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Abstract
The modeling and analysis of lifetimes is an important aspect of

statistical work in a wide variety of scientific and technological
fields. The study suggested for the first time, the called Odd
generalized-Exponential Chen (OGECD) distribution. The new
suggested distribution can have a decreasing and upside-down
bathtub failure rate function depending on the value of its parameters;
it's including some special sub-model like generalized Pareto
distribution and its exponentiated. Some structural properties of the
suggested distribution are studied including explicit expressions for
the moments. The density function of the order statistics and their
moments are obtained. Maximum likelihood is used for estimating
the distribution parameters and the observed information matrix is
derived. The information matrix is easily numerically determined.
Monte Carlo simulations and the application of two real data sets are

performed to illustrate the potentiality of this distribution.

Keywords and Phrases: Odd Generalized-Exponential, Chen
Distribution, Hazard function, Moment, Maximum likelihood

estimation.

1-INTRODUCTION

When modeling monotonic hazard rates, the exponential,
gamma, lognormal, and Weibull distributions may be initial

choices. However, these distributions have several limitations.
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First, none of them exhibit bathtub shapes for their hazard rate
functions. These distributions exhibit only monotonically
increasing, decreasing, or constant hazard rates. The most
realistic hazard rate is bathtub-shaped. This occurs in most
real-life systems. For instance, such shapes occur when the
population is divided into several subpopulations having early
failures, wear out failures, and more or less constant failures.
Therefore, a perfect bathtub consists of two change points and
a constant part enclosed within the change points. Usefulness
of bathtub shape is well recognized in several fields. Many
parametric probability distributions have been introduced to
analyze real datasets with bathtub failure rates. Chen (2000)
proposed a new two-parameter lifetime distribution with
bathtub-shaped or increasing failure rate (IFR) function. Let X
be a non-negative random variable with Chen’s distribution,
then its corresponding cumulative and probability distribution
functions (c.d.f) and (p.d.f) is given
Flx; 2,6) = 1 —exp{A(1 -’ )) (1)
flx; 4, 8) = 28 x5 Texp(a (1 —e*” ) + x¥) =0 (2)

where A > 0 and B > 0 are shapes parameters. The new two-
parameter distribution has some useful properties compared

with other well-known models. Xie et al. (2002) extended the
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Chen’s distribution adding other parameter and named it the
extended-Weibull distribution, due to relation to the Weibull
distribution. Pappas et al. (2012) proposed a four-parameter
modified Weibull extension distribution using the Marshall and
Olkin (1997) technique. Therefore, one of its particular cases
could be named as Marshall-Olkin extended Chen’s

distribution.

Generated families of continuous
distributions are recent development  which
provide great flexibility in modelling real
data. These families are obtained by
introducing one or more additional shape
parameter(s) to the baseline distribution.
Some of the generated families are listed as
follows; the beta- genertaed (B-G) (Eugene et
al. 2002) (Jones, M.C 2004), gamma-G (type 1)
(Zografos and Balakrishnan 2009), Kumaraswamy-
G  (Cordeiro and Castro 2011), McDonald-G
(Alexander et al. 2012), gamma-G (type 2)
(Risti” ¢ and Balakrishnan 2012), transformed-
transformer-G (Alzaatreh et al. 2013),

C 32 )
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Weibull-G  (Bourguignon et al. 2014), odd
generalized exponential-G (0GE-G) (Tahir et al.
2015), Kumaraswamy Wetbull1-G (Hassan and
Elgarhy  2016), among others. Our interest
here, with the OGE-G family which 1is flexible
because of the hazard rate shapes: increasing,
decreasing, J, reversed-J, bathtub and upside-
down bathtub. The cdf and pdf of the OGE-G are

defined as follows

. GlxiE &
.lr{:‘l:} = IE‘{_‘!.;; {":f'/;_'(f-} = {}_ . F_u- E-‘_.‘.‘: } (3)
fO)=f05ard)= Fooe € oW (1 — e a)
(a; £)2

where g(x; &)is the baseline pdf. We can omit the

dependence on the vector of parameters & and write simply

G(x) = G(x; &). Equation 4 will be most tractable when the
cdf ¢(x) and pdf g(x) have explicit expressions. Hereafter, a
random variable ¥ with density function (4) is denoted by
X ~ OGE(a,&,&). The main motivations for using the OGE
family are to make the kurtosis more flexible (compared to the
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baseline model) and possible to construct heavy-tailed
distributions that are not long-tailed for modeling real data.

