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Abstract—Demand Side Management (DSM) programs play a 

key role in the future smart grid through intelligently managing 

the loads. These programs are implemented via residential load 

management systems for smart cities. In which the power 

consumption pattern of the household appliances is scheduled to 

deliver desired benefits i.e. optimizing the ON-OFF cycles of 

appliances while minimizing end-user electricity costs, reducing 

the Peak to Average Ratio (PAR), and increasing user comfort. 

In this study, for fulfilling the previous features, optimized DSMs 

based on evolutionary techniques, that are genetic algorithm and 

binary particle swarm, have been proposed for scheduling 

residential users' appliances. The effectiveness of the suggested 

DSMs has been verified utilizing MATLAB simulator. According 

to the obtained results, the introduced methodologies optimally 

schedule the appliances, resulting in lower electricity bills and 

PAR. 

Keywords—Demand-side management; Smart home; Energy 

management system; Appliance scheduling; Binary particle swarm 

optimization; Genetic algorithm; Electricity pricing; Smart grid; 

I.  INTRODUCTION 

In traditional power grids, the demand and supply sides of 
the electricity are essentially separated, where the grid 
monitoring data should be handled only by the operations side. 
For achieving the purpose of power networks to be stable, they 
must be able to meet electrical demand on a consistent basis, 
which necessitates planning and communication on the 
generation and consumption subsystems. The smart grid aims 
to ensure transferring of the future networks into intelligent 
ones through the promotion of bi-directional information and 
active participation from whole inter-connected subsystems. 
The concept of demand management systems is used to 
accomplish this transformation. The Demand Side 
Management (DSM) strategies can be implemented for 
improving the utilization of renewable sources, increasing the 
economic profit, and reducing the feed grid power or 
minimizing the lower peak demand  [1]]. The DSM system 
takes the objective load curve as an input and requests that the 
control action be made for satisfying the target consumption. 
The algorithm may be unaffected by such criteria of generating 
the objective load curve. DSM schedules the connection times 
of specific interruptible and uninterruptible devices. The 
interruptible appliances are those devices that can be delayed as 
well as interrupted during the operating time, such as washing 
machines and clothes dryers, while the uninterruptible 
appliances are those appliances that can be delayed but is not 

acceptable to be interrupted during the operating time, such as 
ovens or the fans. DSM technique must be developed to 
manage complexities, such as operation time intervals of more 
than one hour for electrical appliances and the ability to 
processing many controlled electrical devices with varying 
features, such as varied power consumption features. 
Furthermore, DSM system aims to obtain the final load curve 
as close to the objective load curve as possible [[2]]. 

In last decade, the researchers try to develop applicable 
pricing mechanisms for energy management in smart grids. 
Time-of-use (ToU) pricing, day-ahead pricing (DAP), critical 
peak pricing (CPP), and real-time pricing (RTP) are some of 
the dynamic pricing schemes of energy [[3]].  ToU pricing 
refers to the price rate variation according to the time of day, 
whether it's peak, off-peak, or shoulder. Day-ahead pricing is 
based on deals supplied by utilities in order to establish supply 
and demand equilibrium in hourly intervals. RTP may be 
defined as the rate of actual electric power delivery, which 
varies from hour to hour. Demand management strategies are 
employed from wholesale market prices to control and manage 
pricing. Demand Response and DSM are considered as the two 
main economic factors concerning the demand management of 
the smart grids. Customers are encouraged to reduce the 
consumption in such a reaction of changing the energy cost 
concerning the grid's economic usage. Demand Response 
programs fall into the category of load control programs. 
Demand Response programs assist utilities in reducing energy 
consumption, conserving energy, redistributing energy 
consumption, improving system dependability, lowering 
energy prices, and increasing economic efficiency [[4]]. 

Smart homes give users with a comfortable, completely 
managed, and secure lifestyle. Furthermore, smart homes may 
ensure saving the energy and cash by offering green energy 
into the grid and earning from it. On the other hand, many 
governments are encouraged to sponsor new smart-home 
technologies due to the likely reduction in total household 
energy loads. The European Standard EN 15232 [[5]] 
encourages the incorporation of smart-home devices in 
residential areas to reduce power demand. Smart-home loads 
may be categorized based on how they operate: schedulable 
and non-schedulable loads. Non-schedulable loads, for 
instance, printers, and hairdryers, are operated on an as-needed 
basis without any predictable operating patterns, whereas 
schedulable loads, for instance washing machines and air 
conditioners, have a predictable operating pattern as they may 
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be through Smart Homes Energy Management Systems 
(HEMS). According to [[6]], manageable appliances can be 
categorized to interruptible and uninterruptible load in 
accordance with the impact of supply interruption on tasks. 

