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Abstract 

Deep learning has exploded in prominence in scientific computing, with its 

techniques being utilized by a wide range of sectors to solve complicated 

issues. To perform certain tasks, all deep learning algorithms employ various 

forms of neural networks. This article looks at how deep learning algorithms 

function to replicate the human brain and how important artificial neural 

networks are. Deep learning is a branch of machine learning that aims to get 

closer to artificial intelligence's core goal. The summary and induction 

methods of deep learning are mostly used in this study. It begins with an 

overview of global progress and the current state of deep learning. Second, it 

discusses the structural principle, characteristics, and several types of 

traditional deep learning models, including the stacked autoencoder, deep 

belief network, deep Boltzmann machine, and convolutional neural network. 

Third, it covers the most recent advances and applications of deep learning in 

a variety of disciplines, including speech recognition, computer vision, natural 

language processing, and medical applications. Finally, it discusses deep 

learning's challenges and potential research areas. 

 

Keywords: Deep learning; Stacked auto encoder; Deep belief networks; Deep Boltzmann machine; Convolutional 

neural network 

 

1. Introduction 

Artificial neural networks are used in deep learning to execute complex computations on 

enormous volumes of data. It's a sort of machine learning that's based on the human brain's 

structure and function. Machines are trained using deep learning algorithms that learn from 

examples. Deep learning is extensively used in industries such as health care, eCommerce, 

entertainment, and advertising. 

Deep learning is nothing more than a collection of classifiers that work together and are based on 

linear regression and some activation functions. Its foundation is the same as the WTX + b 

technique used in traditional statistical linear regression. The only difference is that in deep 
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learning, there are many neural nodes instead of just one, which is known as linear regression in 

classical statistical learning. A neural network is made up of these neural nodes, and each 

classifier node is referred to as a neural unit of perception. Another issue worth mentioning is 

that there are numerous layers between the input and the output in deep learning. The number of 

neuronal units in a layer might range from hundreds to thousands. The hidden layers and hidden 

nodes are the layers that exist between the input and the output. Traditional machine learning 

classifiers have the disadvantage of requiring us to construct a complex hypothesis manually, 

however with a deep neural network, the hypothesis is created by the network itself, making it a 

great tool for learning nonlinear correlations. 

Machine learning is classified into two stages of development: shallow learning and deep 

learning. Prior to the reintroduction of deep learning into the research trend in 2006, the research 

focus was primarily on the shallow learning framework for data processing. In comparison to 

deep learning, shallow learning will be confined to two non-linear feature conversion layers. 

Logistic Regression [1-4], Support Vector Machines [5-8], Gaussian Mixture Models [9,10], and 

other shallow architectures are the most frequent. So far, shallow learning has only been able to 

solve problems with various constraints quickly and effectively; but it cannot tackle complex 

problems in the actual world, such as human voices, natural images, visual scenes, and so on. 

Shallow learning has a restriction that prevents it from processing information in the same way 

that the human brain does. Hinton et al. [11] proposed a deep belief network (DBN, Deep Belief 

Network) that was stacked using constrained Boltzmann machines in 2006. (RBM, Restricted 

Boltzmann Machine). Through unsupervised learning and training, they proposed an 

unsupervised training algorithm with greedy layer-by-layer. The data was then used to create an 

initial value for supervised learning. As a result, the deep learning framework was able to solve 

an issue that shallow learning was unable to handle. As deep learning became more popular, a 

growing number of scientists and technologists began to focus on the applications of deep 

learning research, which aided in the advancement of human intelligence. 

The study of deep learning is primarily manifested in the organization of numerous world-class 

artificial intelligence conferences, the formation of a world elite research group, the formation of 

an enterprise research team, and the ongoing applications of deep learning in artificial 

intelligence. Deep learning algorithms are constantly being developed, and new records are being 

made in a variety of data sets. For example, in a test procedure of image classification for 1000 

different photos, the image classification error rate reduced to 3.5 per cent after five years of 

continuous improvement of the deep learning model, which is higher than the accuracy of 

ordinary people. In reality, employing deep learning to teach machines how to effectively 

identify and categories photographs was a success. The deep learning model is constantly being 

updated as the core technology model of artificial intelligence in the big data environment, 

reflecting the latest research progress of current science and technology, and the deep learning 

model is constantly being updated as the core technology model of artificial intelligence in the 

big data environment, reflecting the latest research progress of current science and technology. 

