
i

pp

zc

i
j

i
UiijijUjjjUjpp

tVAyx
dEhh

tpAyxptqByBx
L

A

tIyIxDtIyIxDth

p

p

ijij

1

231

1

)()(

1

)(d),(
)1(

)(d),()()1(

)(2)()(

χ
ν

βα

βα

ηηηρ &&

 

(17a)

 

[ ]

∑

∑
∞

=

∞

=

=

+++

1

)()(

1

)(

)(2)()(

i
i

pp

zc

i

i
LiijijLjjjLjpp

tqByBx
L
A

tIyIxDtIyIxDth

ijij

ηηηρ &&

 

(17b)

 
where the different spatial integrals are given by 
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In Eq. (17), the incident pressure loading can be expressed as the product of spatial 
and time domain functions; that is, 
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Now, Eqs. (16) and (17) can be represented in matrix from, after truncating the 
infinite number of modes to the first M  panel modes and  acoustic modes, as 
follows: 
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In these equations { } MM
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, , and . The different quantities in the above equation 
are given by: 
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The matrices  describe the structural-acoustic coupling, while the 
matrices represent the panel stiffness matrix. Equations (20) represent the time-
domain model developed for the system shown in Figure 1. After determining the 
modal amplitudes from these equations, the panel displacements  and the 
pressure fields inside the cavity can be obtained from the following 
relations: 
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3. NUMERICAL RESULTS 
 
Here, the numerical results obtained from the analytical model developed in this 
chapter are presented. The natural frequencies of the clamped panel have been 
calculated by using the following approximate formula, which is based on an energy 
(Raleigh) technique [5]: 
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where the dimensionless parameters G and H are given in [5]. These parameters are 
functions of the indices i  (in the x direction) and j  (in the y direction) and the 
boundary conditions for the plate. The cavity natural frequencies are calculated 
through the following equation [1]: 
 

 



 

Proceeding of the 12-th ASAT Conference, 29-31 May 2007 STR-16 8 
 

,....2,1,0,....2,1,0,....2,1,0;

2

222

===

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

kji

L
n

L
m

L
lcf

zc

i

yc

i

xc

io
ijk

πππ
π

 

(25)

 
where the indices are associated with the spatial functions of the rigid 
cavity mode in the directions respectively. The first few natural frequencies 
of the uncoupled and coupled system are tabulated as shown in Table 1. 
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Table 1. The undamped natural frequencies (Hz) of the uncoupled and coupled system 

 
Uncoupled System Coupled system 

Cavity Panel 

Mode Closed Form 
Formula Mode Blevins’s 

Approximate Formula 

Panels-Cavity-Panel 
System 

1 0 0 281.33 1 1 44.452 42.75 
0 0 1 337.6 2 1 76.017 43.85 
0 1 0 375.11 1 2 103.61 67.447 
1 0 1 439.45 3 1 127.66 68.407 
1 1 0 468.89 2 2 132.78 132.98 
0 1 1 504.66 3 2 181.7 134.11 
       180.24 
       181.31 
       285.41 

 
Due to the complexity of the structural-acoustic coupling of this system, the effect of 
the stiffness coupling matrix  and the inertia coupling matrix  on the coupled 
natural frequencies cannot be easily realized. In fact, the entries of  increase the 
values of the first few acoustic resonance frequencies above their uncoupled values, 
hence, contributing a “mass reduction” effect. On the other hand, the entries of  
decrease the values of the low (vibration) resonance frequencies below their 
uncoupled values, hence, contributing a “stiffness reduction” effect. 

pcK cpM
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4. CONTROL APPROACH 
 
4.1 State space design method 
The idea of state space comes from the state-variable method of describing 
differential equations [6]. The differential equations for a dynamic system can be 
represented in the state-variable-form vector equation 
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The column vector x  is called the state of the system and contains  elements in an 
nth-order system. For mechanical systems, the state vector elements consist of the 
positions and velocities of the separate bodies. The quantity 
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matrix; B is an  input matrix, C is a 1×n n×1  row matrix referred to as the output 
matrix, and  is a scalar called the direct transmission term. D
 
4.2 Multiple input-multiple output System 
In case of disturbance input, a multiple input multiple output system (MIMO) is 
suggested. Eq. (26) can be rewritten by using transformation matrices and  as 
follows 
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4.3 Optimal control design 
An optimal control system seeks to maximize the return from a system at the 
minimum cost. In general terms, the optimal control problem is to find a control u  
which causes the system  to follow an optimal trajectory  that 
minimizes a performance criterion, or cost function 
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effective and widely used method to design a full state feedback control for linear 
systems is the optimal Linear Quadratic Regulator (LQR). The control law that 
minimizes  is given by the linear state feedback J
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A more general form of the performance function is 
 

[ ]dtuRuxQxJ TT∫
∞

+=
0  

(31)

 
where  is a symmetric positive semi-definite state weighting matrix, and Q R  is a 
symmetric positive definite control effort weighting. Eq. (31) reduces to a simpler form 
[6] if we take  and CCQ Tρ= IR = .  
 