DSM programs shift the operation of demand responsive 
appliances for residential customers from peak to low price 
periods to meet the goals of lowering electricity consumption 
costs and lowering the Peak-to-Average Ratio (PAR). 
Residential customers can assist to enhance the energy 
efficiency of the distribution network and smart grid with 
participating in the DSM program, which helps to minimize 
blackouts, dependability, and stability issues. This research 
concentrates on a price-based DR technique for scheduling 
electrical devices that uses electricity price data from smart 
meters. Several authors are conducted their research to solve 
the difficult challenge of efficient appliance scheduling [[7]]. 
The primary purpose of the home energy management 
scheduling problem is to keep supply and demand balanced 
while lowering the electricity consumption cost (ECC). 
Researchers have proposed a variety of solutions to achieve the 
goals of lowering electric energy consumption costs, increasing 
consumer comfort, and lowering PAR. For this purpose, 
metaheuristic algorithms can be applied for evaluating the 
objective function solution methods, such as Genetic 
Algorithm (GA), Binary Particle Swarm Optimization (BPSO), 
Ant colony optimization (ACO), and others [[7]]. Authors 
concluded that the GA based EMC methodologies are better 
than other methods considering the terms of electricity bill 
saving and minimizing and maximizing of PAR for users’ 
satisfaction. However, the computational time of the algorithm 
is higher. Arafa et al. [[8]] introduced an enhanced version of 
the deferential evaluation algorithm to reduce the 
computational time for load scheduling in smart homes. 
Several classical and metaheuristic solution methods are 
reported for solving demand responsive appliances (DRAs) 
scheduling problem, including mixed-integer programming, 
rolling optimization, particle swarm optimization (PSO), grey 
wolf optimization, genetic algorithm (GA), and bat algorithm. 
Several classical and metaheuristic solution methods have been 
offered in other literature [[9]-[11]]. In [[12]], a mixed-integer 
nonlinear programming-based energy scheduling method was 
proposed to minimize ECC of residential consumers when 
energy prices were set at time-of-use. In [[13]], a mixed-integer 
linear programming methodology in order to optimally 
scheduling DRAs for minimizing ECC was presented. After 
DRAs scheduling, the power supply demand balance had been 
established. A dynamic programming solution for DRAs 
scheduling with predetermined time intervals and smart 
appliance preferences was proposed in [[14]]. The goal was to 
reduce ECC by transferring DRAs from high to low energy 
price times based on predetermined preferences. It can be 
summarized from the above-discussed literature that the 
optimization problem of HEMS can be optimized by applying 
algorithms of mixed-integer linear and non-linear, and integer 
linear programming and electron drifting. Moreover, 
techniques such as convex and dynamic programming have 
been applied with acceptable accuracy. Furthermore, GA, PSO, 
cuckoo search, score-based, and Dijkstra techniques have been 
applied for solving the addressed problem of HEMS. However, 
it is noted that these applied algorithms may culminate in 

several problems such as poor convergence characteristics,  
difficulties to find the global finest, or the weak ability to 
transact with the changeful nature of various DRAs.  

In this study, cost-effective appliance scheduling systems 
for residential users have been presented. The model uses the 
BPSO and GA algorithms to build optimum schedules and has 
been simulated in a ToU pricing tariff. The findings reveal that 
the proposed technique works with an acceptable performance 
for scheduling household electrical equipment and saves 
consumers money by lowering their electricity bills.  

The highlights of this paper can be written as the following: 

 To solve the DSM difficulties, an effective load 
management framework has been designed using the 
smart grid's two-way communication infrastructure 
under utility and Renewable Energy Sources (RESs).  

 The designed load management system has a Smart 
scheduler that schedules smart home loads using our 
suggested BPSO and GA techniques. 

 A price-based demand response program is introduced, 
which sends out ToU pricing signals to consumers, 
encouraging them to join the DSM and achieve peak 
clipping through load shifting. 

 An objective function is mathematically developed 
with the goal of minimizing high grid power imports 
during high peak hours and high peak demand, 
lowering peak costs, increasing the usage of renewable 
energy sources, and maximizing the economic gain. 