 

2. Related Work 

The first step toward neural networks was taken in 1943, when Warren McCulloch, a 

neurophysiologist, and Walter Pitts, a young mathematician, published a paper on how neurons 

may work. They proposed an electrical circuit-based neural network. Donald Hebb proposed in 
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1949 that brain connections became stronger with each usage [12]. In the 1950s, IBM researcher 

Nathanial Rochester used IBM 704 computers to mimic abstract neural networks [13]. In 1956, 

four scientists collaborated on the Dartmouth Summer Research Project on Artificial 

Intelligence, which took place during the summer. John McCarthy, Marvin L. Minsky, Nathaniel 

Rochester, and Claude E. Shannon were the four scientists. They made a significant contribution 

to AI research [14]. 

Following the Dartmouth study in 1957, John Von Neumann claimed that telegraph relays or 

vacuum tubes may be used to mimic the function of a single neuron. Frank Rosenblatt, a Cornell 

neurobiologist, began working on the Perceptron in 1958. He was enthralled by the activity of a 

fly's eye. In a fly's eye, a large part of the preparation that instructs it to flee is done. The 

Perceptron, which was developed as a result of this research, is the most well-known and widely 

used neural network today. A single layer perceptron was shown to be useful for classifying a 

single-valued collection of inputs into one of two categories. The perceptron calculates a 

weighted sum of the data sources, subtracts a limit, and outputs one of two possible qualities. 

Bernard Widrow and Marcian Hoff of Stanford developed the ADALINE and MADALINE 1 

models in 1959. Multiple ADAptive LINear Elements were used in these models, which gave 

them their moniker. MADALINE was the first neural network to be used to solve a problem in 

the real world. It's an adaptive channel for removing echoes from telephone lines. This neuronal 

structure is still used in the workplace. 

Surprisingly, these previous victories led people to exaggerate the capabilities of neural 

networks, especially given the hardware limitations at the time. The excessive excitement that 

emanated from the academic and technical disciplines poisoned the writing of the day. As 

promises were unfulfilled, disillusionment crept in. Similarly, as essayists considered the impact 

of "figuring machines" on a man, a sense of dread developed. Asimov's arrangement on robots 

revealed the implications for man's ethics and attributes when machines were capable of 

performing all of humanity's tasks. Interest in the field was reignited in 1982. Caltech's John 

Hopfield presented a paper to the National Academy of Sciences 2. His strategy was to use 

bidirectional wires to create more valuable devices. Previously, there was just one route for 

neurons to connect. A combined US-Japan Conference on Cooperative/Competitive Neural 

Networks was also held in 1982. Japan announced a new Fifth-Generation effort on neural 

networks, while US journals raised concerns that the US would be left behind in the sector 

(Fifth-Generation processing incorporates computerized reasoning). 

The first era used switches and wires, the second era used transistors, the third era used strong 

state technology such as integrated circuits and higher-level programming dialects, and the 

fourth era used code generators.) As a result, there was increased subsidizing and, as a result, 

more field exploration. The American Institute of Physics began a yearly conference called 

Neural Networks for Computing in 1985. The first International Conference on Neural 

Networks, held by the Institute of Electrical and Electronics Engineers (IEEE) in 1987, gathered 

over 1,800 people.  Schmidhuber and Hochreiter proposed the Long Short-Term Memory 

(LSTM) recurrent neural network structure in 1997. In the realm of deep learning, long 

momentary memory (LSTM) is an artificial recurrent neural network (RNN) architecture [1]. 

LSTM has feedback connections, unlike normal feedforward neural networks. It not only cycles 

single information items (such as pictures), but also the entire stream of data (for example, 

speech or video). Yann LeCun released Gradient-Based Learning Applied to Document 

Recognition in 1998, which was a significant step forward in data learning [15]. 
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3. Activation Functions 

The activation functions that are inspired by human brain firing, i.e., it either fires or doesn't, are 

another crucial aspect in a neural network. In order to construct nonlinear interactions between 

the input and output, activation functions are used. This nonlinearity, paired with a large number 

of neural nodes and layers, resembles the structure of a human brain, which is why it's termed a 

neural network. Many activation functions exist (some of which are shown in Figure 1(B)). 

Different activation functions that are often employed, such as Sigmoid, Hyperbolic tangent, and 

Relu, are depicted in Figure 1. The activation function's job is to abstract and transform data onto 

a more classifiable plane. 