The study offer a physical interpretation of % when = is an
integer. Consider a system formed by e« independent

components  following the odd exponential-G class
(Bourguignon et al. 2014) given by

Gix: £

G(x: &)

i3

Hx; 4,§) =1—e

Suppose the system fails if all & components fail and let X
denote the lifetime of the entire system. Then, the cdf of X is
Fix; @, 6,&) = H(x; 8,&)%, which is identical to (1).

The hrf of X is given by

h(x) = h(x; @, 6,{) =

()

To 1increase the flexibility for modeling purposes
it will be useful to consider further alternatives
to PF (under study in this paper) distribution. Our
purpose is to provide a new four-parameter model,

named as odd generalized exponential Chen
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Distribution (OGECD) using the OGE-G family. The
suggested model is quite flexible in terms of
hazard rate could be increasing, decreasing, U and
J-shaped. Also, paper show its flexibility on the

basis of three real life data.

This paper is outlined as follows. In section 2, we define the
OGECD distribution and provide expansions for its cumulative
and density functions. A range of mathematical properties of
this distribution is considered in sections 3. Maximum
likelihood estimation is performed and the observed information
matrix is determined in section 4. In section 5, we provide
application to several real data sets to illustrate the potentiality
of this distribution. Finally, some conclusions are addressed in
section 6.

2- THE OGECD DISTRIBUTION

In this section, the study introduce the new
suggested odd generalized exponential Chen
distribution. The pdf, cdf, reliability function,
hrf, reversed-hazard rate function and cumulative
hazard rate function of the OGECD distribution are
derived

The probability distribution function is:

C 35 )
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where &= (4§} and («, &), are non-negative shape

Parameters. The corresponding cdf and Hazard Rate Function
are

If F{.t:i} is the Chen cumulative distribution (1) with
Parameter & = (4, £) then equation (3) yields the OGEC

cumulative distribution

-5".—__..'—'
FxX)=F(x; a,6,A8)=|1—e =07 x=0 (7)
and
1= expld g
S(x; a,6,4,8)=1—F(x; a,8,48) =1— | 1— e  =FA )
C 36 )
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Respectively

Some plots of the cdf and pdf of OGECD
distribution for some selected parameter
values. Figure 1 indicates that the cumulative
and densities of the OGECD take different

shapes.
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Figure 1: Plots of the OGECD distribution function for some parameter

values.
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Figure 3: (a) Plots of the OGECD survival function for some values of a.
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(b) Plots of the OGECD survival function for some values of b.
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Figure 4: Plots of the OGECD hazard rate
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Figure 3,4 indicates that OGECD survival and hrfs can
have increasing, decreasing, J and U-shaped. This
fact implies that the OGECD can be very useful for
fitting data sets with various shapes.

3- Statistical and Reliability Properties

3.1 Quantile function and simulation

Here, the method for simulating from the OGEC distribution (6) is
presented. The quantile function corresponding to (6) is

oy =1 &
Al = F~ 4V = 7
11_-’\.H-" 4 i\ L4 =

e ——

{1 — {1 (1 —wi )

| =

Simulating the OGECD random variable IS

straightforward. Let U/ be a uniform variate on the unit
interval(0,1).  Thus, by means of the inverse

transformation method, we consider the random variable

X given by

Xp = log( 1 —%lﬂg(%))
. -  1-<log| 1-Pa |

which follows (6), i.e. X~ OGEC (a,f3,4,8).

o

3.2 Skewness and Kurtosis
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The shortcomings of the classical kurtosis measure are well-
known. There are many heavy tailed distributions for which this
measure is infinite. So, it becomes uninformative precisely
when it needs to be. Indeed, our motivation to use quantile-
based measures stemmed from the non-existance of classical
kurtosis for many of the OGEC distributions
The Bowley’s skewness (see Kenney and Keeping 1962) is
based on quartiles:

Q(3/4) —2Q(1/2) + Q(1/4)
X7 Q(3/4) -Q(1/4)

And the Moors’ kurtosis (see Moors (17)) is based on octiles:

Q(7/8) — Q(5/8) — Q(3/8) + Q(1/8)
L Q(6/8) — Q(2/8)

Where @(-) represents the quantile function

4- Estimation and information matrix
In this section, the study discuss maximum likelihood

estimation and inference for the OGECD distribution. Let

Y., X-,..,%, be a random sample from .k’xUGECD(_E)
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where &= (#5577 be the wvector of the model

Parameters, the log-likelihood function for reduces to

£ - n
— . | ey
+ 2 |[All—e™ j+x°|=2 2 Injil—e 7
i Jd L % & - A Fd J I_ J
i=1 i=1

Al 1=g%i

n {1 —e
—52 — +f_af—1321n
— exp{i‘.[l—e-‘: ﬂ —

By setting «:

now
=—+Zlo

=1

\-...-r"'

1-Arx) i

i « Al = ay !;‘
- L L=t 4 L!.
nl.l;'l

E-om-:x:-_'.)

n

r_n + Z (.1':’3 — AX; %f
=1

B B

‘4(1.)
2 TAGF

"-h

e"rn _EZ(l—AUJ)

1 —A(x, J}
A(x,)

A\(x,)
LA(x,))=
1 - A(x; 'J}

A(x;)

e&.p{

—(a-1)
1—exp {—5

=1

Where 4'(x,) = 4(x,)ix,fe* In

i w(x,)+(a—-1) i
i=1 i=1

( 44 )
~—

X;

gf n

06 &

w(x)exp{—6w(x,))}
1—exp{-6w(x,)}

A
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and
of _ N xf) LA N AT
O\ TET AR, TRiT e A i = Al
- Az,
i=1 (%
n E_'s"'-"-"-"-.:'.' 7[.1_]
—{a—1) ) S
LA
_ |.-’.:-_.: (1-%" |+ 1-6%" JA(x, ‘:-A-:.x.‘-ji
Where z{(x.) = 5[ — yE J

The maximum likelihood estimates (MLESs) of the parameters

are the solutions of the nonlinear equations?# = 0, which are

solved iteratively. The observed information matrix is

Iﬁc‘:n ﬂﬂf "i"n.:? jaﬁ.

- Ao, Doz Aps  Ap;

I (f) =N Pa o pé pA

= Do Bz D55 sy
e Qe Qis Ay

Where A denotes the partial second derivatives of ¢, the
above information matrix can be estimated using the parameter
estimates.

5. Empirical Applications
In this section, we illustrate the usefulness of the OGECD

distribution.
C 45 )

N—



M-19 pliy gopisellg cgalal| aacl|  jajiJ] deol —o)lail| S3LIS gliaal diolel] dlol|

Real Data Applications
In this section the paper use several real data sets to

compare the fits of OGECD distribution with those of
comparision other models. In each case parameters are
estimated via the MLE method described in Section 4 using the
MATHCAD software. First describe the data sets. Then report
the MLEs (and the corresponding standard errors in
parentheses) of the parameters and the values of the AIC
(Akaike Information Criterion), CAIC (Consistent Akaike
Information Criterion) and BIC (Bayesian Information Criterion)
statistics.

BiC = —28(8 + gloa(n
pit = —o¥\ V) T qugin)

Where #(8) denotes the log-likelihood function evaluated at
the maximum likelihood estimates, g is the number of
parameters, and n is the sample size. Next, shall compare the
proposed OGECD distribution with several other lifetime
distributions data set, Kumaraswamy Fréchet distribution KwF
(Mead, et al. (2014)), the beta Fréchet (BF) (Nadarajah and

C 46 )
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Gupta, (2004) and Souza et al., (2011)). Finally, we perform

the Kolmogorov-Smirnov (K-S) statistic and —24{ &} tests.