 A BPSO and GA optimization techniques has been 
presented for solving the DSM problem through the 
optimal scheduling of residential loads 

 Simulation results prove that the presented algorithm 
considerably decreases the electricity costs, reduces 
PAR and reduces consumer's discomfort. 

The paper can be arranged as the following. The studied 
system model has been designed and briefly described in 
Section II.  Section III deals with the problem formulation of 
the appliance scheduling. Section IV discusses simulation 
settings and results. Section V concludes the main outcomes of 
the paper. 

II. Modeling of the Proposed HEMS 

In a smart grid, DSM improves the grid's reliability and 
stability. It regulates energy consumption in the smart home 
through scheduling appliances in accordance with a scheduler 
built in the HEMS [[15]]. The smart meter enables two-way 
communication among the consumer and the utility; the first 
way can be named by the pricing signal while the other is 
called the load demand. The data has been forwarded to the 
HEMs using the smart meter, and the smart scheduler is used to 
schedule the smart home appliances using the price signal, load 
demand, and user preferences. Figure 1 shows the HEMS 
model. The smart scheduler collects tariff signal information as 
well as power flow, which are input into optimization 
algorithms to find the best scheduling to meet peak demand 
reduction goals. Considering the defined price of the electricity 
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price at certain hours, the demand is directly met through 
utilizing grid energy, and direct renewable energy. However, 
for distributing energy to residential loads, the on-site 
renewable energy source acts as a first option. The load 
management system decreases the amount of energy gained 
from the utility in this way. Furthermore, integrating on-site 
renewable energy with the HEMS model helps to decrease high 
peaks on the grid during times of high energy demand. 

 

Figure 1:   Proposed model of HEMS 

A. Smart Residential Appliances Modeling 

Home appliances have been classified to the following 
groups considering their types and functions. These categories 
include fixed load appliances, interruptible appliance or elastic 
appliances and uninterruptible deferrable appliances. All home 
appliances have been scheduled in the period of N-hours 
duration as stated by specified user preferences and   has been 
assumed 24 in this paper. The  -hours time duration set can be 
represented by,      *         +. Considering a house 
that has a set of   *            + of appliances | |  
 . The consumed energy of appliances has been presented in 
TABLE I. The household energy consumption of electric 
appliances without the presented HEMS is shown in Figure 2.  

The fixed appliances are those appliances whose operating 
length could not be changed. The smart scheduler is applied to 
schedule the appliances among the described time slots. Light 
and refrigerator can be considered as an example of the 
controlled appliances. The total consumed power    ( ) 
considering the fixed appliances in each time slot has been 
formulated as follows (1): 

    ( )  ∑ (∑         ( )     ) 
    

where     is a set of fixed appliances,    represents the power 
rating of    , and    ( ) represents the ON-OFF state of the 

fixed appliance in the corresponding time slot. 

Cloth dryers, dish washers, water heaters are just a few of 
the interruptible appliance that can be found in a residential 
home. These appliances can be shifted to any time slot. When 
they are required, they can be interrupted during operation and 
can be called interruptible appliance or elastic appliances. The 

total power consumption related to those devices    ( ) can be 
calculated using the following formula. 

    ( )  ∑ (∑         ( )     ) 
    

where    is a set of interruptible appliances,    has power 
rating of    , and    ( ) is ON-OFF state of the interruptible 
appliance in the relevant time slot. 

TABLE I.  THE PARAMETERS OF HOUSEHOLD APPLIANCES 

Load type Appliances 

Power 

rating 

(kw) 

Daily 

usage 

(hrs) 

fixed 
Lights 1.5 24 

refrigerator 1 24 

Interruptible 

or elastic 

Washing machine 1 3 

Cloth dryer 4 8 

Water heater 4.5 8 

Uninterruptible 
Oven 3 14 

Fan 0.7 16 

 
 

 

Figure 2: Appliances consumed energy without HEMS 

The last type of these appliances is uninterruptible 
deferrable appliances. The ability of delaying or earlier 
scheduling of these appliances is available but after the starting 
the interruption is not available during their operation. The total 
energy used with these appliances    ( ) at time instant,  , is 
determined as the following (3). 

    ( )  ∑ (∑         ( )     ) 
    

where     is the power rating and    ( ) is ON-OFF state of 
the appliance in that time slot. 