In most cases, the data is closely clustered; the activation function's role is to transform the data 

onto a different plane, which aids in analyzing the effects of various dimensions in the given 

situation. The sigmoid activation function, which is utilized in logistic regression, is the greatest 

and most famous example of the activation function. In fact, the logistic regression (see Figure 

1(A)) can be thought of as a single neuronal unit. The sigmoid function's job is to take any input 

and produce a value between 0 and 1 that can be utilized to solve classification problems. One 

hidden layer neural network with three hidden neural units in the hidden layer and one in the 

output layer is shown in Figure 1(C). The logistic regression model is comparable to this hidden 

unit. The distinction is that the input for the following layer comes from the one before it. We 

plotted a description of more than one hidden layer and more than one neuronal unit in each 

layer in Figure 1(D). The neural network can have several levels, and each layer can contain any 

number of neural units, as shown in Figure 1. 

 

 

Figure 1 Types of Activation Functions 

4. Parameter learning 
Deep learning classifiers, like typical machine learning classifiers, need the use of mathematical 

methods such as gradient descent to learn parameters. When learning parameters for convex 

functions, the gradient descent approach comes in handy. If a function has only one absolute 

minimum or maximum, it is said to be convex. If the function is convex, learning the parameters 

is simple; otherwise, converting a nonconvex function to a convex function requires some 

mathematical trickery. A convex optimization problem is another name for this problem. 
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However, in terms of physics, neural network optimization is a non-convex problem. It has a 

large number of optimum (minima/maxima) positions. Learning is accomplished by minimizing 

the difference between the expected and actual values. 

 

5. How Deep Learning Algorithms Work? 
While deep learning algorithms use self-learning representations, they rely on artificial neural 

networks (ANNs) that mimic how the brain processes information. Algorithms leverage 

unknown elements in the input distribution to extract features, organize objects, and uncover 

important data patterns throughout the training phase. This happens at various levels, employing 

the algorithms to develop the models, much like training machines for self-learning. Several 

algorithms are used in deep learning models. While no network is flawless, certain algorithms 

are better suited to specific jobs than others. To select the best, it's necessary to have a thorough 

understanding of all primary algorithms. 

 

6. Types of Deep Learning Algorithms 
Deep learning algorithms can handle practically any type of data and require a lot of processing 

power and data to solve complex problems. Let's take a look at the top ten deep learning 

algorithms. The following is a list of the top ten most widely used deep learning algorithms: 

1 Convolutional Neural Networks (CNNs) 

2 Long Short-Term Memory Networks (LSTMs) 

3 Recurrent Neural Networks (RNNs) 

4 Generative Adversarial Networks (GANs) 

5 Radial Basis Function Networks (RBFNs) 

6 Multilayer Perceptrons (MLPs) 

7 Self-Organizing Maps (SOMs) 

8 Deep Belief Networks (DBNs) 

9 Restricted Boltzmann Machines (RBMs) 

10 Autoencoders 

 

6.1. Convolutional Neural Networks (CNNs) 
CNNs [16], also known as ConvNets, are multilayer neural networks that are primarily used for 

image processing and object detection. In 1988, Yann LeCun created the first CNN, which he 

called LeNet. It could recognize characters such as ZIP codes and numerals. CNNs are 

commonly used to detect abnormalities, identify satellite photos, interpret medical imaging, 

forecast time series, and identify anomalies. Convolutional Neural Networks (CNN) are mostly 

employed in image processing. It assigns weights and biases to different items in the image and 

distinguishes them. In comparison to other classification methods, it requires less preparation. In 

order to capture the spatial and temporal dependencies in a picture, CNN employs relevant filters 

[17, 18]. LeNet, AlexNet, VG-GNet, GoogleNet, ResNet, and ZFNet are some of the different 

CNN architectures. Object detection, semantic segmentation, and captioning are just a few of the 

applications that CNNs are utilized for. 

Multiple layers process and extract features from data in CNNs: CNN features a convolution 

layer that consists of many filters that perform the convolution operation. CNNs have a Rectified 
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Linear Unit (ReLU) layer that performs operations on elements. A rectified feature map is the 

result. The rectified feature map is fed into a pooling layer after that. Pooling is a down sampling 

procedure that decreases the feature map's dimensionality. By flattening the two-dimensional 

arrays from the pooled feature map, the pooling layer turns them into a single, long, continuous, 

linear vector. When the flattened matrix from the pooling layer is given as an input, a fully 

connected layer arises, which classifies and labels the images. Figure 2 is an example of a CNN-

processed image. 

