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  البحثلخص م
 لا يمكن معالجة البيانات من خـلال التوزيعـات          الأحيانكثير من    في
توزيعات جديدة تصلح لمعالجة تلـك البيانـات،         إيجاد لذا كان لزاماً     التقليدية

المعممة حيـث اعتمـدت     استخدام التوزيعات    إلىأوجد الحاجة    الذي الأمر
 أسلوبيندراسات توليد التوزيعات الجديدة من توزيعات موجودة بالفعل على          

 : الثاني والأسلوبتوزيع موجود بالفعل     إلىمعلمة جديدة    إضافة وهو   :الأول
 لإيجاد من التوزيعات الموجودة بالفعل وذلك       أكثر أوهو الدمج بين توزيعين     

 الثاني من خلال    الأسلوبيتم دراسة   توزيع جديد يحصل خصائص جيدة وس     
ذلك بالتطبيق على توزيع تـشن       المعممة المرجحة و   الآسيةتوزيعات العائلة   

 والرياضية للتوزيـع المقتـرح وفـي      الإحصائيةومن ثم دراسة الخصائص     
ملائمة  ولبيان مدى    "الأكبر الإمكاندالة  "النهاية دراسة تقدير المعلم بطريقة      

  .التوزيع المقترح تم التطبيق على مجموعة بيانات حقيقية
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Abstract 
        The modeling and analysis of lifetimes is an important aspect of 

statistical work in a wide variety of scientific and technological 

fields. The study suggested for the first time, the called Odd 

generalized-Exponential Chen (OGECD) distribution. The new 

suggested distribution can have a decreasing and upside-down 

bathtub failure rate function depending on the value of its parameters; 

it's including some special sub-model like generalized Pareto 

distribution and its exponentiated. Some structural properties of the 

suggested distribution are studied including explicit expressions for 

the moments. The density function of the order statistics and their 

moments are obtained. Maximum likelihood is used for estimating 

the distribution parameters and the observed information matrix is 

derived. The information matrix is easily numerically determined. 

Monte Carlo simulations and the application of two real data sets are 

performed to illustrate the potentiality of this distribution. 

 Keywords and Phrases: Odd Generalized-Exponential, Chen 

Distribution, Hazard function, Moment, Maximum likelihood 

estimation. 

 

1-INTRODUCTION 

When modeling monotonic hazard rates, the exponential, 

gamma, lognormal, and Weibull distributions may be initial 

choices. However, these distributions have several limitations. 
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First, none of them exhibit bathtub shapes for their hazard rate 

functions. These distributions exhibit only monotonically 

increasing, decreasing, or constant hazard rates. The most 

realistic hazard rate is bathtub-shaped. This occurs in most 

real-life systems. For instance, such shapes occur when the 

population is divided into several subpopulations having early 

failures, wear out failures, and more or less constant failures. 

Therefore, a perfect bathtub consists of two change points and 

a constant part enclosed within the change points. Usefulness 

of bathtub shape is well recognized in several fields. Many 

parametric probability distributions have been introduced to 

analyze real datasets with bathtub failure rates. Chen (2000) 

proposed a new two-parameter lifetime distribution with 

bathtub-shaped or increasing failure rate (IFR) function. Let X 

be a non-negative random variable with Chen’s distribution, 

then its corresponding cumulative and probability distribution 

functions (c.d.f) and (p.d.f) is given 

                                      (1) 

                 (2) 

where λ > 0 and β > 0 are shapes parameters. The new two-

parameter distribution has some useful properties compared 

with other well-known models. Xie et al. (2002) extended the 
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Chen’s distribution adding other parameter and named it the 

extended-Weibull distribution, due to relation to the Weibull 

distribu on. Pappas et al. (2012) proposed a four-parameter 

modified Weibull extension distribution using the Marshall and 

Olkin (1997) technique. Therefore, one of its par cular cases 

could be named as Marshall-Olkin extended Chen’s 

distribution. 