[ ]dttutyJ ∫
∞

+=
0

22 )()(ρ
 

(32)

 
4.4 Estimator design 
Since measuring the states is not possible, so estimation is the choice. If the 
estimate of the states is denoted by , then it will be convenient to replace the true x̂
state in the control law given by Eq. (30) by the estimates. The control becomes 
 

xKu ˆ−=  (33)
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One method of estimating the state is to construct a full-order model of the plant 
dynamics, 
 

BuxAx += ˆ&̂  (34)
 
This estimator will be satisfactory if we can obtain the correct initial condition  )0(x
and set equal to it. The equation for this scheme will be: )0(x̂
 

)ˆ(ˆˆ xCyLuBxAx −++=&  (35)
 
Here  is a proportional gain defined as L
 

][ 21 nlllL L= , (36)
 
and is chosen to achieve satisfactory error characteristics. The dynamics of the error 
can be obtained as 
 

eLCAe )( −=&  (37)
 
4.5 Combined control law and estimator 
If we take the control-law design described in Section 4.3, combined with the 
estimator design described in Section 4.4, the overall system dynamics in the state 
form is (Figures 2) 
 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⎥

⎦

⎤
⎢
⎣

⎡
e
x

LCA
BKBKA

e
x

0&

&

 
(38)

 
The response of the system depends mainly on the input signals that excite it. For 
plate-cavity-plate system, the upper plate is excited by the disturbance pressure 
which may take several shapes. The external disturbance applied to the top of the 
panel is expected to take one of the following types: (i) Impulse pressure: a sudden 
change of the ambient pressure above the panel, (ii) Damped periodic pressure: will 
be described by a damped sine wave, and (iii) Random pressure: a varying pressure 
wave in frequency and amplitude in a random fashion. 
 
 
5. SIMULATION RESULTS 
 
Using the previous analysis, numerical simulation is applied to the system. The 
objective in the simulation is to reduce the pressure inside the cavity. Figs. 3 to 5 
illustrate the resulting pressure response for different input types. It is observed that 
the maximum amplitude and the settling time are highly reduced and the response 
can be tuned to a certain values by adjusting the weighting factor used in the control 
model. 
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6. CONCLUSIONS 
 
In this work, model based on time domain state space approach have been 
developed for an active structural-acoustic control (ASAC) application. The resulting 
control schemes have been studied for reduction of the noise transmitted through a 
plate-cavity-plate system. It has been demonstrated that “appropriate” choices of the 
controller design parameter can result in decreasing the settling time required to 
damp the noise inside the cavity. Comprehensive mechanics-based analytical 
models have been developed to predict the structural-acoustic interactions in the 
case of Plate-cavity-plate system, where one plate is placed in the far field of a noise 
source at the top of the cavity, and the other is placed at the bottom of the cavity. 
Piezoelectric patches, which are bonded symmetrically to the top and bottom 
surfaces of the top plate, are used as actuators, and the acoustic pressure is 
calculated inside the cavity. The developed models have the following advantages: (i) 
They are capable of predicting the structural-acoustic interactions, and (ii) They take 
into account the coupling between the plate vibration and the pressure inside the 
cavity. The control scheme that has been developed throughout this work is 
combined optimal control law and estimator. 

 
The numerical results obtained for the coupled system show how the vibration and 
acoustic fields interact with each other. It was found that the entries of the mass 
matrix  increase the values of the first few acoustic resonance frequencies above 
their uncoupled values. On the other hand, the entries of  the stiffness matrix  
decrease the values of the low vibration resonance frequencies below their 
uncoupled values. Using the combined optimal control law and estimator scheme it is 
observed that this technique is efficient in reducing the maximum amplitude, and the 
settling time. 

cpM

pcK
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(a) (b) 
 

Fig 1. (a) Schematic of the panel-cavity-panel system used for the analysis model, (b) Centres 
locations of the actuator pairs on the plate and locations of the calculated pressure in the cavity 
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Fig 2. (a) Open loop block diagram for the panel-cavity-panel system, (b) Assumed closed loop system 
for the combined optimal control-law and estimator design in case of a disturbance input d 
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Impulse Input Response
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Fig 3. Uncompensated and compensated time responses due to impulse pressure input 

 
Random Input Response
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Fig 4. Uncompensated and compensated time responses due to random pressure input 

 
Damped Input Response
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Fig 5. Uncompensated and compensated time responses due to damped pressure input  
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