 

 

Figure 2 Example of Convolutional Neural Networks (CNNs) 

 

6.2. Long Short-Term Memory Networks (LSTMs) 
Long-term dependencies can be learned and remembered using LSTMs [19], which are a form of 

Recurrent Neural Network (RNN). The default behavior is to recall past information over long 

periods of time. LSTMs keep track of data throughout time. Because they remember past inputs, 

they are valuable in time-series prediction. Four interacting layers communicate in a unique way 

in LSTMs, which have a chain-like structure. LSTMs are commonly employed for voice 

recognition, music creation, and pharmaceutical research, in addition to time-series predictions. 

First, they forget about the portions of the previous state that aren't significant. They then update 

the cell-state values selectively. Finally, the state of some portions of the cell's output. Figure 3 is 

a diagram illustrating how LSTMs work. 
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Figure 3 Long Short-Term Memory Networks (LSTMs) 

 

 

6.3. Recurrent Neural Networks (RNNs) 
The outputs from previous states are given as input to the present state in recurrent neural 

networks (RNN) [20]. RNN's hidden layers have the ability to remember information. The output 

created in the previous state is used to update the concealed state. RNN may be used to predict 

time series since it has Long Short-Term Memory [19], which allows it to remember prior inputs. 

The outputs from the LSTM can be given as inputs to the current phase since RNNs contain 

connections that create directed cycles. The LSTM's output becomes an input to the current 

phase, and its internal memory allows it to remember prior inputs. Image captioning, time-series 

analysis, natural-language processing, handwriting identification, and machine translation are all 

common uses for RNNs. Figure 4 shows how an RNN looks like after it's fully unfolded. 

 

 

Figure 4 Recurrent Neural Networks (RNNs) 
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At time t-1, the output feeds into the input at time t. The output at time t feeds into the input at 

time t+1 in the same way. RNNs can handle any length of the input. The computation takes into 

consideration historical data, and the model size does not grow in proportion to the input size. An 

example of how Google's autocompleting feature works is illustrated in Figure 5. 

 

 

Figure 5 Recurrent Neural Networks (RNNs) for Google 

 

6.4. Generative Adversarial Networks (GANs) 
Ian Goodfellow spoke on Generative Adversarial Networks (GAN). It is made up of two 

networks: a Generator network and a Discriminator network. The generator creates the content, 

while the discriminator checks it for accuracy. The generator makes natural-looking images, and 

the discriminator determines whether or not they are natural. The GAN algorithm is a two-player 

minimax algorithm. Convolutional and feed-forward Neural Nets are used in GANs [21]. 

GANs are deep learning generative algorithms that generate new data instances that are similar 

to the training data. GAN is made up of two parts: a generator that learns to generate fake data 

and a discriminator that learns from that data. GANs have become increasingly popular over 

time. They can be used to improve astronomy photographs as well as to imitate gravitational 

lensing for dark matter investigations. GANs are used by video game producers to upscale low-

resolution, 2D graphics in older games by using image training to recreate them in 4K or greater 

resolutions. GANs aid in the creation of realistic images and cartoon characters, as well as the 

creation of photographs of human faces and the rendering of 3D objects. 

The discriminator learns to tell the difference between the bogus data generated by the generator 

and the genuine sample data. The generator generates fraudulent data during early training, and 

the discriminator quickly learns to recognize it as such. To update the model, the GAN delivers 

the results to the generator and discriminator. Figure 6 is a diagram illustrating how GANs work. 
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Figure 6 Generative Adversarial Networks (GANs) 

 

6.5. Radial Basis Function Networks (RBFNs) 
Radial basis functions are used as activation functions in RBFNs [22], which are a sort of 

feedforward neural network. They are used for classification, regression, and time-series 

prediction and have an input layer, a hidden layer, and an output layer. The similarity of the input 

to examples from the training set is used by RBFNs to do classification. The input layer of 

RBFNs is fed via an input vector. They have an RBF neuron layer. The output layer has one 

node per category or class of data, and the function finds the weighted total of the inputs. The 

Gaussian transfer functions, which have outputs that are inversely proportional to the distance 

from the neuron's center, are found in the neurons in the hidden layer. The output of the network 

is a linear combination of the radial-basis functions of the input and the parameters of the 

neuron. Consider the RBFN shown in Figure 7. 