III. PROBLEM FORMULATION FOR APPLIANCE SCHEDULING 

A. Appliances Energy Utilization 

 For calculating the total hourly consumed energy of all 
appliances, the equation (4) can be used: 

   ( )     ( )     ( )     ( ) 
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where, 

    ( )  ∑ (∑         ( )     ) 
    

    ( )  ∑ (∑         ( )     ) 
    

    ( )  ∑ (∑         ( )     ) 
    

  

The cost of electricity is computed by multiplying the 
pricing signal by the amount of energy used by appliances. 

    ( )    ( )  ( ) 

where pricing signal   which changes the price rate according 
to the time of day, whether it's peak, off-peak, or shoulder. As 
mentioned above, many electrical tariffs may be utilized to 
determine the daily energy pricing such as ToU, DAP, RTP, 
CPP, and others. In this study ToU has been considered for 
energy pricing. In this study ToU has been considered for 
energy pricing. 

B. Energy Provision via Utility Grid Only 

The major goals for the appliance scheduling problem are 
to reduce the cost of the consumed energy    ( ) and to 
minimize the peak-to-average ratio. The suggested scheme's 
objective function for the household appliance scheduling 
problem using utility grid only can be expressed 
mathematically as: 

    (∑    ( )
 
   ) 

subject to: 

  ( )  {
                          
                          

 

       ∑    ( )
 
    

             

where    ( ) is the consumed energy by each appliance at 

time slot,       is the total demand energy of a household from 

grid,      is the amount of time delay for the appliances,     
is the load operating time, and  ( ) represents the ON-OFF 
status of the appliances    during the day. The cost 
minimization objective function is in (7) and in (8) a one-digit 
binary variable is provided to specify whether the appliance is 
required to be energized or de-energized (ON or OFF). Energy 
demand and balance for appliances denoted by (9) and (10) 
gives the most waiting time for an appliance to respond.  

C. Energy Trading 

HEMS imports energy from main grid in case of local 
energy depletion and exports energy to main grid in case of 
local excess energy availability. The overall energy transaction 
with main grid at time   is computed using the following 
equations. 

          

  ( )      (       ( )) 

  ( )     ( ( )     ( )) 

       ∑  ( ) 
    

where     is renewable energy generation from solar panels 
shown in Figure 3 and   is a matrix that represents ON-Off 
status for all appliances. The proposed objective function for 
the household appliance scheduling optimization problem 
utilizing the utility grid and solar energy resource can be 
expressed as: 

Objective function 

    .∑  ( ) 
     ( )/ 

Subject to: 

     ∑     ( )
 
    

 ∑       ( )  ∑       ( )  ∑        ( )
 
   

 
   

 
    

where (15) expresses the objective function of in case using 
solar energy, (16) is the total daily solar energy consumption, 
and (17) is the total consumed energy which equals the 
summation of the energy provided by the utility grid and that 
provided by the RES. 

 

 

 

 

 

 

 

 

 

Figure 3:  Solar energy 

D.  Peak-to-Average Ratio 

The peak-to-average ratio (PAR) is defined as the ratio 
between the highest energy demanded by a consumer and the 
average energy usage over a specific time period, i.e., 

     
    (  ( ))

      (∑   ( )
 
 )

 

where    ( )  *  ( )   ( )   ( )       ( )+ 

The PAR expresses the energy consumption behavior even 
for the utility and consumers. Accordingly, the utility tends to 
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Start 

Input the followings: 

 BPSO control parameters, 

 price data including 𝜉(𝑡),  
 power required for each appliance 

Give the initial values of BPSO 

population size, termination criterion, 

and the design variables 

Determine the Position of the best 
solutions and global solution 

among the population 

Update the position and 

velocity solutions based on 

equations (21-22) 

Swarm met the 

termination 

criteria? 

End 

Evaluation of all fitness 

particles 

No 

generate extra power at the time of peak demand. Therefore, it 
is essential for utility grid as well as the consumers to minimize 
their PARs. 

 

IV. OPTIMIZATION OF THE SCHEDULING PROCESS 

A. BPSO-Based Optimization  

Optimization can be defined as getting the perfect solution 
to a given problem under some constraints. Particle swarm 
optimization is the second population-based approach 
influenced by animals [[16]]. This simulation was used to solve 
an optimization problem for continuous nonlinear functions, 
simulating bird flocking and fish schooling foraging patterns. 
The BPSO technique is based on two fundamental concepts: 
velocity and positions for each particle. In a solution space, 
each particle has an initial position and velocity is generated 
randomly by (19). 