The Strengths of 1.5 Cm Glass Fibers

Here, the data set is obtained from (Faton et al. (2013)). The
data are consisting of 63 of the strengths of 1.5 cm glass fibers,
measured at the National Physical Laboratory, England.
Unfortunately, the units of measurement are not given in the

paper. The data are listed in the next table

0.55 0.93 1.25 1.36 1.49 1.52 1.58
1.61 1.64 1.68 1.73 1.81 2.00 0.74
1.04 1.27 1.39 1.49 1.53 1.59 1.61
1.66 1.68 1.76 1.82 2.01 0.77 111

1.28 1.42 1.5 1.54 1.6 1.62 1.66
1.69 1.76 1.84 2.24 0.81 1.13 1.29
1.48 1.5 1.55 1.61 1.62 1.66 1.7
1.77 1.84 0.84 1.24 1.3 1.48 151
1.55 1.61 1.63 1.67 1.7 1.78 1.89

Table 1: The Strengths of 1.5 cm Glass Fibers Data Set.

Uncensored Data “Carbon Fibers”

Here, the real data set will use here to compare the fits of the

OGECD distribution and other models. Considering an uncensored

C 47 )
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data set corresponding an uncensored data set from Nichols and
Padgett (2006) consisting of 100 observations on breaking stress of

carbon fibers (in Gba):

Table 2: On breaking stress of carbon fibers set

141 039 297 136 098 276 491 368 184 159
157 108 203 161 212 189 288 282 205 3.65
184 117 368 248 085 161 279 47 203 18
217 157 508 248 118 351 217 169 125 438
315 235 255 259 238 281 277 217 283 1.92
319 241 081 556 173 1.59 2 122 112 171
339 243 42 333 255 331 331 285 256 3.56
3.7 274 273 25 3.6 311 327 287 147 311
3.75 281 295 297 339 296 253 267 293 3.22
442 368 319 322 169 328 309 187 315 49
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Table 3. MLEs of the model parameters, the corresponding SEs

(given in parentheses) and the statistics AIC, BIC and CAIC

(1]
S

0.7658 48.475 2.025 2.6843
OGECD
52206 | 33.012 | 25.349
" (0.181) (30.634) (10.666) (1.031)
b5
=2
LL
wn
&  KwF | 550397 [ 857.34273 | 211623 | 0.74044
5 47621 | 56.193 | 45.306
(7.982) (153.948) (4.555) (0.071)
19.59068 | 30.41091 1.33081 0.6849
BF 69.735 | 78.307 | 67.421
(18.115) (18.238) (1.085) (0.181)
3.682 42.858 3.256 4.226
oGecD | ©0:00371) (0.1111) (0.00001) | (0.000002)
184.275 | 147.896 | 143.168
%
[«5]
=2
LL
S
o]
= 6.76357 | 904.34345 | 2.90998 | 0.332 202926 | 303347 | 291035
O KWF | (2.393) | (61.863) | (2.259) | (0.028)
042934 | 138.06644 | 34.38484 | 0.72474
293.733 | 304.154 | 291.842
BF [ (0.236) (113.552) (21.52) (0.19)
( 49 )
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Table 4: K-S and —2#! 8 istatistics for the chosen Real data

Glass Fibers R=5 0.112
-2¢(8] 28.325

Carbon Fibers K-5 0.427
-2£(6) 142.346

Since the values of the AIC, BIC and CAIC are smaller for the OGECD
distribution compared with those values of the other models, the OGECD
distribution seems to be a very competitive model to these data. In
summary, the proposed OGECD distribution produces better fits to the data

than other models.
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Normal P-P Plot of CarbonFibers

Observed Cum Prob

Fig. (4) The Fitted Q-Q Plots and P-P Plots for the 63 of the
strengths of 1.5 cm glass fibres data set & 100 observations on
breaking stress of carbon fibers and Empirical CDF.

6. CONCLUDING REMARKS

The well-known OGED distribution is extended by
introducing two extra shape parameters, thus defining the Odd
generalized-Exponential Chen (OGECD) distribution having a
broader class of hazard rate and density functions. This is
achieved by taking (1) as the baseline cumulative distribution. A
detailed study on the mathematical properties of the new

distribution is presented. The estimation of the model

C 52 )
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parameters is approached by maximum likelihood and the
observed information matrix is obtained. An application to a
real data set indicates that the fit of the new model is superior to
the fits of its principal models. We hope that the proposed
model may be interesting for a wider range of statistical

research.
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