 

 

Figure 7 Radial Basis Function Networks (RBFNs) 

 

6.6. Multilayer Perceptrons (MLPs) 
MLPs [23] are a great starting point to learn more about deep learning. MLPs are a type of 

feedforward neural network that includes multiple layers of perceptron with activation functions. 

MLPs are made up of two fully connected layers: an input layer and an output layer. They have 
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the same set of input and output layers, but they can have several hidden layers, and they can be 

used to create speech recognition, image recognition, and machine translation software. 

The data is fed into the network's input layer using MLPs. The signal flows in one way because 

the layers of neurons are connected in a graph. MLPs use the weights that exist between the input 

layer and the hidden layers to compute the input. To decide which nodes to fire, MLPs use 

activation functions. ReLUs, sigmoid functions, and tanh are all activation functions. From a 

training data set, MLPs train the model to grasp the correlation and learn the dependencies 

between the independent and target variables. An MLP is shown in Figure 8 as an example. To 

classify photos of cats and dogs, the diagram computes weights and bias and applies appropriate 

activation functions. 

 

 

Figure 8 Multilayer Perceptrons (MLPs) 

 

6.7. Self-Organizing Maps (SOMs)  
Professor Teuvo Kohonen created SOMs [24], which enable data visualization by using self-

organizing artificial neural networks to reduce the dimensions of data. The problem of humans 

being unable to visualize high-dimensional data is addressed through data visualization. SOMs 

are designed to assist people in comprehending this multi-dimensional data. SOMs use a vector 

at random from the training data to initialize weights for each node. SOMs look at each node to 

see which weights are most likely to be the input vector. The Best Matching Unit is the winning 

node (BMU).  

The BMU's neighborhood is discovered through SOMs, and the number of neighbors decreases 

with time. The sample vector is given a winning weight using SOMs. The weight of a node 

changes as it gets closer to a BMU. The farther away a neighbor is from the BMU, the less it 

learns from it. For N iterations, SOMs repeat step two. A diagram of an input vector with various 

colors is shown in Figure 9. This information is fed into a SOM, which converts it to 2D RGB 

values. Finally, it categorizes and divides the various colors. 
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Figure 9 Self-Organizing Maps (SOMs) 

6.8. Deep Belief Networks (DBNs) 
The first step for training the deep belief network is to learn features using the first layer. Then 

use the activation of trained features in the next layer. Continue this until the final layer. 

Restricted Boltzmann Machines (RBM) is used to train layers of the Deep Belief Networks 

(DBNs), and the feed-forward network is used for fine-tuning. DBN learns hidden pattern 

globally, unlike other deep nets where each layer learns complex patterns progressively [25]. 

DBNs are generative models that consist of multiple layers of stochastic, latent variables. The 

latent variables have binary values and are often called hidden units. DBNs are a stack of 

Boltzmann Machines with connections between the layers, and each RBM layer communicates 

with both the previous and subsequent layers. Deep Belief Networks (DBNs) are used for image-

recognition, video-recognition, and motion-capture data. Greedy learning algorithms train DBNs. 

For learning the top-down, generative weights, the greedy learning method employs a layer-by-

layer approach. On the top two buried layers, DBNs do Gibbs sampling steps. The RBM defined 

by the top two hidden layers is sampled in this stage. DBNs use a single pass of ancestral 

sampling through the rest of the model to generate a sample from the visible units. DBNs learn 

that a single bottom-up pass can infer the values of the latent variables in each layer. An example 

of DBN architecture is shown in Figure10: 

 

 

Figure 10 Example of Deep Belief Networks (DBNs) 

 

6.9. Restricted Boltzmann Machines (RBMs) 
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RBMs [26] are randomized neural networks developed by Geoffrey Hinton that can learn from a 

probability distribution across a collection of inputs. For dimensionality reduction, classification, 

regression, collaborative filtering, feature learning, and topic modelling, this deep learning 

algorithm is utilized. RBMs are the fundamental components of DBNs. RBMs are divided into 

two layers: visible and hidden units. Every visible unit is linked to every hidden unit. RBMs have 

no output nodes and have a bias unit that is coupled to all of the visible and hidden units. 