             (     ) 

Let   is the particles (variables) number,   is a vector with 
elements ranging from 1 to   i.e.   (            )   is 
population size or candidate of BPSO, and   is a vector with 
elements ranging from 1 to   i.e.   (            ). The 
particles converge toward the optimal solution positions as the 
program advances. 

   

[
 
 
 
             
             
    
             ]

 
 
 

 

   

[
 
 
 
             
             
    
             ]

 
 
 

 

Each particle tests the best particle in its neighborhood 
(local best particle). Accordingly, the position of the best 
considered particle is     ,                        -, whereas 

the global best position is     ,                        -. 
During iteration   the velocity and position of a particle   is 
updated as follows: 

   
        

          (     
 ( )     

 ) 

                                  (   
     

 ) 

    
       

     
    

where    
    is the element of the velocity vector of       particle 

at     iteration,    
    indicates the element position of 

   particle at     iteration, and       and       are two 
variables with random values ranging from 0 to 1. Where    
and    are two constants for pulling the particle position 
towards the local and the global best positions, respectively, 

and  is the weight of the momentum of the particle which can 
be expressed by (23): 

      
(     )  

    
 

where    is  the initial weight and    is the final weight, and 
     is the maximum number of iterations. During      
iterations, the global best solution     is chosen as an optimal 

solution by a smart scheduler. Thus, the status of the appliances 
which are represented as bits vector is determined. In current 
sampling period, the smart scheduler calculates the objective 
function cost against the pattern and transmits this pattern to a 
sample where cost of the objective function is minimum. The 
flow chart of the algorithm is given in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Flow Chart for BPSO 

B. GA-Based Optimization  

Genetic algorithms (GA) are a type of stochastic search 
optimization approach that solely uses function values in the 
search process to proceed toward a solution, regardless of how 
the functions are evaluated. In GA, a population of 
chromosomes is initialized, and each chromosome represents a 
solution where the size of population depends on complexity of 
problem. Qualification of each individual among the 
population is estimated by fitness function, the best 
chromosomes are chosen to transmit information to the 
following generation and genetic procedures such as mutation, 
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Start 

Input common GA control parameters 

including (number of iterations, population 

size, lower and upper bound of design 

variables), price data including 𝜉(𝑡), power 

required for each appliances 

Initialize population size, termination 

criterion, and the design variables 

Varying individuals 

Constraint 

satisfied 

End 

Evaluation of all fitness 

Evaluation 

No 

Survivor satisfied 
No 

Yes 

selection and crossover are performed upon the selected ones. 
Fitness of individuals increases as the number of generations 
increases. This process continues until it converges to the best 
set of chromosomes according to a given criterion [[18]-[19]]. 
The flow chart for GA is shown in Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5:  Flow Chart for GA 

The smart scheduler examines the pattern of the consumed 

energy with the best-chosen individuals and generates control 

signal to manage the appliances operation i.e., energized, or de-

energized. These individuals are utilized by the smart scheduler 

through a complete day (24-hour time horizon) and schedule 

the load to a time slot wherever it has a minimal cost. 

V. RESULTS AND DISCUSSIONS 

The simulated results of the proposed load management 

system are presented in this section. BPSO and GA 

optimization algorithms have been implemented to provide 

smart homes energy management systems. Numerical 

simulations have been conducted using MATLAB software to 

evaluate the effectiveness of the proposed scheduling schemes 

i.e., electricity cost savings, user comfort and PAR. the 

simulations depend on TOU electricity pricing scheme [[20]] 

for a residential area as presented in Figure 6. A model for a 

smart home has been introduced including eight smart 

appliances. Parametric values that are used in the simulation is 

shown in the TABLE I. Three different operating cases have 

been configured to test performances of the proposed BPSO 

and GA optimization schemes compared with the traditional 

operating case. The simulation has been conducted for 

complete one day i.e., 24-hour time period. 

Simulations have been performed for the following three 

cases: i) traditional user without HEMS, ii) Smart HEMS 

depending on the utility grid only as the energy source, iii) 

Smart HEMS depending on the utility grid and RES as energy 

sources. Maximum saving should be obtained by adjusting the 

load by changing the requests of the interruptible and 

uninterruptible appliances by turning them on and off in an 

optimized manner. 