Generated families of continuous 

distributions are recent development which 

provide great flexibility in modelling real 

data. These families are obtained by 

introducing one or more additional shape 

parameter(s) to the baseline distribution. 

Some of the generated families are listed as 

follows; the beta- genertaed (B-G) (Eugene et 

al. 2002) (Jones, M.C 2004), gamma-G (type 1) 

(Zografos and Balakrishnan 2009), Kumaraswamy-

G (Cordeiro and Castro 2011), McDonald-G 

(Alexander et al. 2012), gamma-G (type 2) 

(Risti´c  and Balakrishnan 2012), transformed-

transformer-G (Alzaatreh et al. 2013), 
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Weibull-G (Bourguignon et al. 2014), odd 

generalized exponential-G (OGE-G) (Tahir et al. 

2015), Kumaraswamy Weibull-G (Hassan and  

Elgarhy 2016), among others. Our interest 

here, with the OGE-G family which is flexible 

because of the hazard rate shapes: increasing, 

decreasing, J, reversed-J, bathtub and upside-

down bathtub. The cdf and pdf of the OGE-G are 

defined as follows 

   (3) 

      (4) 

where is the baseline pdf. We can omit the 

dependence on the vector of parameters ξ and write simply 

 Equation 4 will be most tractable when the 

cdf  and pdf  have explicit expressions. Hereafter, a 

random variable  with density function (4) is denoted by 

. The main motivations for using the OGE 

family are to make the kurtosis more flexible (compared to the 
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baseline model) and possible to construct heavy-tailed 

distributions that are not long-tailed for modeling real data.  

The study offer a physical interpretation of when  is an 

integer. Consider a system formed by  independent 

components following the odd exponential-G class 

(Bourguignon et al. 2014) given by 

 
 

Suppose the system fails if all α components fail and let X 

denote the lifetime of the entire system. Then, the cdf of X is 

 which is identical to (1). 

The hrf of X is given by 

                

(5) 

To increase the flexibility for modeling purposes 

it will be useful to consider further alternatives 

to PF (under study in this paper) distribution. Our 

purpose is to provide a new four-parameter model, 

named as odd generalized exponential Chen 
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Distribution (OGECD) using the OGE-G family. The 

suggested model is quite flexible in terms of 

hazard rate could be increasing, decreasing, U and 

J-shaped. Also, paper show its flexibility on the 

basis of three real life data. 

 

       This paper is outlined as follows. In section 2, we define the 
OGECD distribution and provide expansions for its cumulative 
and density functions. A range of mathematical properties of 
this distribution is considered in sections 3. Maximum 
likelihood estimation is performed and the observed information 
matrix is determined in section 4. In section 5, we provide 
application to several real data sets to illustrate the potentiality 
of this distribution. Finally, some conclusions are addressed in 
section 6. 

 

2- THE OGECD DISTRIBUTION 

In this section, the study introduce the new 

suggested odd generalized exponential Chen 

distribution. The pdf, cdf, reliability function, 

hrf, reversed-hazard rate function and cumulative 

hazard rate function of the OGECD distribution are 

derived 

   The probability distribution function is: 
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   (6) 

         

   where   and ( ), are non-negative shape 

Parameters. The corresponding cdf and Hazard Rate Function 

are  

      If   is the Chen cumulative distribution (1) with 

Parameter  then equation (3) yields the OGEC 

cumulative distribution  

          (7) 

and 
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Respectively 

Some plots of the cdf and pdf of OGECD 

distribution for some selected parameter 

values. Figure 1 indicates that the cumulative 

and densities of the OGECD take different 

shapes. 
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Figure 1: Plots of the OGECD distribution function for some parameter 

values. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 2: Plots of the OGECD density function for some parameter values. 
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Figure 3: (a) Plots of the OGECD survival function for some values of   a. 
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                 (b) Plots of the OGECD survival function for some values of   b.  
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4: Plots of the OGECD hazard rate 
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Figure 3,4 indicates that OGECD survival and hrfs can 

have increasing, decreasing, J and U-shaped. This 

fact implies that the OGECD can be very useful for 

fitting data sets with various shapes. 