RBMs have two phases: forward pass and backward pass. RBMs accept the inputs and translate 

them into a set of numbers that encodes the inputs in the forward pass. RBMs combine every 

input with individual weight and one overall bias. The algorithm passes the output to the hidden 

layer. In the backward pass, RBMs take that set of numbers and translate them to form the 

reconstructed inputs. RBMs combine each activation with individual weight and overall bias and 

pass the output to the visible layer for reconstruction. At the visible layer, the RBM compares the 

reconstruction with the original input to analyze the quality of the result. Figure 11 illustrates 

how RBMs function: 

 

 

Figure 11 Restricted Boltzmann Machines (RBMs) 

 

6.10. Autoencoders 
Autoencoders [27] are a kind of feedforward neural network where the input and output are both 

the same. In the 1980s, Geoffrey Hinton invented autoencoders to overcome unsupervised 

learning difficulties. They're neural networks that have been trained to repeat data from the input 

layer to the output layer. Autoencoders are utilized in a variety of applications, including drug 

discovery, popularity prediction, and image processing. The encoder, the code, and the decoder 

are the three essential components of an autoencoder. Autoencoders are designed to take in 

information and turn it into a different form. Then they try to recreate the original input as 

closely as possible. When a digit's image isn't clear, it's sent into an autoencoder neural network. 

Autoencoders encode the image first, then compress the data into a smaller form. Finally, the 

image is decoded by the autoencoder, which produces the reconstructed image. Figure 12 shows 

how autoencoders work: 
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Figure 12 Autoencoders 

 

Autoencoders are used to reduce the dimension of data, as well as to solve problems like novelty 

detection and anomaly detection. The first layer in an autoencoder is produced as an encoding 

layer and then transposed as a decoder. Then, using the unsupervised method, teach it to 

duplicate the input. Fix the weights of that layer after training. Then go to the next layer until all 

of the deep net's layers have been pre-trained. Then go back to the original issue 

(Classification/Regression) that we want to solve with deep learning and optimize it using 

stochastic gradient descent, starting with the weights learned during pre-training. 

Autoencoder network consists of two parts [28]. The input is translated to a latent space 

representation by the encoder, which can be denoted in (1): 

ℎ = 𝑓(𝑥)  (1) 

The input is reconstructed from the latent space representation by the decoder, which can be 

denoted in (2): 

𝑟 = 𝑔(ℎ)  (2) 

In essence, autoencoders can be described in (3). r is the decoded output which will be similar to 

input x: 

𝑔(𝑓(𝑥)) = 𝑟  (3) 

 

7. Applications of deep learning 
In this section applications of deep learning in various areas will be covered. Following are the 

various applications of Deep learning. 

 

7.1. Natural language processing 
Deep learning is used in many domains in natural language, including voice translation, machine 

translation, computer semantic comprehension, and so on. In truth, deep learning has only been 

successful in two fields: image processing and natural language processing. In 2012, Schwenk et 
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al. [29] suggested a Deep Neural Network-based phrase-based statistical machine translation 

system (DNN). It learned meaningful translation probabilities for unseen sentences that were not 

included in the training set. Dong et al. [30] introduced a new AdaMC (Adaptive Multi-

Compositionality) layer in the recursive neural network in 2014. This model included many 

composition functions, each of which was adaptively chosen based on the input parameters. 

Tang et al. [31] presented a DNN for sentiment analysis on Twitter data in 2014. Google 

introduced its deep learning-based Word Lens identification engine in 2015, which used word 

lenses in real-time call translation and video translation. This technology could not only read the 

words in real-time, but it could also translate them into the target language. Furthermore, the 

translation job might be done over the phone without the need for networking. More than a 

visual translation of 20 languages might be done with today's technology. In addition, Google 

offered a Gmail automatic mail reply feature that used a deep learning model to extract email 

content and analyze it semantically. Finally, a response is generated depending on the semantic 

analysis. This method differs significantly from standard e-mail auto-responder capabilities. 

 

7.2. Speech recognition 
The researchers put in a lot of effort to achieve Human-Computer Interaction. Davis and others 

at the Bell Institute succeeded in developing the world's first experimental system that can 

recognize 10 English digital pronunciations in 1952. Speech recognition research has a few 

decades of history, and voice recognition was the dictator in some fields, as it was named one of 

the top 10 events in computer development by the US press. Speech recognition technology has 

progressed considerably during the last two decades. A huge number of voice recognition 

devices or apps have begun to transfer from the lab to the market as the deep learning model 

improves.  