 

 

 

 

 

 

 

 

 

Figure 6:  ToU pricing scheme. 

A. Traditional Use without HEMS: Case I 

Because the traditional use without HEMS architecture, the 

customer must depend on grid energy as the unique source of 

energy when it is needed. Figure 7 depicts the energy that got 

from the utility and consumed by appliances throughout 

various time slots. Figure 8 shows the cost of consumed energy 

for unscheduled loads and utilizing the ToU pricing tariff. 

 

 

 

 

 

 

 

 

 

 

Figure 7:  Consumed Energy for operating Case I 

B. HEMS with Utility Grid Only: Case II 

Two optimization schemes have been proposed for smart 

HEMS, i.e., BPSO-based and GA-based smart HEMSs. Both 

of those architectures try to avoid appliances operation during 

peak hours. Figure 7 shows the optimal scheduling for the 

under-study HEMS loads for a complete one day (over 24-hour 
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time horizon) utilizing BPSO-based and GA-based 

architectures, the figure illustrates the hourly energy 

consumption with no integration of the solar source to the 

smart home. It is clear from Figure 7 that, the unscheduled 

scenario produces peaks whereas the two BPSO and GA 

algorithms have optimized the consumed energy by handing 

out the load over the scheduling horizon with regard to cost 

minimization. Both algorithms have transferred high loads 

from peak cost slots to the middle and low-cost slots. In case of 

using BPSO, peaks that are produced in the unscheduled 

scenario in the time slots 2, 5, 10, 11, 20 and 21 reaching 12, 

16, 11.5, 11.5, 11 and 11 kwh, have been reduced to 2.5,12,7.5, 

8.5, 2.5 and 6.5 kwh, respectively. BPSO shows moderate 

behavior throughout middle and low cost for the scheduled 

loads. BPSO shows some peaks in the time-slots 6, 7, 9, 12, 13 

and 15 hours and it has maximum electricity consumption of 

16, 11.5, 16, 16, 19.7, 16.2 kWh as shown in Figure 7. 

The smart HEMS architecture based on GA optimization 

scheduling distributes the consumed energy optimally through 

transferring the loads during peak hours to off peak hours 

considering user preferences and constraints. The performance 

of load against the consumed energy is shown in Figure 7. 

Load has been reduced in peak from 12 to 2.5 kwh in time slot 

2, from 6.5 to 2.5 kwh in time slot 4, from 16 to 11.5 kwh in 

time slot 5, from 11 to 6.5 kwh in time slot 19, and from 11 to 

7 kwh in time slot 20 as shown in the figure.  

Load distribution has been modified from high peak hours 

(1-5 and 19-21) to low and middle peak (6-18) hours. 

Accordingly, the electricity cost and high peaks have been 

minimized as indicated by Figure 8. The total consumed energy 

with the proposed optimization techniques in the under study 

smart home against the traditional unscheduled use of energy is 

tabulated in TABLE II. 

TABLE II.  SUMMARY OF RESULTS. 

 

Figure 8 clarify the hourly pricing of consumed energy in 

case of unscheduled and scheduled load. The obtained results 

indicate that the bills of GA-based and BPSO-based scheduling 

schemes are considered convenient solutions. The two 

proposed techniques (GA and BPSO) have minimized the 

electricity cost remarkably. The total electricity bill 1700.75 

cent in traditional case, 1568.5 cent in case of BPSO with grid 

only, and 1609.25 cent in GA with grid only, indicating that 

HEMS that depends on BPSO and GA optimization algorithms 

minimize the electricity bill by 7.77% and 5.37% respectively. 

Figure 9 shows the peak to average ratio of Case II, it clear 

from the figure that PAR is feasibly minimized when utilizing 

smart HEMSs with BPSO and GA optimization than the PAR 

in case of unscheduled scenario. Figure 10 and Figure 11 show 

distribution of consumed energy of the household appliances 

over 24-hour time horizon after optimization implementing GA 

and BPSO optimization schemes, respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 8:  Bill per hour without RES. 

 

 

 

 

 

 

 

 

 

Figure 9:  PAR without RES. 