3- Statistical and Reliability Properties 

3.1 Quantile function and simulation 
 Here, the method for simulating from the OGEC distribution (6) is 

presented. The quantile function corresponding to (6) is 

           

Simulating the OGECD random variable is 

straightforward. Let  be a uniform variate on the unit 

interval . Thus, by means of the inverse 

transformation method, we consider the random variable 

 given by 

  

which follows (6), i.e.  . 
 
3.2 Skewness and Kurtosis 
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      The shortcomings of the classical kurtosis measure are well-

known. There are many heavy tailed distributions for which this 

measure is infinite. So, it becomes uninformative precisely 

when it needs to be. Indeed, our motivation to use quantile-

based measures stemmed from the non-existance of classical 

kurtosis for many of the OGEC distributions 

The Bowley’s skewness (see Kenney and Keeping 1962) is 

based on quartiles: 

 
And the Moors’ kurtosis (see Moors (17)) is based on octiles: 

 

Where  represents the quantile function 

4- Estimation and information matrix 
 

    In this section, the study discuss maximum likelihood 

estimation and inference for the OGECD distribution. Let 

 be a random sample from  
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where  be the vector of the model 

Parameters, the log-likelihood function for  reduces to  

  

 

 

By setting  

 

Where  
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and 

 

 

 

Where  

The maximum likelihood estimates (MLEs) of the parameters 

are the solutions of the nonlinear equations , which are 

solved iteratively. The observed information matrix is 

 
    Where  denotes the partial second derivatives of , the 

above information matrix can be estimated using the parameter 

estimates. 

5. Empirical Applications 

In this section, we illustrate the usefulness of the OGECD 

distribution.  
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Real Data Applications 
    In this section the paper use several real data sets to 

compare the fits of OGECD distribution with those of 

comparision other models.  In each case parameters are 

estimated via the MLE method described in Section 4 using the 

MATHCAD software. First describe the data sets. Then report 

the MLEs (and the corresponding standard errors in 

parentheses) of the parameters and the values of the AIC 

(Akaike Information Criterion), CAIC (Consistent Akaike 

Information Criterion) and BIC (Bayesian Information Criterion) 

statistics. 

,                 

 

     Where  denotes the log-likelihood function evaluated at 

the maximum likelihood estimates,  is the number of 

parameters, and  is the sample size.  Next, shall compare the 

proposed OGECD distribution with several other lifetime 

distributions data set, Kumaraswamy Fréchet distribution KwF 

(Mead, et al. (2014)), the beta Fréchet (BF) (Nadarajah and 
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Gupta, (2004) and Souza et al., (2011)).   Finally, we perform 

the Kolmogorov-Smirnov (K-S) statistic and  tests. 

The Strengths of 1.5 Cm Glass Fibers 

    Here, the data set is obtained from (Faton et al. (2013)). The 

data are consis ng of 63 of the strengths of 1.5 cm glass fibers, 

measured at the National Physical Laboratory, England. 

Unfortunately, the units of measurement are not given in the 

paper. The data are listed in the next table 
 

Table 1: The Strengths of 1.5 cm Glass Fibers Data Set. 

 

Uncensored Data “Carbon Fibers” 

    Here, the real data set will use here to compare the fits of the 

OGECD distribution and other models. Considering an uncensored 

0.55 0.93 1.25 1.36 1.49 1.52 1.58 
1.61 1.64 1.68 1.73 1.81 2.00 0.74 
1.04 1.27 1.39 1.49 1.53 1.59 1.61 
1.66 1.68 1.76 1.82 2.01 0.77 1.11 
1.28 1.42 1.5 1.54 1.6 1.62 1.66 
1.69 1.76 1.84 2.24 0.81 1.13 1.29 
1.48 1.5 1.55 1.61 1.62 1.66 1.7 
1.77 1.84 0.84 1.24 1.3 1.48 1.51 
1.55 1.61 1.63 1.67 1.7 1.78 1.89 
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data set corresponding an uncensored data set from Nichols and 