Baidu released Deep Speech in 2014, a voice recognition system that uses deep learning 

technology and can attain an accuracy of 8% in noisy conditions. The phrase recognition error 

rate of Baidu's Deep Speech 2 was decreased to 3.7 per cent in February 2016. You et al. [32] 

introduced a node pruning strategy for reconstructing the DNN in 2015, which resulted in a 

novel bottleneck characteristic. In addition, Maas et al. [33] investigated alternative DNN 

architectures and settings for training very big voice data in 2017. They discovered that simple 

architecture and simple optimization strategies outperformed the other, more sophisticated 

models. 

 

 

7.3. Medical applications 
Deep learning's forecasting function, as well as its automatic feature detection, making it a 

preferred tool for disease diagnosis. Deep learning applications in medicine, whether in the use 

of frequency or in the use of species, are always improving. Li et al. [34] proposed the use of 

customized CNN to categorize lung image patches in 2014. To avoid overfitting, this model uses 

the dropout method and a single-volume structure. Li et al. [35] introduced a DNN-based 

framework for distinguishing the identity phases of Alzheimer's Disease (AD) using MRI and 

PET scan data in 2015. Srinukunwattana et al.  
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[36] introduced a spatially constrained convolutional neural network (SC-CNN) in 2016 to assess 

histopathology images and identify malignant cells' nuclei. Their SC-CNN method outperformed 

the traditional feature classification method in terms of accuracy. Google created a visual 

technology for detecting early-stage ocular disorders in 2016. They collaborated with the 

Moorfields Eye Hospital to give early preventative measures for diseases like diabetic 

retinopathy and age-related macular degeneration. A month later, Google applied deep learning 

techniques to create a head and neck cancer radiotherapy approach that could effectively regulate 

the patient's radiotherapy time while also minimizing the radiotherapy of the damage. Deep 

learning in the realm of precision medical care will become more important with the further 

development of deep learning technologies. 

 

7.4. Computer vision 
Artificial intelligence's most important application is computer vision [37]. It's an 

interdisciplinary field that studies how computers can understand digital images or videos to a 

high degree. For target object detection, tracking, measuring, and other visual difficulties, it can 

employ computers and cameras to replace the human eye. After that, take care of the graphics so 

that the computer can perform image processing beyond the human eye's capabilities. Baidu said 

in 2015 that it would improve ImageNet picture classification recognition performance. For the 

first time in computer performance, the image identification error rate was less than 5% in the 

test, which was beyond the human level mistake. Computer vision is a broad phrase that 

encompasses a wide range of academic topics. Followings are some well-known directions 

which comes under umbrella of computer vision. 

1. Image segmentation 

2. Face recognition 

3. Object detection 

4. Image semantic segmentation 

5. Video object segmentation 

6. Background/foreground separation  

 

7.5. Deep learning on graphs 
Researchers have been working on novel strategies for learning patterns from graph-structured 

data in recent years. Deep learning on graphs has been used to solve a diverse range of 

challenges. In 2018, for example, Qiu et al. [38] introduced an end-to-end deep learning 

framework for influential user prediction that used the user's local graph structure as input. 

Researchers have been working on novel strategies for learning patterns from graph-structured 

data in recent years. Deep learning on graphs has been used to solve a diverse range of 

challenges. In 2018, for example, Qiu et al. [38] introduced an end-to-end deep learning 

framework for influential user prediction that used the user's local graph structure as input.  

Monti et al. [39] have introduced a geometric deep learning framework based on a convolutional 

neural network and a recurrent neural network in 2017. By forecasting accurate ratings in the 

recommendation system, our model assisted with the matrix completion problem. In 2015, 

Duvenaud et al. [40] introduced a deep learning model for producing chemical characteristics 

based on convolutional neural networks, which solved the deep learning and graphs problem in 

chemistry. Gilmer et al. [41] created a deep learning framework for chemical property prediction 
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based on a message-passing neural network in 2017. Kearnes et al. [42] built a molecular graph 

convolutional neural network for undirected molecular graphs in 2016. In 2018, You et al. [43] 

proposed a goal-directed graph generation model based on reinforcement learning called the 

Graph Convolutional Policy Network (GCPN). The approach has been widely used in chemistry 

and drug development, where novel molecules must be discovered within certain chemical 

parameters such as drug-likeness and synthetic accessibility.  