 

 

 

 

 

 

 

 

 

 

Figure 10:  Appliances consumed energy with GA-based HEMS  

Optimization 

Technique 

Energy 

consumption 

from grid 

Total 

cost 

Reduction 

from  

unscheduled 

case 

Saving 

% 
PAR 

Traditional case 199.2 1700.75 0 0 3.8554 

GA with grid 

only 
199.2 1609.25 91.5 5.37 2.5 

BPSO with grid 

only 
199.2 1568.5 132.25 7.77 2.3 

GA with RES 60.5 600 1100.75 64.72 2.1583 

BPSO with RES 51.5 433.75 1267 74.49 1.7 
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Figure 11:  Appliances consumed energy with BPSO-based HEMS 

C. HEMS with RES: Case III 

 Commonly RES such as solar energy sources are 

integrated into smart home network, so that the third scenario is 

conducted considering RES shown in Figure 3. The smart 

scheduler utilizes the RES energy where grid energy costs 

maximum and shifts the load to be fed from RES energy 

instead of the utility grid and thus reduces the electricity bill 

significantly. The performance of the proposed HEMSs is 

shown in Figure 12. Figure 3 shows that depending on solar 

irradiance during the day hours, solar energy is obtainable 

during specific time slots but with variable amount.   

The available solar energy can be used directly to cover the 

load demand. It is clear from Figure 12 that, with the 

integration of solar energy, high peaks have been reduced 

during off-peak hours. However, during on-peak hours (time 

slots from 1 to 5 and from 18 to22), the customer does not 

depend totally on the utility grid as the smart HEMSs transfer 

the loads to be fed from solar energy. Accordingly, electricity 

bill is so far minimized. Furthermore, the high peaks of the 

consumed energy and PAR are significantly minimized, 

resulting in enhancing the stability of the utility grid.  The PAR 

values after integrating solar energy source to smart home grid 

is shown in Figure 13, it is clear from the figure that PARs 

when utilizing RES are lower than those at Figure 9. 

Figure 14 illustrates the hourly pricing of the consumed 

energy in case of unscheduled and scheduled loads with RES 

integration. The daily electricity price in case of unscheduled, 

and scheduled load utilizing GA-based and BPSO-based smart 

HEMS are 1700.75, 600, 433.7 cents respectively, indicating 

that scheduling the loads using GA and BPSO schemes 

minimizes the daily electricity price by 64.72% and 74.49% 

respectively. Figure 15 and Figure 16 show distribution of the 

consumed energy of the household appliances over 24-hour 

time horizon after implementing GA and BPSO optimization 

schemes, respectively. It is obvious from the figures that, the 

scenario when utilizing BPSO-based HEMS with RES 

integration provide minimum cost comparing to others 

scenarios. 

 

 

 

 

 

 

 

 

 

 

Figure 12:  Energy consumption from grid per hour with RES. 

 

 

 

 

 

 

 

 

 

 

 

Figure 13:  PAR with RES. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14:  Energy consumption from grid per hour with RES. 
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Figure 15:  Appliances consumed energy with GA-based HEMS and RES 

 

 

 

 

 

 

 

 

 

 

 

Figure 16:  Appliances consumed energy with BPSO-based HEMS and RES 

VI. CONCLUSION 

This research proposes smart load management systems 

relying on optimization techniques to schedule the energy of a 

residential place in response to the ToU pricing with solar 

energy integration. A model has been introduced for the smart 

Homes Energy Management Systems (HEMS) where 

optimization techniques i.e., Genetic Algorithm (GA) and 

Binary Particle Swarm Optimization (BPSO) have been 

implemented to solve the scheduling problem for two different 

operating scenarios: without photovoltaic integration and with 

the photovoltaic system integration. This study aims to 

encourage the consumers to participate in RES generation and 

utilize smart HEMS to schedule the loads in order to solve the 

Demand Side Management (DSM) issues through coping with 

the gap between demand and generation. The aim of solving 

the DSM problem is to facilitate utility and end-users by 

minimizing electricity daily cost, the peak load demand, and 

emission of carbon dioxide via using clean energy sources. The 

obtained results show that, compared to operation without 

scheduling, the proposed GA-based HEM, and BPSO-based 

HEMS in case of using utility grid only as operating scenario, 

reduced electricity cost by 5.37%, and 7.77%; where it was 

reduced by 64.72and 74.49%; respectively, in case of 

integrating RES as operating scenario. In the future, the authors 

are willing to perform the scheduling process in real-time, in 

addition they will investigate other intelligent techniques for 

further reduction of the electricity bills at end uses. 
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