Padgett (2006) consisting of 100 observations on breaking stress of 

carbon fibers (in Gba):  

Table 2: On breaking stress of carbon fibers set 

 

1.41 0.39 2.97 1.36 0.98 2.76 4.91 3.68 1.84 1.59 
1.57 1.08 2.03 1.61 2.12 1.89 2.88 2.82 2.05 3.65 
1.84 1.17 3.68 2.48 0.85 1.61 2.79 4.7 2.03 1.8 
2.17 1.57 5.08 2.48 1.18 3.51 2.17 1.69 1.25 4.38 
3.15 2.35 2.55 2.59 2.38 2.81 2.77 2.17 2.83 1.92 
3.19 2.41 0.81 5.56 1.73 1.59 2 1.22 1.12 1.71 
3.39 2.43 4.2 3.33 2.55 3.31 3.31 2.85 2.56 3.56 
3.7 2.74 2.73 2.5 3.6 3.11 3.27 2.87 1.47 3.11 

3.75 2.81 2.95 2.97 3.39 2.96 2.53 2.67 2.93 3.22 
4.42 3.68 3.19 3.22 1.69 3.28 3.09 1.87 3.15 4.9 
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Table 3. MLEs of the model parameters, the corresponding SEs 

(given in parentheses) and the statistics AIC, BIC and CAIC 

 

  
  

       

0.7658 48.475 2.025 2.6843 

OGECD 

(0.181) (30.634) (10.666) (1.031) 
52.296 33.012 25.349 

5.50397 857.34273 2.11623 0.74044 KwF 
 (7.982) (153.948) (4.555) (0.071) 

47.621 56.193 45.306 

19.59068 30.41091 1.33081 0.6849 

G
la

ss
 F

ib
er

s 

BF (18.115) (18.238) (1.085) (0.181) 
69.735 78.307 67.421 

3.682 42.858 3.256 4.226 

OGECD (0.00371) (0.1111) (0.00001) (0.000002) 

184.275 147.896 143.168 

6.76357 904.34345 2.90998 0.332 
KwF (2.393) (61.863) (2.259) (0.028) 

292.926  303.347 291.035 

0.42934 138.06644 34.38484 0.72474 

C
ar

bo
n 

Fi
be

rs
 

BF (0.236) (113.552) (21.52) (0.19) 
293.733 304.154 291.842 
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 Table 4: K-S and statistics for the chosen Real data 

 

 

 

 

 

 

 

 

 

 

 

 

  Since the values of the AIC, BIC and CAIC are smaller for the OGECD 

distribution compared with those values of the other models, the OGECD 

distribution seems to be a very competitive model to these data. In 

summary, the proposed OGECD distribution produces better fits to the data 

than other models. 

 
 

 

  

 

 

Data  Model 

OGECD 

 
0.112 Glass Fibers 

 
28.325 

 
0.427 Carbon Fibers 

 
142.346 
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Fig. (4)  The Fitted Q-Q Plots and P-P Plots for the 63 of the 
strengths of 1.5 cm glass fibres data set & 100 observa ons on 
breaking stress of carbon fibers and Empirical CDF. 

 

6. CONCLUDING REMARKS 

    The well-known OGED distribution is extended by 

introducing two extra shape parameters, thus defining the Odd 

generalized-Exponential Chen (OGECD) distribution having a 

broader class of hazard rate and density functions. This is 

achieved by taking (1) as the baseline cumulative distribution. A 

detailed study on the mathematical properties of the new 

distribution is presented. The estimation of the model 
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parameters is approached by maximum likelihood and the 

observed information matrix is obtained. An application to a 

real data set indicates that the fit of the new model is superior to 

the fits of its principal models. We hope that the proposed 

model may be interesting for a wider range of statistical 

research. 
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