Cao and Kipf [44] introduced the Generative Adversarial Network (GAN) in 2018, which is 

based on a likelihood-free generative model. This model could also generate compounds with 

specific molecular characteristics. Coley et al. [45] used a graph convolutional network on an 

undirected molecular graph to address the molecular graph representation problem in 2017. They 

took into account atom and bond attributes, atom neighbor, radii, and other parameters in 

addition to the molecular graph structural attribute. Xie et al. [46] developed the Crystal Graph 

Convolutional Neural Network framework in 2018, which was capable of learning material 

attributes from the crystal atomic link structure, which might be extremely useful in new material 

design. Ktena et al. [47] applied graph convolutional neural networks to predict graph similarity 

in identity brain diseases in 2017. It was usual practice to treat complex diseases by 

administering a large number of medications at once that targeted complex diseased proteins.  

However, when another medicine is present, the effect of changing one drug is often not noticed 

in clinical trials. In 2018, Zitnik et al. [48] presented Decagon, a graph convolutional network-

based framework, to overcome this challenge. Decagon was able to forecast what side effects 

two medications could have on a patient. Parisot et al. [49,50] employed graph convolutional 

networks to predict brain illness in 2017 and 2018. Assouel et al. [51] also suggested a 

conditional graph generative model in 2018. 

 

7.6. Intelligent transportation system 
Smart cities are the research emphasis of the twenty-first century [52, 53], and intelligent 

transportation systems (ITS) are at the heart of them. Throughout history, transportation systems 

have served as the backbone of every country. According to a report published in 2011 by Zhang 

et al. [53], 40% of the world's population spends at least one hour on the road every day. 

Vehicles are becoming more difficult to control without the assistance of technology as the 

world's population grows. Citizens of the United States used 181,541 public transportation 

vehicles in 2019, taking 9.9 billion trips totaling 55.8 billion kilometers. It appears that smart 

transportation is in high demand throughout the world's major cities. 

Letters and digits to sound photos and movies are all examples of transportation data. For 

example, image recognition and video surveillance are required for an autonomous passenger 

counter that predicts revenue collection. We need to examine which route people took the most 

and at what time, in addition to the automatic passenger counter. It requires GPS and road map 

data. Non-human created data, such as 'weather,' is occasionally required. These disparate data 

originate from a variety of sensors located in various areas, such as traffic lights, autos, and so 

on. 

Destination prediction, traffic signal control, demand prediction, traffic flow prediction, 

transportation mode, and combinatorial optimization are the primary problems that ITS works 

on. Veras et al. [54] published work in 2019 that shows how deep learning has been used to solve 

the following difficulties. 
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1. Destination prediction 

2. Demand Prediction 

3. Traffic Flow Prediction 

4. Travel Time Estimation 

5. Predicting Traffic Accident Severity 

6. Predicting the Mode of Transportation 

7. Trajectory Clustering 

8. Navigation 

9. Demand Serving 

10. Traffic Signal Control 

11. Combinatorial Optimization 

8. Conclusion 
Deep learning technology is used in a variety of disciplines and research areas, including speech 

recognition, image processing, graphs, medicine, and computer vision. It is one of the most 

rapidly evolving and adaptable technologies in history. The issues arise from the existence of 

large amounts of complex data, which makes it difficult to use deep learning to address the 

problem successfully. Building an adequate deep learning model in the context of an application 

is becoming increasingly difficult. Although deep learning is still in its infancy and there are still 

issues to be resolved, it has demonstrated a great learning ability. In the realm of future artificial 

intelligence, it is still a hot study topic. This paper has gone over some of the more well-known 

advances in deep learning and their applications in a variety of fields. Finally, deep learning 

applications are discussed in more detail. Because there are so many scientific problems that are 

being solved every day, deep learning can occasionally obtain surprising and better results in 

fields like image processing and diabetic retinopathy diagnosis, which is exceedingly difficult to 

diagnose by human experts. Diabetic retinopathy diagnosis is, in truth, nothing more than an 

application of image processing. As a result, a breakthrough solution in one discipline may be a 

game-changer in another. Deep learning is gaining a lot of traction, and new applications and 

technologies are being developed every day. Following are a few active study fields that, based 

on our little understanding, will continue to receive attention in the near future.  (1) Generative 

models based on deep neural networks, such as Generative adversarial networks, (2) Deep 

learning for non-Euclidean data, such as Deep learning for graphs, Geometric deep learning, and 

Hyperbolic neural networks, (3) Deep Learning for spatiotemporal data mining, and (4) How to 

improve the structures and algorithms of a deep neural network model, among other topics. 
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